
1.  Introduction
Increasing levels of atmospheric carbon dioxide (CO2) concentration unequivocally transformed the earth's 
climate (IPCC, 2021). This surplus of CO2 in the atmosphere contributes to the greenhouse effect, and by increas-
ing the mean and the variability of global temperatures, it amplifies the risk of high-impact temperature extremes 
(Baker et al., 2018). The effects of anthropogenic global warming led to the emergence of heat extremes that 
would not have occurred previously (Robinson et al., 2021). This means that unprecedented heat extremes like the 
2010 Russian heatwave or the 2021 Western North America heatwave would have likely not happened without 
the warming effect (Christidis et al., 2015; Rahmstorf & Coumou, 2011; Thompson et al., 2022). The latter was 
found to be a remarkable four standard deviations away from the mean (Thompson et al., 2022). The Intergovern-
mental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) concluded that human influence on the 
climate system is unequivocal (Eyring et al., 2021) and virtually certain to be the main driver of the changes in 

Abstract  Extreme temperature events have traditionally been detected assuming a unimodal distribution of 
temperature data. We found that surface temperature data can be described more accurately with a multimodal 
rather than a unimodal distribution. Here, we applied Gaussian Mixture Models (GMM) to daily near-surface 
maximum air temperature data from the historical and future Coupled Model Intercomparison Project Phase 6 
(CMIP6) simulations for 46 land regions defined by the Intergovernmental Panel on Climate Change. Using the 
multimodal distribution, we found that temperature extremes, defined based on daily data in the warmest mode 
of the GMM distributions, are getting more frequent in all regions. Globally, a 10-year extreme temperature 
event relative to 1985–2014 conditions will occur 13.6 times more frequently in the future under 3.0°C of 
global warming levels (GWL). The frequency increase can be even higher in tropical regions, such that 10-year 
extreme temperature events will occur almost twice a week. Additionally, we analyzed the change in future 
temperature distributions under different GWL and found that the hot temperatures are increasing faster than 
cold temperatures in low latitudes, while the cold temperatures are increasing faster than the hot temperatures 
in high latitudes. The smallest changes in temperature distribution can be found in tropical regions, where the 
annual temperature range is small. Our method captures the differences in geographical regions and shows that 
the frequency of extreme events will be even higher than reported in previous studies.

Plain Language Summary  Extreme temperature events are unusual weather conditions with 
exceptionally low or high temperatures. Traditionally, the temperature range was determined by assuming a 
single distribution, which describes the frequency of temperatures at a given climate using their mean and 
variability. This single distribution was then used to detect extreme weather events. In this study, we found 
that temperature data from reanalyses and climate models can be more accurately described using a mixture 
of multiple Gaussian distributions. We used the information from this mixture of Gaussians to determine the 
cold and hot extremes of the distributions. We analyzed their change in a future climate and found that hot 
temperature extremes are getting more frequent in all analyzed regions at a rate that is even higher than found 
in previous studies. For example, a global 10-year event will occur 13.6 times more frequently under 3.0°C 
of global warming. Furthermore, our results show that the temperatures of hot days will increase faster than 
the temperature of cold days in equatorial regions, while the opposite will occur in polar regions. Extreme hot 
temperatures will be the new normal in highly populated regions such as the Mediterranean basin.
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hot and cold extremes (Seneviratne et al., 2021). It introduced more frequent and intense hot extremes since the 
1950s on land areas while a decrease in cold extremes is observed (IPCC, 2021). Several studies found that the 
duration, frequency, and intensity of extreme events will increase, and extreme events will be introduced at new 
locations (Kharin et al., 2013; Mallick et al., 2022; Perkins-Kirkpatrick & Lewis, 2020; Pfleiderer et al., 2019; 
Rahmstorf & Coumou, 2011; Raymond et al., 2020; Seneviratne et al., 2012, 2021; Sillmann, Kharin, Zhang, 
et  al.,  2013; Sillmann, Kharin, Zwiers, et  al.,  2013; Vogel, Hauser, & Seneviratne,  2020). As the number of 
occurrences of heat extremes like the 2003 European heatwave and their duration increase, the socio-economic 
burden of climate change poses a threat to societies (Demiroglu et al., 2020; García-León et al., 2021; Meehl & 
Tebaldi, 2004; Perera et al., 2020; Robine et al., 2008; Seneviratne et al., 2021).

