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Abstract: Assistant Based Speech Recognition (ABSR) systems for air traffic control radiotelephony
communication have shown their potential to reduce air traffic controllers’ (ATCos) workload. Related
research activities mainly focused on utterances for approach and en-route traffic. This is one of the
first investigations of how ABSR could support ATCos in a tower environment. Ten ATCos from
Lithuania and Austria participated in a human-in-the-loop simulation to validate ABSR support
within a prototypic multiple remote tower controller working position. The ABSR supports ATCos
by (1) highlighting recognized callsigns, (2) inputting recognized commands from ATCo utterances
in electronic flight strips, (3) offering correction of ABSR output, (4) automatically accepting ABSR
output, and (5) feeding the digital air traffic control system. This paper assesses human factors
such as workload, situation awareness, and usability when ATCos are supported by ABSR. Those
assessments result from a system with a relevant command recognition rate of 82.9% and a callsign
recognition rate of 94.2%. Workload reductions and usability improvement with p-values below
0.25 are obtained for the case when the ABSR system is compared to the baseline situation without
ABSR support. This motivates the technology to be brought to a higher technology readiness level,
which is also confirmed by subjective feedback from questionnaires and objective measurement of
workload reduction based on a performed secondary task.

Keywords: air traffic controller; multiple remote tower; assistant-based speech recognition; automatic
speech recognition and understanding; electronic flight strips

1. Introduction

Speech recognition and speech understanding have found their way into use in
daily life. While speech recognition has become quite robust with growing amounts of
data, speech understanding remains a challenge given the complexity of verbal utterances’
semantics. However, high accuracy in speech understanding is needed for human operators
that supervise safety-critical processes, such as in aviation. Only then, users of speech
recognition and understanding systems such as controllers will accept them and can benefit
from their support, e.g., through workload reduction. Nowadays, tower controllers are
burdened with manually maintaining flight strips, even if the content that needs to be
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entered in such flight strips is also communicated verbally in air traffic control radio
telephony. This article presents one of the first prototypes of a speech recognition and
understanding system to support ATCos in the tower environment in maintaining digital
flight strips—in our case, even in a simulated multiple remote tower environment.

Our conducted validation study with ten air traffic controllers (1) quantifies any
productivity enhancements in terms of mental workload, situation awareness, satisfaction,
acceptance, trust, and usability through the advanced support functionalities in the digital
system with automatic flight strip maintenance and highlighting features (independent
variable); (2) quantifies the quality of speech-to-text and text-to-concept functionality; and
(3) gathers feedback on the prototypes’ functionality and visualization.

1.1. Related Work
1.1.1. Automatic Speech Recognition and Understanding in Air Traffic Management

During the last decades, a row of prototypes for speech recognition and understand-
ing [1] in the air traffic management (ATM) domain has been developed. Early prototypes
intended to support air traffic control (ATC) training and to reduce the number of required
simulation pilots [2,3]. ATC events have been recognized from utterances to estimate
controller workload [4,5]. The integration of contextual knowledge from an electronic assis-
tant system for the speech recognition and understanding process [6] reduced recognition
error rates [7]. These so-called assistant-based speech recognition (ABSR) systems initially
focused on the approach environment [8]. For interoperability and comparability, rules
for transcription (speech-to-text) and annotation (text-to-concepts)—so-called ontologies—
have been defined and agreed upon between the major European ATM stakeholders [9].
Due to these rules, ATC utterances always comprise a callsign and at least one command
that can consist of a type, unit, qualifier, and conditions. Later, ABSR systems were en-
hanced and enrolled on the en-route [10], apron [11,12], and tower environment [13]. This
included the prediction and extraction of ATC commands [14]. Further research prototypes
enhanced the ontologies, worked on speech recordings and radar data from real operations
rooms, especially, but not limited to, recognizing callsigns [15–17], pre-filled aircraft radar
labels that reduced the workload of ATCos [18,19], and implemented automatic readback
error detection [10,20]. However, there was no validation of a sophisticated ABSR system’s
support for tower controllers, especially in a multiple remote tower setup using such a
system in a high-fidelity laboratory environment.

1.1.2. Multiple Remote Air Traffic Control Tower and Human Operator Performance

The history of laboratory remote tower working positions started over two decades
ago [21]. Recent research focused on human performance in multiple remote tower en-
vironments, i.e., where an ATCo is responsible for more than one remote airport at the
same time. This started with analyzing eye-tracking data to characterize tower controllers’
visual attention [22]. The research went on to investigate the changes in monitoring tasks
and drafting multimodal interaction to support human operators at the controller working
position (CWP) [23]. The latest research concentrated on workload assessment [24], opera-
tional feasibility and safety [25], as well as a supervisor position [26]. With fostering the
technology maturity, questions regarding standardization with the European Organization
for Civil Aviation Equipment (EUROCAE) and the European Union Aviation Safety Agency
(EASA) guidelines have been developed [21]. Furthermore, the certification process for
multiple remote tower operations has been sketched [27].

In the multiple remote tower environment, the human ATCo remains a central mean
for the overall performance, with or without ABSR support. Related work on human
performance assessment with standardized questionnaires is explained together with their
results in the subsections of the result Section 3.
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1.2. Structure of the Article

Section 2 describes the setup for the validation of ABSR support for ATCos and the
conduction of this study. Section 3 presents the study results for the two aspects “Appli-
cation of ABSR” and “ABSR in an ATM environment”, i.e., results on speech recognition
performance (Section 3.1) and speech understanding performance (Section 3.2) as well as on
human factors such as mental workload, situation awareness, satisfaction, acceptance, trust,
and usability (Sections 3.3–3.10), and ends with general feedback from ATCos (Section 3.11).
Section 4 discusses the major study results for the fast readers who just quickly scanned
Sections 2 and 3. For the very fast overview reader, Section 5 concludes and gives an
outlook on future work. A list of abbreviations is provided before the Appendix. For
more details and to follow some of the calculations, Appendix A lists results on speech-to-
text performance, Appendix B lists results on text-to-concept performance, Appendix C
lists the questionnaire statements of this study, and Appendix D details some validation
setup views.

2. Materials and Methods

This section describes the hardware and software setup, as well as the methodology
for the conduction of a human-in-the-loop simulation study to validate the benefits of
an implemented ABSR prototype that was integrated with a prototypic electronic flight
strip system for ATCos working within a simulated multiple remote tower environment.
The technological validation exercise “006” was part of SESAR2020’s wave 2 project PJ.05,
“Digital Tower Technologies (DTT)” that received funding from the SESAR Joint Under-
taking under the European Union’s Horizon 2020 research and innovation program under
grant agreement No 874470. More specifically, the exercise was conducted within solution
97, “HMI Interaction modes for Airport Tower,” with its “Automatic Speech Recognition
(ASR)” activity for “Improving controller productivity by ASR at the TWR CWP”.

2.1. Hardware Setup of the Validation Study

Figure 1 shows the hardware setup of a prototypic CWP for a multiple remote tower
environment in DLR’s TowerLab [28]. Three horizontal rows of monitors (top of Figure 1)
visualize the artificial outside view for the three configured airports. The airport layout is
generic, but the three airports are named Vilnius, Kaunas, and Palanga.
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three columns, in turn, comprised four different bays—air, runway, ground, and stand—
in order to enable managing the flight progress in a procedural way. 

Figure 1. Multiple remote tower environments with a row of monitors per each of the three airports
under ATCo control, three radar screens, and the electronic flight strip system that is supported
by the output of an assistant-based speech recognition system. The position for Vilnius is always
top/left, Kaunas is middle, and Palanga is bottom/right.
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The three monitors below on the desk (see Figure 1) depict the air traffic in the airport’s
vicinity. The touch display at the middle of the desk (see Figure 1) presents the electronic
flight strips per airport per column. The ATCo wears a headset with speakers and a
microphone that is triggered via a push-to-talk button at the headset’s cable. The paper
sheets on the left of the desk (see Figure 1) contained the airport layout, aircraft callsigns,
and a legend for the symbols of the electronic flight strip system.

2.2. Software Setup and Simulation Environment of the Validation Study

All used software and displays are prototypic DLR developments. They consist of
the most common elements that the usual controller working positions of European air
navigation service providers offer. Thus, a wide range of ATCos from many different
countries can use the systems of the validation study even if the details differ compared to
their “usual” systems in daily-life operations. The aircraft and ground vehicle movements
relevant to the tower and ground control were simultaneously simulated in three remote
Lithuanian airports, i.e., Vilnius, Kaunas, and Palanga.

2.2.1. Outside View for Supervision of Movements on Ground and above the Airfield

The artificial outside view, such as out of a physical tower for those three airports,
comprises the runway, taxiways, stands, and some environments, such as landscape and
buildings, as shown in Figure 1. On the left and right side of each monitor row, there was a
compass rose with additional information relevant to aircraft takeoff and landing (more
details in Appendix D). If the validation condition “with ABSR support” was active, the
ABSR output was also shown in the ATCo outside view.

2.2.2. Radar Displays to Monitor Air Traffic Close to the Airfield

A radar display for each of the three airports (see Figure 1 middle part) visualized the
airspace structure with waypoints and the air traffic in the airport’s vicinity. Each aircraft
had a radar label displaying the aircraft callsign, weight category, current altitude, rate of
descent/climb, speed, heading, and aircraft type. The biggest airport (Vilnius) also had a
ground radar display showing the runway, taxiways, stands, and aircraft information, i.e.,
current and latest positions, aircraft callsign, relevant runway or stand, speed, and aircraft
type, as well as a color indicating if the flight is an arrival or departure.

2.2.3. Electronic Flight Strip System (EFS)

The electronic flight strip system on the touch display consisted of one column per
airport (see Figure 2). The column heads presented the airport’s ICAO code, runways,
automatic terminal information service (ATIS) letter, and radio frequency. Each of the three
columns, in turn, comprised four different bays—air, runway, ground, and stand—in order
to enable managing the flight progress in a procedural way.

Each flight strip (see zoomed white box in Figure 2) offered the option for hand written
notes (pen symbol in upper left area), and showed aircraft callsign (BRU835), ICAO weight
category (M), runway (34), stand (M1), estimated time of arrival/departure (08:39), aircraft
type (A320), flight rules (“I” or “V” for instrument/visual flight rules), origin/destination
airport (EDDK), standard instrument departure (such as BELED3D for aircraft GAF612 on
the lower right blue flight strip), and squawk (3511).

The EFS for the ATCos further had a number of flight status icons on the right side
(see Figure 2). The flight status icons depended on the flight intentions, i.e., blue departure
flight strips/purple arrival flight strips, and on the progress, i.e., in which bay the flight
strips currently are. Each flight status icon could be toggled, i.e., activated when a status
change was initiated or deactivated, e.g., in case of activating by accident. The different
flight status icons are shown in Figure 3. If they were activated through the tap of an
electronic pen, they turned into a light green color in the electronic flight strip.
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The electronic flight strips changed their bays with further progress of the flight status
when arriving or departing, e.g., after setting the status “LINEUP,” the flight strip moved
from the ground bay to the runway bay.

