COMPARISON OF SHORT-TERM (HOUR-AHEAD) SOLAR IRRADIANCE FORECASTS FROM ALL SKY IMAGERS AND SATELLITE IMAGES

Thomas Schmidt, Jonas Stührenberg, Niklas Blum*, Jorge Lezaca, Annette Hammer, Marion Schroedter-Homscheidt, Thomas Vogt

DLR Institute of Networked Energy Systems (* and Institute of Solar Research)

Solar irradiance forecasts

Towards increasing spatial and temporal resolution

Eye2Sky network

- 30 All-Sky Imager (ASI) installed in north-west Germany
 - With 12 stations equipped with meteorological equipment
- covering ~110km x 100km area in north-western Germany
- Low density in rural area covering low voltage distribution grid
- High station density in city of Oldenburg

Eye2Sky - Cloud camera and meteorogical measurement network in Oldenburg

Thomas Schmidt, DLR Institute of Networked Energy Systems, ICEM conference, 27th June 2023

Instrumentation

Meteorological sensors

- Solar irradiance sensors (GHI, DHI, DNI, GTI)
- Air temperature and humidity

All-sky imagers

- Commercial surveillance camera used
- Fish eye lenses with 180° field of view
- Recording images every 30s

Ceilometers

 6 atmospheric lidars (ceilometer) measuring cloud height

Photography of Eye2Sky station PVNOR

Instrumentation

Meteorological sensors

- Solar irradiance sensors (GHI, DHI, DNI, GTI)
- Air temperature and humidity

All-sky imagers

- Commercial surveillance camera used
- Fish eye lenses with 180° field of view
- Recording images every 30s

Ceilometers

 6 atmospheric lidars (ceilometer) measuring cloud height

Photography of Eye2Sky station PVNOR

2 hours of weather seen by multiple fish eye cameras

Why cameras?

Thomas Schmidt, Institute of Networked Energy Systems, 14th Oct. 2022

Clouds - observed from ground and space

Temporal resolution: (ASI-Network – 30 seconds, MSG-Satellite – 15 minutes)

Solar irradiance nowcast based on ASI-Network

- Nowcasts for 2022 on 40 x 40 km domain (left)
- 17 ASI used
- Evaluation for city of Oldenburg (10 x 12 km, right)
- Grid resolution: 50m

- Nowcasting model for a network of ASI:
 Blum, Niklas (2022): Nowcasting of Solar Irradiance and Photovoltaic Production Using a Network of All-Sky Imagers. Dissertation, RWTH Aachen
 Blum, Niklas et al. (2022): Analyzing Spatial Variations of Cloud Attenuation by a Network of All-Sky Imagers. Remote Sensing, 14 (22), Seite 5685.

Domain comparison with satellite derived irradiance information

0 :00

8.2°E

8.3°E

C

8.1°E

53.3°N

53.25°N

53.2°N

53.15°N

53.1°N

53.05°N

53°N

5 km

ASI

Spatial coverage of ASI-Network

- Analysis of 1 year of nowcast runs and the occurence of available information
- Spatial distribution of cameras determines the coverage
- Additional ASI in northwest part out of this domain add information to Oldenburg domain

Spatial coverage

- Overall reduced information
- Slightly larger coverage in the northeast region
 - ...we will see later why

Spatial coverage

Nowcast 15 minutes ahead

 Large variations in cloud conditions lead to large variations in spatial coverage for all lead times

"A 30 minutes forecast horizon with 50% coverage of the city is reached in about 50% of the time"

Thomas Schmidt, DLR Institute of Networked Energy Systems, ICEM conference, 27th June 2023

Network coverage depending on cloud base height

Cloud height < 2000m

Reduced forecast horizon in low cloud conditions

Cloud height > 4000m

Increased forecast horizon in low cloud conditions

Network coverage depending on cloud motion

53.21

53.18°N

33.16*7

33.141

53.12°N

53.17

53.2°N

33.18°N

53.16°N

33.14°N

53.12°N

53.1°N

10 minutes ahead nowcast

Clouds from west

Clouds from east

Solar irradiance estimations

- Large differences in cloud/irradiance resolutions between camera and satellite
- Cloud (shadow) projection has large uncertainties -> Difficult to match both scenes / timing and location errors
- Satellite (here MSG-HRV with Heliosat3 method) and other coarse resolution data sources smooth fields and timeseries

Solar irradiance estimations

- Nowcast is result of cloud tracking / motion
- Forecast horizon is limited depending on cloud motion (and height)

Solar irradiance estimations

- Nowcast validated for measurement sites show good representation of local cloud induced solar variability
- Satellited based nowcast (15 minute resolution) predicts smooth timeseries

One one-minute timescale, who shows lower error metrics at single sites?

Camera vs/with Satellite Nowcast validation

Setup:

- Validation on minute level
- Validation against measurements at two distinct independent sites in the domain
- Satellite nowcasts have been interpolated to minute level

Findings:

- nowcasts based on the ASI-network show better performance for 8/13 minutes ahead (RMSE/MAE)
- A linear combination of both nowcasts can reduce nowcast error

Figure 15. Benchmark for the combined forecast on the nominal synchronization case. **Top:** Error metrics $RMSE(\circ)$ and $MAE(\diamond)$. **Bottom:** average optimized combination weights(x) and optimized combination bias term (\triangle) in the secondary axis.

- Lezaca, Jorge et al. (2022): High resolution hybrid forecast based on the combination of satellite and an all sky imager network forecasts. EMS Annual Meeting 2022, 04-09 Sept 2022, Bonn, Germany. <u>https://elib.dlr.de/190483/</u>
- Lezaca, Jorge et al. (2022): Methodologies for short-term solar resource forecasting by merging various inputs, Smart4RES Project, <u>https://www.smart4res.eu/wp-content/uploads/2023/01/Smart4RES_Deliverable_D2.3.pdf</u>

Conclusions

Summary

- High resolution and frequently updated solar irradiance nowcasts for an urban area based on a network of cameras have been processed and demonstrated
- A comparison against "low-resolution" satellite based information show the value of high resolution but also weakness in terms of standard error metrics.

Outlook

- Investigate further the value of high temporal and spatial variability information
- Add high-resolution NWP evaluation
- Develop hybrid models for seamless forecasting

Thank you for listening...

Contact us:

Thomas Schmidt (<u>th.schmidt@dlr.de</u>) Jonas Stührenberg (<u>jonas.stuehrenberg@dlr.de</u>) Niklas Blum (<u>niklas.blum@dlr.de</u>) Annette Hammer (<u>annette.hammer@dlr.de</u>) Jorge Lezaca (<u>jorge.lezaca@dlr.de</u>) Marion Schrödter-Homscheidt (<u>marion.schroedter-homscheidt@dlr.de</u>) Thomas Vogt (<u>th.voqt@dlr.de</u>)

-> Leader of Eye2Sky laboratory

- -> ASI Nowcast developer
- -> Satellite expert
- -> Linear combination of ASI + satellite Nowcasts
- -> Group leader "Energy Meterology"
- -> Department leader (Energy System Analysis)

Website:

https://www.dlr.de/ve/en/eye2sky

Video:

Portrait of Eye2Sky in 5 Min Video