The warming of the climate causes different changes in different regions. Tropics, polar regions and the Middle 
East and North Africa (MENA) region, are hot spots of notable climate trend shifts (Hao et al., 2018; Y. Zhang 
et  al.,  2022). Iyakaremye et  al.  (2022) have shown that an abrupt shift in the daily maximum temperatures 
occurred in Africa in the last two decades compared to the previous 20 years, which introduced more frequent 
and intense hot days. Moreover, regions in Africa will face a higher increase in temperatures compared to the 
rest of the globe. Iyakaremye et  al.  (2021) found that the annual maximum of daily maximum temperatures 
over Africa is expected to increase by 1.6/2.2°C in the future, while global temperatures are projected to rise by 
1.5/2.0°C during the same period. In the MENA region, the frequency and intensity of heatwaves will highly 
increase by the end of the century under a business-as-usual pathway scenario, which will affect about half of the 
MENA population (Lelieveld et al., 2016; Ozturk et al., 2021; Zittis et al., 2021). The number of occurrences of 
exceptionally hot summers, which have 2–4°C hotter temperatures than the long-term average, has also increased 
from a single event between 1951 and 1980 to five events between 2001 and 2010 in Central and Eastern Europe, 
where the 2010 heatwave was the hottest and longest event with the largest geographical extent that ever occurred 
over Europe (Guerreiro et al., 2018; Twardosz & Kossowska-Cezak, 2013). Similarly, other studies also found 
that the temperature extremes in Europe will increase 20-fold at the end of the century, compared to 1961–1990 
(Barriopedro et al., 2011; Nikulin et al., 2011; Schär et al., 2004). Over the Americas, the dry and hot extremes 
showed an increase both in frequency and spatial scope over the past 122  years (Alizadeh et  al.,  2020; Cai 
et al., 2014).

Correctly characterizing the temperature distributions to analyze extreme events is a still-continuing issue as 
extremes are by definition rare events, and several studies showed that the assumption of distributions or a station-
ary climate often underestimates the observed heat records (Benestad, 2004; Schär et  al., 2004; Anderson & 
Kostinski, 2010; Fischer & Schär, 2010; Barriopedro et al., 2011; C. Li et al., 2019; Loikith & Neelin, 2019). 
Thompson et al. (2022) characterized extreme events by calculating a daily extreme index which is the differ-
ence between the daily maximum temperature and mean daily maximum temperature divided by the standard 
deviation. With the assumption of a normal distribution, they found that the 2021 North American heatwave was 
one of the most extreme events with 4 standard deviations from the mean. Moreover, the authors projected that 
20% of the weather risk attribution forecast regions (Stone, 2019) will experience extreme events that are four 
standard deviations from the means in the future. Other studies found that hot summers will be the norm, that is, 
mean temperatures exceed the temperature of the historically hottest summer, within the next 1–2 decades (Lewis 
et al., 2017; Mueller et al., 2016; Vogel, Hauser, & Seneviratne, 2020; Vogel, Zscheischler, et al., 2020).

Common indices to monitor and analyze climate extremes that are used in the climate community at the moment, 
such as ETCCDI (the Expert Team on Climate Change Detection and Indices), are mostly based on daily mean 
near-surface air temperature or daily maximum near-surface air temperature (X. Zhang et al., 2011; Alexander 
et  al.,  2006). Two standard approaches to detect extreme events are the percentile-over-threshold (POT) and 
the block maxima method. The block maxima method groups data into an equal length of blocks, for example, 
month, season, or year, and use the maximum temperature value of each block to fit the data. The POT method 
defines a threshold, for example, percentiles, and uses all temperature values above this threshold in the anal-
ysis. Choosing the percentiles for defining extremes is not trivial as the temperature extremes have a strong 
seasonality and temporal dependence (Huang et al., 2016). The block maxima method is more commonly used 
in climate studies because of its simplicity with monthly, seasonal or annual block periods for fitting generalized 
extreme value (GEV) distribution to temperature and precipitation extremes (Ben Alaya et al., 2020; IPCC, 2021; 
Kharin et al., 2013; C. Li et al., 2021; Paciorek et al., 2018; Wang et al., 2016; Wehner et al., 2018). The block 
maxima method, however, does not use all available data, as calculating a single maximum value from a block 
period throws out the rest of the data. To be approximated by the GEV distribution, the blocks are assumed to 
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be long enough and “max-stable,” which means that if you take the maximum of a group of values selected 
from a specific GEV distribution, the result will be GEV distributed with the same shape parameter (Ben Alaya 
et al., 2020; Huang et al., 2016). However, these assumptions might not be valid for all possible use cases or all 
possible variables. For example, GEV is not the best fit for shorter block lengths as the fit improves with increas-
ing block size (Ben Alaya et al., 2020; Wang et al., 2016). Ben Alaya et al. (2020) argued that the identically 
distributed random variables assumption of extreme value theory might be problematic for extreme precipitation 
events. They considered a mixture of GEV distributions to fit precipitation data to demonstrate that the mixture 
distribution could be a potential explanation for the instability of annual maxima. Kollu et al. (2012) tested wind 
speed characteristics using mixture probability distribution functions (PDF). They found that conventional PDFs 
are inadequate to describe wind speed distributions compared to the mixture distributions that they used in the 
study. A mixture of Gaussians was used by Shin et al. (2022) to describe the distribution of the daily thermal 
comfort index in South Korea, an index that has a strong seasonality. Ice surface temperature data follows a clear 
multimodal distribution, according to Clarkson et al. (2022). They also found that a unimodal distribution fit is 
particularly poor at modeling the tail probabilities. Probability distributions with one and two components are 
called unimodal and bimodal, respectively, whereas distributions with multiple (two or more) components are 
called multimodal distributions.