2.2.4. Assistant-Based Speech Recognition and Understanding Prototype

The core development for the validation study was a prototypic system for speech
recognition and understanding in a multiple remote tower environment. This ABSR system
is based on a number of models based on deep neural networks trained by machine learning
methods, respectively. The two main steps are (1) speech recognition, i.e., automatic speech-
to-text transcription from tower controller audio input, and (2) speech understanding, i.e.,
automatic semantic text-to-concept annotations from the transcription input (see Figure 4).
The speech recognition and understanding models were trained on in-domain and out-of-
domain data, specifically 200 h from seven different datasets and 4.5 h (recorded in the later
study environment) of manually transcribed speech data, as well as 400 h of untranscribed
data from LiveATC (Homepage: https://www.liveatc.net/ (accessed on 4 April 2023)) [30].
Further references on the development of the speech recognition engine with artificial
intelligence techniques can be found in [30].
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Both speech-to-text and text-to-concepts benefit from the use of contextual data, i.e.,
they consider radar data and flight plan data. The callsign prediction model is used to
forecast aircraft callsigns for the next ATCo utterances, i.e., it predicts only those aircraft
callsigns which are in the current area of responsibility of the ATCo. Those forecasted
callsigns support the speech recognition engine in recognizing the correct word sequences
and the speech understanding module in extracting the correct callsigns, especially in cases
when not all words of the callsign are correctly recognized.

The command extraction model in the speech understanding module analyses the
automatically transcribed ATCo utterances and extracts meaningful content, i.e., ATC
concepts such as commands with callsigns, command types, values, units, etc., conform
to the defined ontology. Two example transcriptions with their example annotations shall
illustrate this:

• wizz air two echo bravo good morning vilnius tower startup and pushback approved cleared to
sofia via erlos one delta departure route seven thousand feet squawk two one seven seven QNH
one zero one four

WZZ2EB GREETING
WZZ2EB STATION VILNIUS_TOWER
WZZ2EB STARTUP
WZZ2EB PUSHBACK
WZZ2EB CLEARED TO LBSF
WZZ2EB CLEARED VIA ERLOS_1D
WZZ2EB ALTITUDE 7000 ft
WZZ2EB SQUAWK 2177
WZZ2EB INFORMATION QNH 1014

https://www.liveatc.net/
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• hotel tango uniform when you are ready taxi to holding point runway three one correction one
three right via [hes] golf vilnius

HBATU CORRECTION
HBATU TAXI TO HP_13R WHEN READY
HBATU TAXI VIA G C WHEN READY
The recognized ATC concepts, i.e., the annotations, are then used for highlighting

purposes or supporting manual input in electronic ATC systems.

2.2.5. Visualization of ABSR Output on EFS and Outside View

The ABSR output was visible through different highlighting mechanisms in the elec-
tronic flight strips if the validation condition “with ABSR support” was active. If a callsign
was recognized [31], the callsign was highlighted by displaying a rectangle in inverted
colors for ten seconds at the callsign field of the flight strip (see “DLH4TN” in Figure 5).
The callsign was highlighted immediately after being recognized and extracted even before
the ATCo finished the utterance by releasing the push-to-talk button.
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from an ATCo utterance (DLH4TN), dark green automatically highlighted status icons for DLH4TN
(STARTUP, PUSHBACK, TAXI), and five light green highlighted status icons of three other flights
after being automatically accepted from the system or manually entered by the ATCo.

If one or more ATC concepts, such as commands and optionally command values, have
been recognized, there was a dark green highlighting to support the ATCo in maintaining
flight strips. This means the flight status icons on the right side of a flight strip or text values
on the left side of a flight strip have been highlighted for ten seconds (see highlighted status
icons for STARTUP, PUSHBACK, and TAXI of DLH4TN in Figure 5).

If the flight status icons in dark green mode remained unchanged by the ATCo for
ten seconds, they were automatically accepted and turned into light green as with manual
activation. In the case of a recognized HOLD_SHORT of runway command, the runway
name was highlighted with color inversion for ten seconds as well.

2.3. ATCo Tasks in the Different Validation Conditions

Many of the tasks that ATCos needed to perform during the real-time human-in-the-
loop validation study were identical under different validation conditions. Two conditions
have been analyzed in the simulated multiple remote tower environment: baseline, i.e.,
without ABSR support and solution, i.e., with ABSR support. Section 2.3.1 describes the
ATCo tasks in the baseline condition; Section 2.3.2 explains the changes induced for the
ATCo when working in the solution condition.

2.3.1. ATCo Primary Tasks in Baseline Condition without ABSR Support

During the simulation runs, ATCos primarily needed to control the relevant traffic at
three remote airports (tower and ground), with the above-described hardware and software
setup consisting of an outside view, radar displays, and the electronic flight strip system.
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Hence, they mainly gave ATC clearances, allowed for startup and pushback, instructed taxi,
lineup/vacate and takeoff/landing/touch-and-go clearances for the single runway in use
at each airport, as well as approved to enter/leave the control zone and to contact adjacent
sectors. They also had to handle special situations on the ground with aircraft and ground
vehicles being involved, such as a bird strike following a runway check and an emergency
landing with the disembarkation of a sick passenger. The ATCos instructed all commands
to the relevant traffic verbally in the English language via an emulated radio system.

Three simulation pilots (one for each airport) in another room communicated with
the ATCo to run air and ground traffic with the support of a simulation pilot interface (see
Appendix D). The ATCos were instructed to speak as usual at their working position. This
also implies that some ATCos stick closer to the ICAO phraseology than others. The only
continuous additional content for each ATCo utterance was the name of the station the
ATCos are representing with the current utterance, i.e., “vilnius/kaunas/palanga tower,”
in order to fulfill safety requirements of the multiple remote tower concept.

The ATCos were asked to enter the semantic content of all utterances in terms of
changed flight status into the electronic flight strip system with an electronic touch pen.
Thus, they had to touch the flight status icon PUSHBACK in case they verbally instructed a
pushback clearance or TAXI and the name of the taxiway if there were multiple options in
case they issued to taxi via a certain taxiway (see Figure 6).
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Figure 6. Prototypic electronic flight strips (blue departures; violet arrivals) in different bays (air,
runway, ground, stand) with relevant information on the left (estimated time, callsign, aircraft type
and weight category, flight rules, runway, destination airport, stand, departure route, squawk) and
status icons on the right (e.g., CLEARED TOUCH_GO in green, ENTER_CTR, etc.).

The ontology defines 80 different command types as relevant for tower ATCos if they
also include the role of ground control. All of these command types have been implemented
within our command extraction algorithm.

The airport topologies were rather simple, i.e., the two smaller airports (Kaunas,
Palanga) had just one taxiway each from the apron to the lineup. They vacated the single
runway, and only the biggest airport (Vilnius) had two taxiway alternatives each for lining
up and vacating the single runway. No runway change occurred during the simulation time.
The weather conditions at all three airports remained visual meteorological conditions in
the daytime throughout the simulation.
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The relevant traffic in the two different one-hour simulation scenarios comprised
twelve flights in Vilnius (plus two ground vehicles), six flights in Kaunas (plus one ground
vehicle), and five flights in Palanga—at the latter airport, including training flights with
multiple approaches—so 23 flights plus three ground vehicles (the ground vehicles make
11.5% of total relevant traffic) in total. For later evaluation, the results refer to all 26 traffic
vehicles (flights plus ground vehicles) as ATC communication took place between ATCos
and pilots or ground vehicle drivers, respectively. The callsigns and timing of appearance
of the flights in these two scenarios were slightly different in order to reduce learning
effects.

2.3.2. ATCo Tasks in Solution Condition with ABSR Support

In the solution scenario, ATCos had the same hardware setup as in the baseline
scenario. The only difference was the support of the ABSR system. ATCos could majorly
resign from using the electronic pen to maintain flight strips and benefit from automatic
maintenance through the ABSR system, i.e., the ABSR output was used to highlight the
flight status icons and callsigns in electronic flight strips automatically (see lower zoomed
white box in Figure 7). The ATCos only needed to check the automatically highlighted
output, i.e., representing issued commands and thus changes in the aircraft flight status,
and correct if needed. A video about the simulation environment in the solution runs
can be downloaded from https://www.youtube.com/watch?v=Y76kQmo_ANU&cbrd=1
(accessed on 4 April 2023). The ABSR output was only shown to the ATCos in solution
scenarios. However, recording of verbal utterances, automatic transcription and automatic
annotation was also performed in the background in baseline runs. The flow of using
speech recognition and understanding output in the flight strips can be traced in Figure 7.
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The complete transcription of words (first line) and the relevant annotation of com-
mands in the agreed ontology format (second line) have been displayed in the outside view
of the human-machine interface as shown in Figure 7 (zoomed white box on the upper area
of the figure) if the validation condition “with ABSR support” was active.

2.4. Questionnaires and Further Tasks during and after Simulation Runs

Every five minutes, the ATCos were requested to rate their workload on a displayed
graphical interface for an instantaneous self-assessment of workload (ISA) scale [32]. This
interface offered values from 1 (low workload) to 5 (high workload) and appeared in the
EFS system (see Figure 8).
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2.4.1. ATCo Secondary Tasks during Simulation Runs

Furthermore, the ATCos were asked to perform a secondary task next to their primary
ATC task. After 10 and 40 min in the scenario, ATCos were requested to sort a deck of
48 cards and name one to four randomly missing cards (see Figure 9). This sorting of cards
was repeated three times each or a maximum of 15 min (after 10 min) or 13 min (after
40 min), respectively. This secondary task is aimed to give a more objective impression
about workload when comparing the time needed to sort and identify missing cards
between baseline and solution scenarios. It is assumed that ATCos have more free cognitive
capacity (less workload) if they can sort the cards quicker in one of the simulation conditions.
The points in time (after 10 and 40 min) have been chosen as the ATCo workload should
have been slightly increased due to the traffic situation at that time. The need to respond to
ISA and to perform the card sorting remained identical in baseline and solution runs.
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2.4.2. ATCo Post-Run Questionnaires after Simulation Runs

The post-run questionnaires needed to be filled by ATCos twice on each validation
day, i.e., after each of the two simulation runs with the two different conditions. The
well-established questionnaires cover the most important factors of air traffic controller
work, such as situation awareness, workload, and trust [33] and are listed below:

• NASA-TLX (National Aeronautics and Space Administration Task Load Index) [34,35];
• Bedford Workload Scale [36];
• Three SHAPE questionnaires (Solutions for Human Automation Partnerships in Euro-

pean ATM) [37]:

# AIM-s (Assessing the Impact on Mental Workload);
# SASHA (Situation Awareness for SHAPE) ATCo;
# SATI (SHAPE Automation Trust Index);

• CARS (Controller Acceptance Rating Scale) [38];
• SUS (System Usability Scale) [39,40].

2.4.3. Statistical Analysis Approach

When reporting the results of data that has been measured for baseline and solution
runs, there will also be a statistical significance analysis, e.g., of all the above-mentioned
questionnaires. Usually, there is a learning effect if ATCos perform multiple simulation
runs in a row, i.e., they will perform better in the later runs, because they are used to the
overall environment. Hence, better performance cannot simply be assigned to possibly
different simulation run conditions such as baseline or solution. The sequence of baseline
and solution runs is also an independent variable.