The temperature distributions are expected to move toward warmer temperatures and to change their shape with 
changing means and standard deviations (IPCC, 2021). Also, the assumption of distribution might not be correct 
for all geographical regions as daily weather variables show a distinct non-Gaussianity (Kodra & Ganguly, 2014; 
Linz et al., 2018; Perron & Sura, 2013; Sardeshmukh et al., 2015; Tamarin-Brodsky et al., 2019; E. M. Volodin 
& Yurova, 2012). Furthermore, several studies found that daily mean, daily maximum and real forecast data of 
2m temperatures show bimodal features (Bertossa et al., 2021; Cho & Jeong, 2016; Donat & Alexander, 2012; 
Grace, 1995; Wilks, 2002). These changes, shifts and bimodalities in the temperature distributions affect the 
probabilities in the tails. As extreme events are rare events that lie in the tails of a distribution, correctly describ-
ing the tails is very important for extreme event detection. Even though the block maxima method is widely used 
in studies which used block sizes large enough to converge asymptotically to GEV distributions, a GEV distri-
bution is not well suited to describe extreme value data when the bimodality is apparent or block sizes are short 
(Ben Alaya et al., 2020; Knoben et al., 2019; Sardeshmukh et al., 2015; Wang et al., 2016). Therefore, the prop-
erties of the entire probability distribution, that is, mean, standard deviation and shape, are needed to get the tail 
properties right (Sardeshmukh et al., 2015). A distribution can be described by not only the mean and the standard 
deviation but also skewness and kurtosis. Donat and Alexander (2012) found that daily minimum and maximum 
temperatures have significantly shifted toward higher values and skewed toward the hotter part of the distribution. 
They highlighted that the changes in extremes are related not only to the means but also to other parameters of the 
daily temperature distribution. Sardeshmukh and Sura (2009) found a parabolic relationship between kurtosis and 
skewness that cause the non-Gaussianity of the observed daily weather anomalies. Similarly, Tamarin-Brodsky 
et al. (2022) used a mixture model with three Gaussians to describe the PDF of near-surface atmospheric temper-
ature to analyze the relationship between kurtosis and skewness, as they are important to explain how the tails of 
the distribution change. They found that two- and three-Gaussian models are useful to explain the relationship 
between kurtosis and skewness.

In the study presented here, our approach is to utilize the entire temperature distribution to detect extreme events. 
We implemented Gaussian Mixture Models (GMM), which describe the probability distribution function of data 
points as a mixture of Gaussian distributions. We determined the number of Gaussian components in the temper-
ature distribution of each grid cell of 46 land regions defined by the IPCC using daily near-surface maximum 
air temperature data from the historical and future Coupled Model Intercomparison Project Phase 6 (CMIP6) 
simulations. This choice was supported by previous studies which found distinct bimodality in daily weather vari-
ables (Bertossa et al., 2021; Cho & Jeong, 2016; Donat & Alexander, 2012; Grace, 1995; Wilks, 2002) and was 
verified by applying the same analysis to the European Centre for Medium-Range Weather Forecasts Reanalysis 
5th Generation (ECMWF-ERA5) data for the same historical time period (1985–2014). The parameters from the 
determined distribution components, namely mean, standard deviation and weight, were used to calculate the 
change in the return period of extreme temperature events between the historical and future periods determined 
by using global warming levels (GWL). In a stationary climate, the return period of an event describes the aver-
age time between the occurrences of a certain event of a defined size. In this study, we analyzed 1-year, 5-year, 
10-year and 20-year events, where an n-year event has an occurrence probability of 1/n as the climate is not 
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stationary. Hence, these event magnitudes change as time progresses, where an n-year event means that the event 
in question would be expected to occur once in every n years. We only calculated return periods equal to or less 
than the available future data period to prevent overestimating the return periods of extreme events, since GMM 
distributions are not bounded. Section 2 presents the climate data and warming levels used in this study, as well 
as the analyzed regions, and explains the methodology of detecting extreme event return periods by using GMM. 
Section 3 shows our results obtained using the GMM method for all analyzed IPCC land regions, and Section 4 
finalizes the paper with a summary and discussion.