Therefore, two measures have been taken to compensate for the sequence effects as
much as possible. First, the order of simulation runs alternate, i.e., half of ATCos start
with a baseline run and end with a solution run and vice versa for the other half. The
performance usually is, of course, better in the later runs, but the effect on baseline and
solution runs should average out. Nevertheless, the standard deviations will be higher
than they would be without sequence effects. Hence, secondly, the sequence effects will
be compensated by considering the performance difference between the two runs. This
sequence effect compensation technique (SECT) is described in more detail in [41]. An
example shall illustrate the application of SECT. If any performance in all first runs of
ATCos is 50 s and in all second runs 30 s, i.e., 20 s better, the performance difference is
calculated as 50–30 = 20. Half of this difference (20/2), i.e., 10 s, is subtracted from each
result of a first run and half of the difference is added to each result of a second run.
Afterwards, the averages per run are the same. Furthermore, the averages of baseline and
solution keep the same. We had exactly half of the ATCos having a baseline run and a
solution run as the first run, respectively. However, the standard deviation will decrease,
i.e., statistical significance will increase. This was already shown for earlier project result
analyses such as of AcListant®-Strips when analyzing workload benefits [18].

Unpaired t-Tests can only reject hypotheses with some probability α. Therefore,
the so-called null hypothesis H0 is usually the opposite of the effect to be validated,
e.g., “ABSR support does not reduce workload as measured with a secondary task”. The test
value T is calculated as the product of (1) the difference between the mean value of the
performance measurement and µ0, which is set to zero, and (2) the square root of the
number of performance measurements, i.e., ten study subjects, divided by the standard
deviation of the performance measurement. If the measurement values follow a Normal
Gaussian distribution, the value T obeys a t distribution with n-1 degrees of freedom.
Therefore, the resulting value T is compared with the value of the inverse t-distribution
at the position tn-1,1-α with n-1 degrees of freedom. If the calculated value T is bigger
than the tn-1,1-α threshold, we can reject the null hypothesis with probability α. As this
falsifies the null hypotheses, we could assume that “ABSR support does reduce workload
as measured with a secondary task.” Additionally, the minimum α will be calculated, i.e.,
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so that the value T threshold is still exceeded. These calculations will be performed on all
single rated statements and answered questions, respectively, as well as for the group of
statements/questions that belong together in a single questionnaire, e.g., the aggregating
of the six items of NASA-TLX.

2.4.4. ATCo Post-Validation Overall Questionnaire

The post-validation questionnaire requested to be filled by ATCos only once after
finishing all simulation runs, i.e., there is an overall rating on the ABSR prototype instead
of a rating on baseline and solution each. It contained 28 statements to be rated regarding
human performance, safety, operating methods, and technical feasibility. If answers on
the post-validation questionnaire of the ten ATCos are reported in the following, the scale
ranges from 1 (fully disagree) to 10 (fully agree), i.e., the scale mean is 5.5.

2.5. Validation Schedule and Participants

Each validation day with an ATCo began with organizational tasks such as the signa-
ture of informed consent, a briefing, and a demographics questionnaire. It was followed by
60 min training run with low to medium traffic (30 min each with baseline and solution
condition, i.e., without ABSR and with ABSR support). Then, two simulation runs of 60 min
each with baseline and solution conditions, respectively, and medium traffic were carried
out. One run included a bird strike, and the other run included a sick passenger in an
aircraft as special situations that the ATCos needed to handle and coordinate with ground
vehicles. In order to average out the influence of the learning effect, baseline and solution
scenarios have been alternated for ATCos throughout the validation campaign. After each
run, the ATCos were requested to fill the mentioned questionnaires regarding workload,
situation awareness, etc., as sketched in Section 2.4.2 and gave comments and answers in
a debriefing. Finally, ATCos needed to fill out an overall tailor-made questionnaire (see
Section 2.4.4) on the ABSR system after the last debriefing.

It has to be noted that the technical team of the validation campaign replaced a laptop
and made a software update regarding the allowed central processing unit (CPU) load for
the automatic speech recognition (ASR) engine after the eighth ATCo in the simulation
campaign. However, no significant change in ABSR accuracy was noted due to this.

The validation campaign took place at DLR TowerLab in Braunschweig, Germany,
from 14 February to 3 March 2022 (8:30 a.m. to 4:30 p.m.). This study was conducted
with one ATCo per day for exactly ten days with five ATCos from Oro Navigacija (ON,
Lithuania) and five ATCos from AustroControl (ACG, Austria). All participants were
holders of an active tower ATCo license. The ten ATCos were not involved in the project in
terms of participation in previous work sessions.

The nine male and one female ATCo had an arithmetic mean age of 31.9 years (standard
deviation, SD: 5.5 years). The ATCos had 7.4 years of professional working experience
as an ATCo (SD: 5.8 years), while ON ATCos were already longer on duty (9 years, SD:
7.3 years) compared to ACG ATCos (5.7 years, SD: 3.9 years).

3. Results

Each of the ten ATCos participated in a baseline run without ABSR support and
a solution run with ABSR support, i.e., the data of twenty simulation runs with their
succeeding post-run questionnaires as well as the final ten post-validation questionnaires’
answers are analyzed in the following subsections. This section details:

(1) Objectively measured speech recognition performance;
(2) Objectively measured speech understanding performance;
(3) Perceived speech recognition and understanding performance;
(4) Operational and technical questions;
(5) Overall ratings on perceived workload, perceived situation awareness, satisfaction,

acceptance, trust, and usability;
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(6) Ratings per simulation run on perceived and more objectively measured workload,
perceived situation awareness, satisfaction, acceptance, trust, and usability;

(7) General debriefing feedback.

The tailor-made statements of the questionnaires to be rated by ATCos described in
the following contained the term ASR for brevity, even if automatic speech recognition
and understanding was meant and experienced by the ATCos. Furthermore, the ABSR
performance and the effect on subjective, as well as objective results are shown in more
detail on a per-case basis by comparing ON and ACG ATCos for two reasons. First, the
amount of training data differs by a factor of four between ON and ACG ATCos which
influences the speech-to-text and text-to-concept performance. Second, the three controller
working positions that (1) the Lithuanian ATCos are used to, (2) the Austrian ATCos are
used to, and (3) is used as a prototypic environment in the simulation differ so that the
familiarization with the system differs as well.

3.1. Results of Speech-to-Text Analysis
3.1.1. Audio Recordings with Transcriptions and Annotations

Verbal utterances of ATCos that were triggered with the push-to-talk button during
twenty hours of simulation runs (radar data duration) have been recorded as wav-files.
For each wav-file of the twenty simulation runs (baseline and solution) exists an automatic
transcription and an automatic annotation. We recorded 2427 wav files with a net speech
time of 4.5 h (i.e., when ATCos speak) during 20 h of radar simulation, i.e., the frequency
load by ATCos was roughly 22%. The average duration per utterance was 6.6 s.

All wav-files have been manually transcribed and annotated (“gold”) with DLR’s Con-
troller Command Logging Tool for Context Comparison (CoCoLoToCoCo, see Figure 10) to
enable comparison and calculations about recognition and error rates on the word level
and semantic level.
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The upper area of CoCoLoToCoCo (red dotted line) lists all audio files of a selected
folder, has buttons and sliders to adjust the playback of the files, has a comment window
and an error output window, as well as offers some further file-checking opportunities.
The middle area (red solid line) shows the annotation view with a column per element of a
controller command, the resulting annotation of an audio file in ontology format [9] (green
font), and further buttons for rearranging and checking. The lower area (red point-dash
line) visualizes the transcription of a selected audio file following defined transcription
rules.

The gold transcriptions of the validation trials contain in total 37,238 words without
words that are not fully uttered and thus contain a “*” such as “lufthan*” due to our
transcription rules, i.e., each ATCo utterance contains roughly 15 words. Table A3 shows
the top-25 1-grams, i.e., the uttered words with their absolute and relative frequency. The
most often occurring words, “one” (6.43%) and “zero” (3.97%), are usually in the top three
for other ATC communication corpora as well. However, the word at rank three, “tower”
(3.96%), is specific for the multiple remote tower environment, in which the transmitting
entity should always be named and, therefore, appears quite often. Normally, the digits
from zero to nine fill the first ten ranks in ATC communication corpora.

Furthermore, the words “runway,” “to,” and “cleared” appear in the top 12 as runway
clearances and “cleared to” are often uttered. This latter result is confirmed by analyzing
two real-life ATCo utterance corpora from Vilnius tower, as well as from Vienna tower, with
roughly 7500 words in total each. This shows that the simulation setup and the challenges
for the speech-to-text engine were quite realistic.

Table A4 lists the number of different words to reach a relevant portion of all uttered
words, i.e., if speech-to-text performs well on the 100 most often occurring words, almost
90% of the total number of words are covered.

3.1.2. Speech-To-Text Performance

Some abbreviations that are used for analyzing purposes in the following and in the
Appendices A and B are introduced:

• Onl = online (analysis as experienced by ATCos during simulation runs);
• Off = offline (analysis of audio files after the simulation runs);
• WER = Word Error Rate;
• Subs = Substitutions;
• Del = Deletions;
• Ins = Insertions;
• LevenDist = Levenshtein Distance [42] between automatic and gold transcription;

The speech-to-text accuracy is presented with details per each simulation run in the
tables of Appendix A (see Tables A1 and A2). Table A1 visualizes the WER for offline
recognition (Off) as evaluated after the end of the validation trials. It shows what results
would be already achievable when the technical setup is improved to deliver the offline
performance during the simulation runs. Table A2 visualizes the WER for online (i.e.,
real-time) recognition from the voice stream (Onl) as evaluated during the simulation runs,
i.e., the WER are usually worse than for Off.

There were some technical problems with the ABSR setup: (1) the audio device
continuously disconnected in one simulation run resulting in the loss of some data, and
(2) there was partly CPU overload, especially for the first eight ATCos. The performance of
the ASR engine was much worse in the online mode (as experienced by ATCos) than in
the later offline analysis of recorded audio files. Worse speech-to-text performance, i.e., a
higher WER being the sum of substitutions, insertions, and deletions regarding two-word
sequences divided by the total number of correct words, of course also led to worse text-
to-concepts performance. Some average and some specific results from these tables are
analyzed deeper in the following.

The average WER for all twenty runs was 5.1% in Off mode. When just considering
solution runs, the average WER even reached 4.4%, while baseline runs have an average
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WER of 5.7%. When omitting the single run with audio device problems, the maximum
WER was below 8% for all other 19 simulation runs in Off mode, i.e., the highest WER
in that single run was 11.5%, and the lowest WER for any run was 1.3%. It needs to be
admitted that the training data already contained a few speech samples from some ATCos
that also participated in the final validation trials.

In Onl mode, the average WER was 13.6%, while the average WER for solution runs
was 9.8% and for baseline runs 17.4% (see Table A2). There is a remarkable difference in the
WER of ON ATCos (6.8%) compared to ACG ATCos (12.8%) in solution runs. This probably
goes back to the amount of training data in the identical recording environment to the later
validation trials, which was only 3.6 h for ON and even 0.9 h for ACG.