2.  Data and Methodology
2.1.  Climate Data

For this study, we used multi-year daily near-surface maximum temperatures from the Coupled Model Intercom-
parison Project Phase 6 (CMIP6), and for which both the historical simulations and the simulations for Shared 
Socioeconomic Pathways (SSPs) 1–2.6, 2–4.5, 3–7.0, and 5–8.5 scenarios were available (Eyring et al., 2016; 
O’Neill et al., 2014, 2016). Additionally, the ECMWF-ERA5 data set was included for the 30-year time period 
(1985–2014) (Hersbach et al., 2018). Table 1 shows the list of models and their resolutions. The 30-year time 
period from 1985 to 2014 from historical simulations is used as the base to calculate the return values of extreme 
temperature events, that is, 1-year, 5-year, 10-year and 20-year events. The GWL, as introduced in the IPCC AR6 
report, are used to assess the changes in future climate in line with the warming levels defined in the Paris Agree-
ment which are compared to the pre-industrial period (IPCC, 2021). The future period for each model is defined 
as a 20-year period between 2015 and 2100 when the central year of the running window of the global daily 
near-surface temperature mean of that model first exceeds 1.5°C, 2°C, 3°C, and 4°C relative to 1850–1900 global 
daily near-surface mean temperatures. We used the same GWL periods defined for and used in IPCC (Hauser 
et al., 2022; IPCC, 2021), similarly to Hajat et al. (2022) and Ribeiro et al. (2022). Therefore, we obtained the 
start and end years of 20-year GWL periods for each CMIP6 simulation from Hauser et al. (2022). Here, we used 
a longer historical base period (30 years) compared to future GWL periods (20 years) for the analysis to obtain 
more robust results. This decision was made based on the fact that GMM distributions have no bounds. Therefore, 
we focused our analysis solely on return periods shorter than our base period. By limiting our analysis to shorter 
return periods, we can mitigate the biases and outliers that may occur beyond the limits of the data sets. As some 
data sets did not exceed certain warming levels, they were excluded from the analysis (e.g., NOR-ESM2-MM 
was not used in calculations for 4°C warming under SPP5-8.5, as it did not exceed this level). Figure 1 shows the 
historical and future GWL periods for each CMIP6 model used in this study.

We extracted daily maximum near-surface air temperature for 30-year historical and 20-year future periods under 
GWL for each SSP individually for 46 IPCC land regions that are shown in Figure 1 (Iturbide et  al., 2020). 
All data extraction and preprocessing in this study were performed by using the Earth System Model Evalua-
tion Tool (ESMValTool) version 2.5.0, which is an open-source software package for analyzing and evaluating 
model simulations (Eyring et al., 2020; Lauer et al., 2020; Righi et al., 2020; Weigel et al., 2021). We extracted 
the daily maximum near-surface air temperature from each model for each region using shapefiles provided by 
IPCC (Iturbide et al., 2020), converted units from Kelvin to Celsius, and created a single spatiotemporal Network 
Common Data Form file for each region. The data were then ready to be used in the diagnostic script written in 
Python where the extreme events and their return periods were analyzed.