Four of twenty runs still achieved good performance with WER < 3%. However,
three other runs that were affected by technical problems achieved a WER > 23%. Still,
the Onl performance was sufficient in almost all solution runs to produce an acceptable
text-to-concept quality. Nevertheless, the degradation of the speech-to-text performance is
higher from offline mode to online mode than expected and offers room for improvement.

3.2. Text-To-Concept Quality
3.2.1. Description of Gold Annotation Data Set

All twenty simulation runs consist of 7560 commands (ALL), whereof 3701 are from
baseline runs (BAS), and 3859 are from solution runs (SOL), respectively. Hence, there
were 3.1 commands per ATCo utterance and 5.1 words per command if we assume that all
words of an utterance are relevant to form a command.

However, it has to be noted that there are some word sequences annotated as com-
mands that do neither influence the aircraft status nor include any request, report or traffic
information from the ATCo side:

• First, the annotations GREETING (e.g., “hello”), FAREWELL (e.g., “bye”), and NO_
CONCEPT (e.g., “thanks;” no relevant ATC command in the utterance) that are sum-
ming up to 9.8% of commands during this study. These command types can indicate
that the ATCo workload might not be assumed as overwhelmingly high if they still
have time for welcoming, saying goodbye, and thanking anybody.

• Second, the annotation CORRECTION and CALL_YOU_BACK (e.g., “standby”) that
sum up to 1% of the commands might indicate a higher workload as ATCos often
correct themselves, are asking for repetition of the transmission or are telling to wait
for further information. The annotation SAY_AGAIN, which also belongs to this
command group, has not been used.

• Third, the annotation AFFIRM and one annotation of DISREGARD that sum up to
4.1% of the commands have ATC communication relevant content, even if they are no
commands in a classical sense. The annotation NEGATIVE, that also belongs to this
command group, has not been used.

Though, the above-listed annotations enable a workload analysis of human ATC
operators that will be published in another paper. 15 of the 80 possible command types for
tower ATCos as defined in the ontology, such as GO_AROUND and ABORT TAKEOFF, did
not occur at all in the 7560 commands. This means 65 different command types have been
used by the ten ATCos, e.g., PUSHBACK, TAXI TO, CLEARED TAKEOFF/LANDING,
ENTER_CTR, etc. Table A5 lists the relative occurrence of all command types greater than
1%. The last type, “others”, groups all command types that occurred between 0.33% and
1%, such as CONTACT, ENTER_CTR, LINEUP_BEHIND, CLIMB, and DIRECT_TO. In
total, there are 36 different command types that appeared more than 25 times, i.e., more
than 0.33%.

The most often used command type is—unsurprisingly—STATION, as ATCos were
asked to utter it in each radio transmission. However, 1529 occurrences (20.2% of com-
mands) in 2427 utterances mean that ATCos did not follow this multiple remote tower
safety-related request in 37% of all utterances. This might not be critical if ATCos just
uttered “bye,” but in any case, it should be considered for the multiple remote tower
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concept. The (CONTINUE) TAXI TO/VIA commands sums up to 11.5% of commands.
The INFORMATION WINDSPEED/DIRECTION even sum up to 15% of the commands as
they were instructed for all takeoffs and landings/touch-and-gos. The exclusive runway
clearances CLEARED TAKEOFF/LANDING/TOUCH_GO/VISUAL sum up to 6.8% of
commands. The runway usage clearances LINEUP, LINEUP_BEHIND, VACATE (VIA),
and BACKTRACK sum up to 4% of commands.

A total of 29 of those 65 used command types occurred a maximum of 25 times for all
ATCos in total such as BACKTRACK, CLEARED VISUAL, HOLD_SHORT, JOIN_TRAFFIC
_CIRCUIT, LEAVE_CTR VIA, and ORBIT. For the above considerations, we neglect that
only 87% of all words that are available in the gold transcriptions have been used by the
automatic command recognition algorithm to classify commands (see column “Unknown
Classified Rate” in Tables A6, A8 and A10).

It needs to be mentioned that our prototype follows a more holistic approach than
some very basic prototypes of other actors in the field of speech recognition and understand-
ing [43]. Our command extraction algorithm does not only extract callsigns (DLH4TN),
basic types (TAXI), and values, but more sophisticated command types of multiple parts
(TAXI TO/VIA), units, qualifiers, conditions (WHEN READY), chain commands with
multiple callsigns, tackles many types of corrections through the ATCo and even robustly
recognizes elements of the ontology if there are minor and major (acceptable) deviations
from ICAO phraseology [44] in the utterances. Furthermore, we support a bigger number
of command types (from the agreed ontology) as defined by the different actors themselves.
The execution time of the command extraction per utterance in offline mode on a standard
laptop, i.e., on a complete transcription, has an arithmetic mean of 2 ms and a median
of 1.2 ms with a minimum execution time below 0.1 ms and a maximum execution time
below 40 ms independent of performing command extraction on gold, offline or online
transcription files. In addition, our prototype is—to the best of our knowledge—the first to
support multiple remote towers at the same time (not just one) and delivers recognition
error rates on an acceptable level despite all the above-mentioned complex add-ons.

3.2.2. Description of Results of Automatically Extracted Commands on Different Versions
of Speech-To-Text Transcriptions

The following three subsections present recognition and error rates on callsign and
command level, as well as the portion of words from the utterances that have not been used
for ATC concept extraction while referring to Appendix B. More details on the semantic
level metrics can be found in [45]. The command extraction results will also be presented
by comparing the different command type groups:

• “All;”
• “Relevant” if appearing more than 25 times in all 20 runs;
• “EFS” has a visible effect on the electronic flight strips;
• “Status” that changed the aircraft status in the electronic flight strips;
• “Outside” is just shown on the monitors for the outside view;
• “Hypo-EFS” could have been highlighted in the flight strips but have not been during

the trials, such as recognizing the active runway in an utterance.

3.2.3. Speech Understanding Performance on Gold Transcriptions

In total, 65 different command types have been automatically extracted from the
gold transcriptions, i.e., the same number as in gold annotations. Table A6 shows how
well the ontology-conform automatic recognition of ATC commands is modeled. The
command recognition rate is around 96% with an error rate below 2.5%; the rejection rate
(not reported herein) causes a difference to 100% in the total sum of command rates. The
callsign recognition rate even achieved 99.8% with an error rate of 0.2%. The command
recognition rates in solution runs were 96.6% for ON and 95.4% for ACG.

A total of 18.3% of all problematic annotations (recognized commands) go back to the
three ground vehicles in the scenario that make up 11.5% of all relevant traffic. Further,
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7.3% of problematic annotations go back to the emergency aircraft, even if this makes up
3.8% of the flights.

18 of the 80 defined command types from the ontology had visible effects in the flight
status icons of the electronic flight strips—hereinafter referred to as command type group
Status. Three further commands had a visual effect on the textual data of the electronic
flight strips. These 21 commands that influenced the appearance of the electronic flight
strips are grouped in the command type group EFS. Three supported commands contained
weather information from the Outside view (QNH, INFORMATION WINDDIRECTION and
WINDSPEED); the values of four further supported commands could have been displayed
in the relevant field of the electronic flight strip. However, this highlighting has not been
fully implemented yet (command group Hypo-EFS), i.e., STATION, INFORMATION ATIS,
INFORMATION ACTIVE_RWY, and HOLD_SHORT for all possible airfield elements such
as taxiways. The command type group Relevant includes all commands that have been
automatically extracted more than 25 times. Table A7 shows the command recognition
performance on the above-mentioned command type groups, i.e., presenting command
recognition rates of 96% and more.

3.2.4. Speech Understanding Performance on Offline Transcriptions

The command recognition results of Table A8 are based on the output of the speech
recognition engine, i.e., the transcription from Off mode. The command recognition rate
is above 91%, with an error rate below 5%. The callsign recognition rate achieved almost
98.5% with an error rate below 1%. The command recognition rate of command type group
EFS is beyond 93%, as Table A9 shows. 16.2% of all problematic annotations go back to the
three ground vehicles that comprise 11.5% of all relevant traffic.

3.2.5. Speech Understanding Performance on Online Transcriptions

Tables A10 and A11 present the command recognition results on transcriptions from
Onl mode. The command recognition rates are roughly 10% worse than in Off mode. The
command recognition rate for solution runs in which the ATCos saw the ABSR output was
82.9%, with an error rate of 6.6%. However, there is a huge difference in the command
recognition rate for ON ATCos (88.0% based on WER of 6.8%) compared to ACG ATCos
(77.7% based on WER of 12.8%). As the command recognition rates for ON and ACG
ATCos were both close to 96% on gold transcriptions, the high WER resulting from the
mentioned low amount of available training data was a major impact on the online com-
mand recognition next to some deviations of ATCos from ICAO phraseology. The online
callsign recognition rate achieved 94.2% with an error rate of 2.4%. This again shows the
influence of the high WER on the ATC concept extraction.

The following measurements, especially the questionnaire ratings of ATCos, are based
on the Onl mode, as this performance was “experienced” by ATCos during simulation
runs.

3.2.6. Subjectively Perceived Speech Recognition and Understanding Performance and
Functionality (Post-Validation)

The post-validation questionnaire contained nine statements about technical feasibility
with respect to the recognition and error rate of callsigns and commands as well as the ASR
functionality:

1. The recognition rate and recognition error rates for callsigns by ASR were at an
acceptable level. [CsgnRecRateOK];

2. The recognition rates and recognition error rates for commands by ASR were at an
acceptable level. [CmdRecRateOK];

3. Overall, the level and quality of information provided by ASR were an acceptable
level. [ASRQualInfOK];

The post-validation questionnaire contained four statements about the ASR interface:
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4. The ASR tool interface (HMI) provides suitable access to relevant information in all
situations. [ASRrelevInfo];

5. The ASR tool interface (HMI) does not display any non-essential information (clutter).
[ASRessentInfo];

6. The ASR tool display is both comprehensible and acceptable. [ASRcomprehaccep];
7. The timeliness of the ASR tool display is within acceptable limits. [ASRtimeliness];
8. Automatic Speech Recognition (ASR) highlighting aircraft callsigns in the electronic

flight strip display technically worked well. [Highl-Csgn];
9. Automatic Speech Recognition (ASR) highlighting aircraft callsigns in the electronic

flight strip display supports recognizing which aircraft callsign has been (speech)
recognized quickly. [Recog-Csgn].

The results are shown in Figure 11. ATCos rated the recognition of callsigns as almost
perfect, with a mean value of around 9 on a scale from 1 to 10. The recognition rates of
ATC commands were also perceived as good, with a mean value of around 7. The general
quality level of information presentation from ASR was rated to be at an acceptable level
with a mean value of slightly beyond 7. It has to be noted that the command recognition
and overall ASR information displayed were rated much higher from ON than from ACG
ATCos. This is most probably due to the underlying WER of 13% for ACG ATCos and 7%
for ON ATCos, which is, however, still improvable to reach the 4% WER of offline analysis.
Relevant information about the ABSR system can be assessed (mean value 7.4, but more
than 1.5 points rated higher by ON than by ACG). The ASR tool seems to only present
essential information with a mean value of 8.2 (again, ON rated almost 1.5 points higher
than ACG). The ASR visualization is perceived as comprehensible with a mean value of 7.7
(again, ON rated almost 2 points higher than ACG). Finally, the output of the ABSR system
was shown timely (mean value 7.5) due to the ATCo feedback.
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The highlighting of callsigns in the electronic flight strip display (Highl-Csgn) was
perceived as working technically very well, with a mean of 9.7 on a 10-point scale and a low
standard deviation of 0.5. The second statement Recog-Csgn rated with a mean value of 8.1,
helped the ATCos to detect which aircraft callsign has been recognized by the ABSR system.
This information is needed to decide whether the following recognized ATC commands are
highlighted for the correct callsign. The interesting part of these answers is the comparison
with the objective measurements, i.e., the online callsign recognition rates, which are 92.1%
for Lithuanian ATCos and 91.3% for Austrian ATCos (see Table A10). The same applies to
the callsign recognition error rates, which are 3.9% for ACG, and also much higher than the
2.4% for ON ATCos. We have no real answer for this discrepancy between subjective rating
and objective measurement.
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3.3. Answers to Subjective Post-Validation Questionnaires
3.3.1. Operational Use of ASR (Post-Validation)

The post-validation questionnaire contained five statements about the operational
feasibility of the ASR system:

1. I can apply operating methods in an accurate, efficient, and timely manner with ASR.
[AccOpMeth];

2. I think that operating methods are clearly identified and consistent in all operating
conditions. [OpMethConsis];

3. Procedures and operating methods are acceptable when using the ASR tool. [ProcOK-
wASR];

4. There are no changes needed to current working methods/procedures to fully support
the use of the ASR tool. [NoChgNeed];

5. The ASR tool would be operationally acceptable under either nominal or non-nominal
conditions. [OpAccAllCond].

The results are shown in Figure 12. The operating methods with ASR seem to be
accurate, efficient, timely, and consistent in different conditions, with mean values of 8 and
7.4, respectively. Procedures and operating methods seem to be fine, with a mean value
of 8.5 and a standard deviation of only 1.0. There are some changes to current working
methods needed to fully support the use of the ASR tool, as the mean value equals the
scale mean value of 5.5. However, ON ATCos rated this statement with almost 7, while
ACG ATCos rated it with slightly above 4 points. The ASR seems to be operationally
acceptable under different conditions, most probably under the majority of nominal and a
few non-nominal conditions, as the ATCo rating was just slightly beyond the scale mean
value.
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3.3.2. Human Factors Questions (Post-Validation)

The post-validation questionnaire contained six statements on human factors:

1. I think that ASR supports me in maintaining my workload at an acceptable level.
[ASRsupATCoWL];

2. I think that ASR supports me in maintaining an adequate level of situational aware-
ness. [ASRsupATCoSAw];

3. My situational awareness is maintained at an acceptable level with Automated Speech
Recognition (ASR). [ASRmaintSAw];
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4. I see many safety-related issues to be solved regarding automatic speech recognition
implementation. [ASRindSafeIssu];

5. I think that ASR did increase the potential for human errors. [ASRincrHumErr];
6. Overall, I was satisfied performing my task with ASR. [JobSatisf].

The results are shown in Figure 13.
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ASR seems to support maintaining situation awareness and workload of ATCos
at an acceptable level with mean values of 7.5 and beyond on a 10-point scale. The
ASRsupATCoWL statement was rated with 7.8 on a 10-point scale (90% of ATCos rated this
item with 7 or above). The ASRsupATCoSAw statement was rated with 7.7 on a 10-point
scale (90% of ATCos rated this item with 7 or above). The statement, if ASR induced safety
issues or increased the potential for human errors, was rated with mean values below the
scale mean of 5.5. ATCos rated their job satisfaction with using ASR high (mean value of 8
on the 10-point scale).

3.3.3. Acceptance (Post-Validation)

The post-validation questionnaire contained three statements about acceptance of and
trust in the ASR system:

1. I think that the ASR system is adequately usable. [ASRadequse];
2. I would accept such an ASR system in my future tower CWP. [ASRacceptCWP];
3. My trust in the ASR system is at an acceptable level. [ASRtrust].

The results are shown in Figure 14. ATCos rated the adequate usage of ASR with a
mean value of around 7. However, it has to be noted that it was rated much higher by
ON than by ACG ATCos. All ATCos would accept such an ASR system in their future
tower CWP with a mean value of 7.5. They trusted the ASR system with a mean value of
around 7.
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3.4. Answers to Subjective Post-Run Questionnaires
3.4.1. Controller Acceptance Rating Scale (CARS) (Post-Run)

The post-run questionnaires contained the CARS statement to be rated on a scale
from 1 to 10, with 10 being the best value, as listed in Appendix C.1. The results of the
CARS questionnaire are shown in Figure 15. The acceptance was, on average, 0.6 points
higher on the CARS scale for the baseline condition compared to the solution. The CARS
questionnaire was filled out by each ATCo twice, once after the run with ABSR support
and once after the run without ABSR support. Therefore, we are able to perform a paired
t-test. After compensating sequence effects, the α was 0.1 to reject the inverse hypothesis
that ABSR support reduces the controller acceptance due to CARS. The absolute value
was 6.8 versus 6.2 (0.8 points higher for ON on average and 0.8 points lower for ACG
on average).
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3.4.2. Trust (SATI) (Post-Run)

The post-run questionnaires contained the six statements of SATI, as listed in Ap-
pendix C.2. The seven-item answer scale ranged from “Never, Seldom, Sometimes, Often,
More Often, Very Often, and Always.” To present the results in a bar diagram, “Never” is
translated to 0%, “Seldom” to 1/6 %”. . . “Very Often” to “5/6 %” until “Always” to 100%.
The results are shown in Figure 16.
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ABSR support reduced trust in automation due to SATI (α = 0.25). However, the
usefulness of the system (USEFUL in Figure 16) was rated much better for SOL than for
BAS (α = 0.05). The other five mean values are better for BAS than for the SOL condition.
It is noteworthy that the four statements RELIABLE, ACCURACY, UNDERSTAND, and
ROBUST from ON ATCos have better ratings for SOL than for BAS condition on average.
The ambivalence of results will be discussed in Section 4.

3.4.3. Perceived Situational Awareness (SASHA ATCo) (Post-Run)

The post-run questionnaires contained the six statements of the SASHA ATCo, as listed
in Appendix C.3. The seven-item answer scale ranged from “Never, Seldom, Sometimes,
Often, More Often, Very Often, and Always.” To present the results in a bar diagram,
“Never” is translated to 0%, “Seldom” to 1/6 %”. . . “Very Often” to “5/6 %” until “Always”
to 100%. The results are shown in Figure 17.
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ABSR support reduced the situation awareness of ATCos due to SASHA (α = 0.33).
However, “searching for information” was less needed in the SOL condition (α = 0.15).
The mean values of the first two items, AHEAD and FOCUS, are better for BAS than for
SOL conditions. The mean values of the last four items, FORGET, PLAN, SURPRISE, and
SEARCH, are equal or better for the SOL condition compared to the BAS condition without
analyzing standard deviations, as differences in mean values are rather small.
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3.5. Perceived Workload (High Workload Contribution) (Post-Run)

The post-run questionnaires contained a free-text question about high workload:
“Which factors/events/conditions have contributed to potentially high workload?”.

The structured answers and the number of ATCos noting this after each conducted
simulation run (multiple notions in one questionnaire answer possible) were as follows:

• New/unknown airspace/airport layout (especially multiple remote towers): 15 times;
• New/unknown equipment/hardware/software/electronic flight strips: 7 times;
• Checking of ABSR output (only in solution condition): 4 times;
• Unexpected/unusual air traffic situations: 3 times;
• Other: Secondary task (2 times), tower view/runway perspective (2 times), slightly

different phraseology to always name the calling tower (2 times), miscommunication,
system errors.

Interpreting the above results, 15 of 20 ATCo answers stated that the unknown multiple
remote tower environment with unknown airport layouts induced a higher workload.
Furthermore, many ATCos remarked that the flight strip handling was difficult (as some
details were different from “home”). This means that the majority of workload-increasing
factors can be assigned to environmental aspects that should normally not be tested in the
ABSR validation trials. The above-listed checking of ABSR output, as well as unexpected
situations and some further aspects, seem to have been only a minor factor for the higher
workload.

3.6. Perceived Workload (NASA-TLX and Bedford Workload Scale) (Post-Run)

The post-run questionnaires contained the six statements of NASA-TLX (National
Aeronautics and Space Administration—Task Load Index) as listed in Appendix C.4 and
the two statements of the Bedford workload scale to rate the average workload (AVG) and
peak workload (PEAK) on a scale from 1 to 10 with 10 being the highest workload. In
addition, the 15 pair-wise comparisons of workload contributing factors (as the other part
of the weighted NASA-TLX questionnaire) were assessed with ATCos once.

The results of the weighted NASA-TLX and the Bedford workload scale are shown
in Figure 18. Figure A1 in Appendix C shows the weight per each of the six dimensions
for NASA-TLX, which is almost equally distributed except for more weight for mental
workload than for physical workload. The overall weighted workload (OW) due to NASA-
TLX was higher for the solution than for the baseline condition: 43.1 and 38.9 (α = 0.02),
respectively, with huge standard deviations around 17.5. However, the general difference
between baseline and solution was only induced by the ON ATCo ratings, as the OW for
ACG remained the same in baseline and solution.
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Furthermore, a clear learning effect during the validation day in terms of NASA-TLX
OW can be seen. Those five ATCos who started with a baseline, rated the baseline (their
first run) with an OW of 41.9; those five ATCos who started with a solution, rated the
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baseline (their second run) with an OW of 32. Those five ATCos who started with the
solution, rated the solution (their first run) with an OW of 48.9; those five ATCos who
started with baseline, rated the solution (their second run) with an OW of 37.2.

The average and peak Bedford workload were 0.9 and 0.7 points higher, respectively,
in the solution condition with ABSR support compared to the baseline condition (α = 0.001).
The peak workload was roughly 1.5 points higher than the average workload. The workload
level, in general, was roughly two points lower for ACG than for ON ATCos.

3.7. Perceived Workload through Automation Impact (AIM-s) (Post-Run)

The post-run questionnaires contained the sixteen statements of AIM-s as listed in
Appendix C.5. The seven-item answer scale ranged from “None, Very Little, Little, Some,
Much, Very Much, Extreme.” To present the results in a bar diagram, “None” is translated
to 0%, “Very Little” to 1/6 %”. . . “Very Much” to “5/6 %” until “Extreme” to 100%. The
statements SHARE and TMN are not analyzed further as there were no team members
during the simulation runs (fourteen statements remain). Figure 19 shows the results.
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Figure 19. Subjective ATCo ratings on AIM-s questionnaire.

After compensating sequence effects, the overall perceived workload due to AIM-s is
not statistically better with or without ABSR support. We measured an α of 0.49, which is
not better than throwing a coin. However, the anticipation of the future air traffic situation
was much better for SOL than for BAS (α = 0.02). Nine of the fourteen statements have
been rated better on average (less) for the SOL condition than for the BAS condition. Only
the five statements related to information RECOG, RECL, SCFP, ACCD, and GETI have
been rated worse for SOL condition compared to BAS condition.

3.8. Perceived Workload (Instantaneous Self-Assessment of Workload (ISA)) (Within-Run)

During each simulation run, ATCos needed to rate their workload of the recent
five minutes on a scale from 1 (bored) to 5 (almost overloaded). The results are shown
in Figure 20. The average ISA workload was 0.1 points less, i.e., better, in solution
condition with ASR support compared to baseline condition with α = 0.15 (2.1 and
2.0 points, respectively).
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The ISA of ON ATCos was on a higher level with 2.6 and 2.4, respectively, and had a
much lower standard deviation of below 0.3. The ISA score of ACG ATCos was around 1.6,
with a standard deviation more than twice as much as of ON ATCos.

3.9. Objectively Measured Workload with Secondary Task (Card Sorting) (Within-Run)

The ATCos always needed to make sure that their primary task of doing ATC remains
safe and efficient. However, if they had time for a secondary task, i.e., free mental capacity,
they should sort cards. This method has already been used in earlier ASR projects to
generate a more objective measure of mental workload than just via self-ratings.

ATCos needed to sort 48 cards of a German Doppelkopf deck into six decks (Aces,
Kings, Queens, Jacks, Tens, and Nines). In the beginning, all 48 cards are on one stack, with
the picture side of the cards looking downwards. Each card needed to be turned around in
a single move with just one hand to put it onto the correct of the six decks. After sorting,
ATCos should name one to four randomly missing cards that the supervisor took out of
the 48 cards deck prior to starting sorting. If there was an error in naming the missing
cards, e.g., not all missing cards are named, ATCos must try again until all missing cards
are named correctly. The time measurement in seconds started when the deck of 48 cards
was put next to the electronic flight strip display. The time measurement ended when all
missing cards were named correctly. Sorting cards were trained once in each of the thirty
minutes training runs. Card sorting in the baseline and solution runs started after 10 min
(for at least 15 min or at least three rounds) and again after 40 min (for at least 13 min or
at least three rounds). Those time frames comprised higher traffic density to measure any
difference in workload through ASR support.

The results are shown in Figure 21. ATCos finished their secondary task 8% slower in
baseline runs when not being supported by ASR (395 s vs. 364 s with a standard deviation
of 305 s and 262 s). This difference was 9% for ON and 7% for ACG ATCos. When
compensating sequence effects with the SECT technique, ATCos were even 9% slower in
baseline runs compared to solution runs. After compensating sequence effects, the α was
0.24 to reject the hypothesis that ABSR support does not reduce the workload of ATCos.
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Figure 21. ATCo performance in the secondary task (card sorting).

When translating the timing results into workload, again, ON ATCos experienced a
higher workload level (around 9 min sorting average) than ACG ATCos (around 3 min
sorting average with more task repetitions than ON ATCos), but workload in solution
condition seems to be lower than in baseline regarding the secondary task of card sorting.
Additionally, the secondary task showed a great learning curve, i.e., ATCos were almost
19% slower in sorting the cards in their first simulation run compared to their second
simulation run (baseline and solution alternated).

3.10. System Usability (Post-Run)

The post-run questionnaire contained the ten statements of the System Usability Scale
(SUS), as listed in Appendix C.6. The results are shown in Figure 22 (one ATCo did not
answer one of his ten statements both in baseline (without ASR) and solution (with ASR)
condition. Therefore, the scale mean “3” ((5-1)/2) was chosen as a replacement to not
heavily influence the overall result). ABSR support increases the system usability due to
SUS ratings (α = 0.16). There were three statements rated in the expected direction with an
α < 0.075, i.e., ATCos like to use the system, they do not deem it complex, and they hardly
need support to use it.
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Considering all ATCos, the SUS score was 4 percent absolute (5.7% relative) higher in
the solution condition (SOL) with ABSR support compared to the baseline condition (BAS)
without ABSR support. The difference of 4 percent remains when just analyzing the ON
score or ACG score independently. However, the score itself is 14.5%, absolutely higher
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for ON than for ACG. This is probably due to the fact that ON really liked the electronic
flight strip display (also in the baseline version), whereas ACG ATCos needed to adapt
themselves more to the strip system due to the difference in their daily-life system.

3.11. Debriefing Feedback (Post-Validation)

The debriefing was conducted as a semi-structured interview with some pre-defined
questions and some options for further thoughts and inputs. The feedback of ATCos
is semantically reported per category in the following subsections—the most important
feedback relevant for future usage of ABSR is listed after arrow symbol bullets. However,
also the remaining feedback helps to improve future simulation planning, i.e., to know
which aspects that are not the core part of the study do influence the subject’s experience
and study results. For example, the prototypic flight strip system induced a row of effects
on how the ABSR output is perceived. The last question outlines further research or usage
of ABSR systems.

3.11.1. Study Preparation and Conduction

• Briefing slides via e-mail two weeks before the trials and briefing at DLR was
very good;

• All ATCos felt well-trained for the purpose of the validation after one hour of training;
• Simulation pilots performed well;
• Air traffic scenarios were rated to be fine for the study purpose;
• On the one hand, the baseline condition (manual work) was similar to everyday work,

so performance might be better, therefore (2 ATCos);
â On the other hand, ASR in solution condition was good because it supported using a

flight strip system that ATCos were not used to.

3.11.2. ABSR Functionality (also Related to Electronic Flight Strip Display)

â ABSR concept and implementation were found to be good by many ATCos;
â Checking ABSR output in the flight strip display slows some ATCos because, in the

baseline mode, ATCos tick while speaking;
â Some ATCos judged the speed of ABSR output while speaking as sufficient; two

ATCos wanted to have faster output;
â Non-standard situations should be covered well, i.e., better, by ASR;
â Speech understanding (annotation process) was good for covering errors in speech

recognition (transcription process);
â Highlighting of callsigns and status icons (in green) and the 10s-highlighting mecha-

nism in electronic flight strips were fine for all ATCos;
â When ASR worked fine, a tendency to over-rely on automatism existed;
â In case of non-recognition, a double effort to manually recognize the error and correct

it compared to pen input (2 ATCos);
• ABSR output in outside view (complete transcription and annotation in solution

condition) was just checked for curiosity by all ATCos.

3.11.3. Feedback to Colleagues Not having participated

When I am home in Lithuania/Austria, I tell my colleagues that working with DLR’s
speech recognition was:

â Interesting (said by all ON ATCos);
â Worked pretty well (2 ATCos);
â Positively surprising (even when speaking fast);
â Very good even if not being an early adaptor of new technologies and being very

safety critical.
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3.11.4. Usefulness of ASR

If you would use it tomorrow in your tower controller working position (not multiple
remote towers), would ASR help?

â Yes, that would be great (3);
â Nothing to be changed to be used tomorrow (1);
â Great support is possible if some/many aspects are improved (4).

3.11.5. Used Phraseology in Baseline and Solution Runs

Did you think you have spoken differently in baseline and solution conditions?

â In baseline less carefully spoken because only simulation pilots needed to understand
(3 ATCos);

â Spoken closer to phraseology in solution as being better supported (2 ATCos);
â Some stated that there was no difference in speaking;
â “ATCos automatically become more phraseology conform: That is one of the greatest

advantages of such a technology.”

3.11.6. Flight Strip System (More Related to ‘Multiple Remote Tower” than the Core Study
Purpose ‘ABSR Support’)

• Runway bay handling needs to be improved (sorting, highlighting, timing, etc.);
• Drag-and-drop functionality over the borders of flight strip bays for individual plan-

ning purposes was needed;
• Handling training flights (touch-and-go/low approach) that do not switch from an

arrival flight strip to a departure flight strip were slightly difficult;
• Strip handling for aircraft crossing the control zone is difficult with status options;
• Visual flagging of strips (left/right) would be beneficial;
• Hide some non-frequent status icons;
• “Takeoff” status should include “lineup”-status (if not given explicitly);
• A combination of the selection of taxi status and taxiway would be easier;
• Suggestions for colors, e.g., ground vehicles, consistency with other systems;
• One ATCo loved the flight strip system; the majority of ATCos were ok with it;
• Many ATCos liked the fade-away functionality of flight strips;
• The portion of gazes at the three areas ‘flight strip display,’ ‘outside view,’ and ‘radar

view’: too much on flight strips and too few on outside view where one can hardly
identify small objects.

3.11.7. Further Applications/Ideas/Things to Be Changed?

â Callsign highlighting in flight strip display from pilot utterance would help to identify
the communication partner;

â Speech log for pilot utterances (especially in emergency situations) anywhere on the
controller screen;

• Connect ABSR output with:

a. Radar information for automatic setting of landed/departed status;
b. Lighting system to turn off stop bar lights in case of lineup clearance;
c. Follow the greens for correct lighting;
d. Airport phone conversation to automatically extract and include stand num-

bers given by the airport;
e. Safety net functionality for dedicated aspects in case of good error rates, e.g.,

readback error detection;
f. Transcription for incident analysis and searching for callsigns; other analysis

on transcribed data;
g. Great technology for on-the-job training.
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4. Discussion on Major Study Results

The results on mental workload, situation awareness, satisfaction, acceptance, trust,
and usability are ambivalent. The subjective post-run ratings on NASA-TLX, Bedford
workload scale, and AIM-s, when interpreted as a whole, indicate a worse performance in
solution runs with ABSR support compared to baseline runs without ABSR support.

However, the subjective post-validation rating on ABSR support for workload, the
self-assessed workload ratings during the simulation runs by ISA, and the performance
measurement of the objective secondary task indicate that ABSR support positively influ-
ences ATCo workload.

There might also be an influence through the usage of standardized and tailor-made
questionnaires. The general low to medium workload level, as rated with roughly two on
average on the five-point instantaneous self-assessment of workload scale, causes that it
is hard to unambiguously measure a workload effect. Hence, the necessity for controller
support functionalities might also be low in such a multiple remote tower environment.

The complexity of the task came with supervising three airports remotely at the same
time with a working position the ATCos had not seen before. This could be the reason why
especially the callsign highlighting was well-acknowledged by ATCos in order to reduce
search times at the different displays. A workload reduction, especially in low workload
conditions, is not always beneficial. Hence, it is also a success if the mental workload of
ATCos is balanced at a medium level without peaks and boredom.

Similarly, the post-run rating on situation awareness (SASHA) indicates a negative
influence, whereas the two rated post-validation statements on situation awareness at an
acceptable level with ABSR support have answer values in the most positive scale third.
Very similar effects were also seen for satisfaction, acceptance, and trust when comparing
post-run ratings with overall post-validation answers.

The usability ratings (post-run and post-validation) seem to all indicate favor for ABSR
support. The score of the system usability scale was four points better for the solution (with
ABSR support) compared to the baseline (without ABSR support). A total of 80% of ATCos
(with 8/10 or more points on the questionnaire scale) stated that they would accept such an
ABSR system in their usual working position and that they could apply operating methods
in a timely manner. Though, a row of adjustments were encouraged by ATCos, i.e., to make
ABSR also reliable under non-nominal conditions where the pressure on ATCos is already
high. The need for changes was rated very inhomogeneous by the different ATCos, i.e.,
some had already seen good support with the prototype’s current technology readiness
level, and others wanted to increase the number of covered situations and examples.

However, the comparison of a further objective measure with a subjective measure-
ment again shows the ambivalence of some ATCo ratings: While ACG ATCos rated the
perceived callsign recognition quality with 1.8 points higher than ON ATCos on a 10-point
scale and the perceived command recognition quality with 1.6 points lower than ON ATCos
such an effect cannot be seen in the online recognition rates where the callsign recognition
rate and the command recognition rate in solution runs of ON ATCos was 2% and 10%
(consistently both) better than of ACG ATCos, respectively.

Our study results based on text-to-concept analysis also revealed a potential safety
issue for multiple remote towers: Even if ATCos were asked to utter the name of their
current transmission station in each radio transmission, the station name, e.g., vilnius tower,
was missing in every fifth utterance. This might confuse listening to cockpit crews being
on or flying to one of the other two airports.

The subjective feedback through questionnaires etc., and the results from objective
measurements at least are not consistent or even contradictory. This is a hint that ABSR’s
performance does not match with ATCos expectations. Objectively a word error rate of
10% with a command recognition rate of 80% might be sufficient to already have positive
effects on workload. The ATCos are then, however, not trusting the system, which will be a
showstopper. Objective improvements are not enough. ATCos also need to be convinced
by their subjective feelings. Previous validation trials for Frankfurt airport to support apron
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controllers by ABSR to reduce workload for pre-filling electronic flight strips [12] and for
Vienna approach controllers [41] indicate that a command recognition rate greater than
90% is needed.

5. Conclusions and Outlook
5.1. Conclusions on ABSR Study in Multiple Remote Tower Environments

Human-in-the-loop trials were conducted with five Austrian and five Lithuanian
air traffic controllers (ATCos) to validate whether an assistant-based speech recognition
(ABSR) system can support air traffic controllers in a multiple remote tower environment.
In baseline runs, controllers needed to manually maintain electronic flight strips without
ABSR support, whereas in solution runs, they were supported by ABSR through callsign
highlighting and automatically inputting recognized commands from ATCo utterances
into electronic flight strips.

This study recorded a huge amount of data with results analyses that are shared
with other researchers by this article. The chosen “within-subject design” [46] assessed
the dependent variables mental workload, situation awareness, satisfaction, acceptance,
trust, and usability with the independent variable “availability of ABSR support”. Further
qualitative feedback was gathered on ABSR accuracy, technical functionality, and operating
methods. Although a very small number of training data of 3.6 and 0.9 h, respectively,
was available for the adaption of the ABSR models to Lithuanian and Austrian tower
phraseology, some results show statistical significance and are in line with findings of
earlier ABSR projects from an approach environment [8]. The text-to-concept accuracy of
the speech understanding module performed well, i.e., correcting wrong word recognition
by context information. A callsign recognition rate of 94.2% and a command recognition
rate of 82.9% were achieved, although each 10th word was wrongly recognized due to
the observed word error rate of 9.8%. Given an independent distribution of word errors
and an average callsign length of five words, a word error rate of 10% would result in a
callsign recognition rate of below 60%, i.e., (1–0.1)5. For an average command length of six
words, including values, qualifiers, and conditions plus the five words for the callsign, the
expected command recognition rate would be below 35%, i.e., (1–0.1)11. These theoretical
values were outperformed by our speech understanding module (command recognition)
by using context information.

The study results on human factors comprised subjective ratings on mental workload,
situation awareness, satisfaction, acceptance, trust, and usability via standardized and
tailor-made questionnaires, the self-assessed workload during simulation runs, and an
objective method to assess workload based on a secondary task.

The analysis results on the dependent variables were ambivalent. The reasons are
the small number of study subjects, the prototype of a non-operational user interface,
and the low workload resulting from low to medium traffic in the multiple remote tower
environment of the chosen airports. A positive influence on workload was found with
the self-assessed workload ratings during the simulation runs and the performance in the
secondary task as a more objective measurement during simulation runs. Future validation
trials involving ATCos should focus more on objective or live measurements than on
retrospective ratings.

Our study results with ATCos reporting on benefits and drawbacks raise detailed
awareness and give recommendations on which aspects of automatic speech recognition
and understanding for a multiple remote tower environment are already solved and which
aspects require deeper research to go beyond the now achieved technology readiness level
four.

The speech-to-text performance is a prerequisite to enable good text-to-concept perfor-
mance. An error analysis after the validation trials revealed processor overload as a factor
in decreasing our speech-to-text performance. When applying our command extraction
on offline speech-to-text analysis results having a word error rate of 4.4%, we achieve a
command recognition rate of 91.8% and a callsign recognition rate of 98.2%. The data
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analysis showed that ABSR support has a statistically significant positive effect on the
usage of ICAO phraseology: The above-reported solution runs have higher command
recognition rates than baseline runs because ATCos obtain better support if recognition
rates are higher. If ATCos are sticking closer to ICAO phraseology just by the pure presence
of an ABSR system, that will already be a safety feature. Some ATCos, i.e., the human
operators that would use the operating system later on, highlighted that such an ABSR
system would be a great support in their working position.

5.2. Outlook on Future Work

The amount of training data must be further increased, given representative samples.
Furthermore, a large amount of data must be recorded from operations rooms (not from
labs) because this is the operational environment. The European-wide agreed ontology
for the annotation of ATC utterances was successfully used and enhanced in this study
and should be further exploited or standardized. The continuous mutual enhancements
of the ontology for en-route/oceanic, approach, tower, and apron traffic within the ASR
projects HAAWAII (Highly Automated Air Traffic Controller Workstations with Artificial
Intelligence Integration (HAAWAII), Homepage: https://www.haawaii.de (accessed on
4 April 2023)) (as the successor of MALORCA (Machine Learning of Speech Recognition
Models for Controller Assistance (MALORCA), Homepage: https://www.malorca-project.
de (accessed on 4 April 2023)), and STARFiSH (Safety and Artificial Intelligence Speech
Recognition (STARFiSH), Homepage: https://www.dlr.de/fl/desktopdefault.aspx/tabid-
1149/1737_read-74905/ (accessed on 4 April 2023)) tremendously build a base for interop-
erability of systems. Hence, following ASR activities can build on strong shoulders and
reuse the achieved good results and methods of such ABSR projects.

For the specific case of electronic flight strips, eye tracking technology could be of
further help to make sure that ATCos checked the ABSR output [47]. This technology
could also be used to assess the time to recognize and correct an ABSR error (Times to
correct ABSR errors in an ATM environment have been investigated in “Automatic Speech
Recognition and Understanding for Radar Label Maintenance Support Increases Safety
and Reduces Air Traffic Controllers’ Workload” of Helmke et al. presented at the 15th
USA/Europe Air Traffic Management Research and Development Seminar (ATM2023),
Savannah, GA, USA, 5–9 June 2023). Furthermore, the support through callsign highlighting
when recognized from pilot utterances should be investigated and potentially feed attention
guidance systems at the controller working position. To summarize, the validation trials
have shown the potential of using the output of an ABSR system in the multiple remote
tower environment and revealed aspects to be considered when moving forward to higher
technology readiness levels.
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Abbreviations

ABSR Assistant Based Speech Recognition
ACG Austro Control
AIM-s Assessing the Impact on Mental Workload
ASR Automatic Speech Recognition
ATC Air Traffic Control
ATCo Air Traffic Controller
ATIS Automatic Terminal Information Service
ATM Air Traffic Management
BAS Baseline Runs
CARS Controller Acceptance Rating Scale
CoCoLoToCoCo Controller Command Logging Tool for Context Comparison
CPU Central Processing Unit
CWP Controller Working Position
Del Deletions
DLR German Aerospace Center
DTT Digital Tower Technologies
EASA European Union Aviation Safety Agency
EFS Electronic Flight Strip System
EUROCAE European Organization for Civil Aviation Equipment
HMI Human Machine Interface
ICAO International Civil Aviation Organization
Ins Insertions
ISA Instantaneous Self-Assessment
LevenDist Levenshtein Distance
NASA-TLX National Aeronautics and Space Administration Task Load Index
Off Offline (analysis of audio files after the simulation runs)
ON Oro Navigacija
Onl Online (analysis as experienced by ATCos during simulation runs)
OW Overall Weighted Workload
SASHA Situation Awareness for SHAPE
SATI SHAPE Automation Trust Index
SD Standard Deviation
SECT Sequence Effect Compensation Technique
SHAPE Solutions for Human Automation Partnerships in European ATM
SOL Solution Runs
Subs Substitutions
SUS System Usability Scale
TWR Tower
WER Word Error Rate

Appendix A. Speech-To-Text Accuracy

The following tables in this Appendix A show the speech recognition performance
on the word level, i.e., the word error rates (WER). The first row must be read like this;
1,944 words were spoken. Ninety-seven errors occurred, i.e., 43 words were substituted
by another word, 38 words were not recognized at all (deleted), and 16 words were
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inserted, i.e., not said, but a word was recognized. This results in a word error rate of 5.1%
(97/1944).

Table A1. Speech-To-Text performance for offline recognition on audio files (Off).

Sample # Words LevenDist # Subs # Del # Ins % WER
MEAN all 1944 97 43 38 16 5.1
MEAN ON 1966 94 38 36 20 5.0
MEAN ACG 1921 99 48 39 13 5.1
MEAN w/o outlier run 1971 90 40 34 16 4.5
MEAN BAS all 1902 104 46 43 15 5.7
MEAN BAS ON 1891 100 41 43 16 5.7
MEAN BAS ACG 1913 109 51 44 14 5.7
MEAN BAS w/o outlier run 1961 98 44 39 15 5.0
MEAN SOL all 1985 89 40 32 17 4.4
MEAN SOL ON 2041 88 36 30 23 4.3
MEAN SOL ACG 1929 90 44 34 11 4.6
MEAN SOL w/o outlier run 1980 81 36 28 17 4.1

Rows are shaded, when containing all ATCos, i.e., both from ACG and ON.

Table A2. Speech-To-Text accuracy for real-time online recognition from voice stream (Onl).

Sample # Words LevenDist # Subs # Del # Ins % WER
MEAN all 1936 245 46 175 24 13.6
MEAN ON 1954 199 38 140 21 11.9
MEAN ACG 1918 290 54 209 27 15.3
MEAN w/o outlier run 1967 212 41 152 19 11.0
MEAN BAS all 1891 300 54 219 27 17.4
MEAN BAS ON 1871 261 42 196 23 17.1
MEAN BAS ACG 1911 339 66 241 32 17.8
MEAN BAS w/o outlier run 1959 254 50 181 23 13.2
MEAN SOL all 1980 189 38 131 21 9.8
MEAN SOL ON 2037 136 34 83 19 6.8
MEAN SOL ACG 1924 242 42 178 22 12.8
MEAN SOL w/o outlier run 1976 171 32 123 15 8.9

Rows are shaded, when containing all ATCos, i.e., both from ACG and ON.

The following two tables show the frequency of certain words appearing in the gold
transcriptions and the number of unique words needed to reach a certain portion of all
words in the gold transcriptions, respectively.

Table A3. 1-grams of gold transcriptions.

Rank Word Count Portion

1 one 2393 6.43%
2 zero 1479 3.97%
3 tower 1473 3.96%
4 three 1356 3.64%
5 runway 1154 3.10%
6 five 1085 2.91%
7 seven 925 2.48%
8 two 923 2.48%
9 four 898 2.41%
10 to 888 2.38%
11 cleared 808 2.17%
12 right 795 2.13%
13 vilnius 747 2.01%
14 eight 721 1.94%
15 nine 720 1.93%
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Table A3. Cont.

Rank Word Count Portion

16 via 601 1.61%
17 air 571 1.53%
18 degrees 556 1.49%
19 and 539 1.45%
20 knots 531 1.43%
21 bravo 465 1.25%
22 wind 456 1.22%
23 alfa 409 1.10%
24 taxi 408 1.10%
25 kaunas 390 1.05%

others 15,947 42.8%
1-505 SUM 37,238 100%

Table A4. The number of different words needed to reach a certain portion of all uttered words.

Count Portion

61 80%
101 90%
145 95%
283 99%
505 100%

Appendix B. Text-To-Concept Accuracy

The following tables lists the relative frequency of supported air traffic control com-
mand types from the gold annotations.

Table A5. Percentage of used command types in gold annotations occurring more often than 1%
(7560 commands in total).

Command Type Portion of All Commands

STATION 20.2%
INFORMATION WINDSPEED 7.5%
INFORMATION WINDDIRECTION 7.5%
TAXI TO 6.4%
GREETING 5.6%
TAXI VIA 4.8%
AFFIRM 4.0%
INFORMATION QNH 3.3%
CLEARED VIA 2.9%
STARTUP 2.9%
CLEARED TO 2.9%
CLEARED TAKEOFF 2.8%
FAREWELL 2.8%
CLEARED LANDING 2.8%
SQUAWK 2.8%
LINEUP 2.4%
REPORT 1.5%
PUSHBACK 1.4%
INFORMATION ACTIVE_RWY 1.4%
NO_CONCEPT 1.4%
REPORT_MISCELLANEOUS 1.4%
VACATE VIA 1.2%
CLEARED TOUCH_GO 1.1%
others 8.9%



Aerospace 2023, 10, 560 35 of 42

The following six tables present the speech understanding performance per study subject
group and per command type group for gold, offline, and online transcriptions, respectively.

Table A6. Text-to-concept quality for gold transcriptions (assumed to be 100% correct).

Gold Transcription
Command

Recognition
Rate

Command
Error
Rate

Callsign
Recognition

Rate

Callsign
Error
Rate

Unknown
Classified

Rate

Amount
of

Data

all ATCos ALL 95.9% 2.4% 99.8% 0.2% 13.3% 100.0%

ON ATCos ALL 97.1% 1.5% 99.7% 0.2% 12.5% 49.9%

ACG ATCos ALL 94.8% 3.2% 99.9% 0.1% 14.2% 50.1%

ATCos ALL w/o
outlier run 95.8% 2.5% 99.8% 0.2% 13.2% 91.8%

all ATCos BAS 95.9% 2.4% 99.7% 0.3% 13.8% 49.0%

ON ATCos BAS 97.6% 1.3% 99.7% 0.3% 13.0% 24.1%

ACG ATCos BAS 94.1% 3.5% 99.8% 0.2% 14.7% 24.8%

all ATCos SOL 96.0% 2.3% 99.8% 0.1% 12.8% 51.0%

ON ATCos SOL 96.6% 1.8% 99.7% 0.2% 12.0% 25.8%

ACG ATCos SOL 95.4% 2.9% 100.0% 0.0% 13.7% 25.3%

Table A7. Text-to-concept quality for gold transcriptions (assumed to be 100% correct) per command
type groups.

Command
Type Group

# Command
Types

Command
Recognition Rate

Relevant 34 97.3%

EFS 21 97.4%

Status 18 96.7%

Outside 3 96.0%

Hypo-EFS 4 99.2%

Table A8. Text-to-concept quality for Off transcriptions (current best word error rates of automatic
speech-to-text with callsign boosting on audio files).

Offline
Command

Recognition
Rate

Command
Error
Rate

Callsign
Recognition

Rate

Callsign
Error
Rate

Unknown
Classified

Rate

Amount
of

Data

all ATCos ALL 91.4% 4.5% 98.4% 0.9% 14.0% 100.0%

ON ATCos ALL 92.7% 3.9% 98.6% 0.6% 12.8% 49.9%

ACG ATCos ALL 90.1% 5.1% 98.2% 1.2% 15.2% 50.1%

ATCos ALL w/o outlier run 91.7% 4.4% 98.7% 0.9% 13.9% 91.8%

all ATCos BAS 91.0% 4.6% 98.6% 0.8% 14.5% 49.0%

ON ATCos BAS 92.8% 3.6% 99.0% 0.3% 13.2% 24.1%

ACG ATCos BAS 89.3% 5.5% 98.1% 1.2% 15.8% 24.8%

all ATCos SOL 91.8% 4.5% 98.2% 1.1% 13.6% 51.0%

ON ATCos SOL 92.7% 4.1% 98.1% 0.9% 12.6% 25.8%

ACG ATCos SOL 90.9% 4.8% 98.3% 1.2% 14.6% 25.3%
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Table A9. Text-to-concept quality for Off transcriptions (current best word error rates of automatic
speech-to-text with callsign boosting on audio files) per command type groups.

Command
Type Group

# Command
Types

Command
Recognition Rate

Relevant 31 92.4%

EFS 21 93.4%

Status 18 92.7%

Outside 3 90.5%

Hypo-EFS 4 96.3%

Table A10. Text-to-concept quality for Onl transcriptions (automatic speech-to-text with callsign
boosting from continuous stream).

Online
Command

Recognition
Rate

Command
Error
Rate

Callsign
Recognition

Rate

Callsign
Error
Rate

Unknown
Classified

Rate

Amount
of

Data

all ATCos ALL 79.4% 7.0% 91.7% 3.1% 15.4% 100.0%

ON ATCos ALL 84.2% 5.5% 92.1% 2.4% 13.8% 49.9%

ACG ATCos ALL 74.6% 8.6% 91.3% 3.9% 17.0% 50.1%

ATCos ALL w/o outlier run 81.2% 6.6% 94.0% 2.5% 14.9% 91.8%

all ATCos BAS 75.7% 7.5% 89.1% 3.8% 16.2% 49.0%

ON ATCos BAS 80.1% 5.6% 88.9% 2.8% 14.6% 24.1%

ACG ATCos BAS 71.4% 9.3% 89.3% 4.8% 17.9% 24.8%

all ATCos SOL 82.9% 6.6% 94.2% 2.4% 14.5% 51.0%

ON ATCos SOL 88.0% 5.4% 95.2% 2.0% 13.2% 25.8%

ACG ATCos SOL 77.7% 7.9% 93.2% 2.9% 16.1% 25.3%

Table A11. Text-to-concept quality for Onl transcriptions (automatic speech-to-text with callsign
boosting from continuous stream) per command type groups.

Command
Type Group

# Command
Types

Command
Recognition Rate

Relevant 31 80.7%

EFS 21 79.2%

Status 18 80.0%

Outside 3 81.0%

Hypo-EFS 4 87.2%

Appendix C. Questions and Statements of Questionnaires

The following full-text questions and statements were contained within the listed
post-run questionnaires:

Appendix C.1. Statement and Answer Scale from CARS

The color coding shows worse answers in red and good answers in green.
“Please read the descriptors and score your overall level of user acceptance experienced during

the run. Please check the appropriate number.”
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Appendix C.2. Statements from SATI Questionnaire

1. In the previous working period, I felt that the system was useful. [USEFUL]
2. In the previous working period, I felt that the system was reliable. [RELIABLE]
3. In the previous working period, I felt that the system worked accurately. [ACCU-

RACY]
4. In the previous working period, I felt that the system was understandable. [UNDER-

STAND]
5. In the previous working period, I felt that the system worked robustly (in difficult

situations, with invalid inputs, etc.). [ROBUST]
6. In the previous working period, I felt that I was confident when working with the

system. [CONFIDENT]

Appendix C.3. Statements from SASHA Questionnaire

1. In the previous run, I was ahead of the traffic. [AHEAD]
2. In the previous run, I started to focus on a single problem or a specific aircraft.

[FOCUS]
3. In the previous run, there was a risk of forgetting something important (such as

inputting the spoken command values into the labels). [FORGET]
4. In the previous run I was able to plan and organize my work as wanted. [PLAN]
5. In the previous run I was surprised by an event I did not expect (such as an aircraft

call). [SURPRISE]
6. In the previous run I had to search for an item of information. [SEARCH]

Appendix C.4. Questions from NASA-TLX Questionnaire

1. How mentally demanding was the task? [Mental Demand, MD]
2. How physically demanding was the task? [Physical Demand, PD]
3. How hurried or rushed was the pace of the task? [Temporal Demand, TD]
4. How successful were you in accomplishing what you were asked to do? [Operational

Performance, OP]
5. How hard did you have to work to accomplish your level of performance? [Effort, EF]
6. How insecure, discouraged, irritated, stressed, and annoyed were you? [Frustration, FR]

Furthermore, the 15 pairwise comparisons of workload contributing factors have been
analyzed. When looking at the subscores for all six NASA-TLX dimensions, half of them
(three) were rated equal or better in SOL compared to BAS (PD, EF, FR), and the other half
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was rated vice versa (MD, TD, OP). In general, physical demand (PD, 3.3%) was rated as
being a less important contributor to workload, and mental demand (MD, 23.3%) was the
most important contributor to workload. The other four dimensions were rather equally
important contributors to the overall workload (TD 22%, OP 18%, EF 16.7%, FR 16.7%).
The horizontal axis in Figure A1 shows the weight; the area shows the contribution of this
very dimension to the OW of BAS and SOL conditions, respectively.
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1. In the previous run, how much effort did it take to prioritize tasks? [PRIOT] 
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4. I think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.

Appendix D. Validation Setup Details

The left and right sides of the outside view areas presented current meteorological data
as relevant for aircraft takeoff and landing (see Figure A2), i.e., wind speed in knots (here
10) and wind direction with an additional red arrow (here 070◦) according to the runway
orientation (grey rectangle), the active runway name (here 05), the airport International Civil
Aviation Organization (ICAO) code (EYKA), the QNH (here 1001), the visibility conditions
(here 9999, i.e., no visibility restrictions), and cloud information (in green circles).
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An adjacent laboratory room accommodated three simulation pilot workstations. Each
workstation consisted of a monitor to visualize the simulation pilot interface (see Figure A3)
for one of the three simulated airports, a keyboard, and a mouse.
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