2.2.  Return Period Analyses

For the return period calculation of extreme temperature events, that is, 1-, 5-, 10-, and 20-year events, we defined 
a temperature threshold for an event by calculating the standard deviation distance of the event temperature from 
the mean temperature in the past, that is, how many standard deviations away the event temperature was from the 
mean. We then applied this temperature threshold value to the future period but calculated its standard deviation 
distance from the mean using the parameters from the future distribution, that is, how many standard devia-
tions away the event temperature will be from the mean. To test the underlying distribution shape of the  daily 
near-surface maximum temperature distribution, we first analyzed data from individual grid cells of each climate 
model. We found that daily maximum near-surface air temperature data in climate grid cells usually do not follow 
a unimodal distribution, but rather follow a bimodal distribution, a probability distribution composed of two 
components.
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To calculate the return periods of extreme events, we modeled the probability distribution of multi-year (30 years 
for the historical base period and 20 years for future GWL periods) daily near-surface maximum temperature 
data from a grid cell as mixtures of multiple Gaussian distributions, rather than a single Gaussian distribution. 
GMM is a probabilistic model that describes the data points in a population as a mixture of Gaussian distributions 
with unknown parameters which are the mean, standard deviation and weight of each Gaussian component, five 
parameters in total for a bimodal distribution. With this approach, we were able to analyze the change in the distri-
bution, and accurately model the tails of the data compared to a unimodal distribution. When a unimodal distribu-
tion is fit to multi-year data with bimodality, it is likely that the resulting distribution will have a larger standard 
deviation to encompass both modes. This large standard deviation between a unimodal distribution fit to bimodal 
data can have significant implications for analyses, as the larger standard deviations of unimodal distributions 
tend to push the extreme events further away from what would be observed if the bimodality were properly 
accounted for. In other words, when one tries to calculate the threshold of an event as n sigma distance from 

Model Variant Resolution (km) Reference

ECMWF-ERA5 Reanalysis 25 Hersbach et al. (2018)

ACCESS-CM2 r1i1p1f1 250 Dix et al. (2019)

ACCESS-ESM1-5 r1i1p1f1 250 Ziehn et al. (2019)

AWI-CM-1-1-MR r1i1p1f1 100 Semmler et al. (2018)

BCC-CSM2-MR r1i1p1f1 100 Wu et al. (2018)

CanESM5 r1i1p1f1 500 Swart et al. (2019)

CNRM-CM6-1 r1i1p1f2 250 Voldoire (2018)

CNRM-CM6-1-HR r1i1p1f2 50 Voldoire (2019)

CNRM-ESM2-1 r1i1p1f2 250 Seferian (2018)

EC-Earth3 r1i1p1f1 100 EC-Earth Consortium (EC-Earth) (2019a)

EC-Earth3-CC r1i1p1f1 100 EC-Earth Consortium (EC-Earth) (2021)

EC-Earth3-Veg r1i1p1f1 100 EC-Earth Consortium (EC-Earth) (2019b)

EC-Earth3-Veg-LR r1i1p1f1 250 EC-Earth Consortium (EC-Earth) (2020)

FGOALS-g3 r1i1p1f1 250 L. Li (2019)

GFDL-ESM4 r1i1p1f1 100 Krasting et al. (2018)

HadGEM3-GC31-LL r1i1p1f3 250 Ridley et al. (2019a)

HadGEM3-GC31-MM r1i1p1f3 100 Ridley et al. (2019b)

INM-CM4-8 r1i1p1f1 100 von et al. (2019)

INM-CM5-0 r1i1p1f1 100 E. Volodin et al. (2019)

IPSL-CM6A-LR r1i1p1f1 250 Boucher et al. (2018)

KACE-1-0-G r1i1p1f1 250 Byun et al. (2019)

MIROC6 r1i1p1f1 250 Tatebe and Watanabe (2018)

MIROC-ES2L r1i1p1f2 500 Hajima et al. (2019)

MPI-ESM1-2-HR r1i1p1f1 100 Jungclaus et al. (2019)

MPI-ESM1-2-LR r1i1p1f1 250 Wieners et al. (2019)

MRI-ESM2-0 r1i1p1f1 100 Yukimoto et al. (2019)

NESM3 r1i1p1f1 250 Cao and Wang (2019)

NorESM2-LM r1i1p1f1 250 Seland et al. (2019)

NorESM2-MM r1i1p1f1 100 Bentsen et al. (2019)

UKESM1-0-LL r1i1p1f2 250 Tang et al. (2019)

Note. Climate models with spatial resolutions ranging from 50 to 500 km were used in the analyses. The first available ensemble members were chosen. The Reanalysis 
data set that has a resolution of 25 km was regridded to 100 km and used for evaluating modality.

Table 1 
Reanalysis Data and CMIP6 Models Used in This Study to Detect Extreme Temperature Events
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the mean, this threshold might be well beyond the maximum value of the distribution. Furthermore, a unimodal 
distribution fit will affect the measures of central tendency when bimodality exists in data (von Hippel, 2005). An 
example goodness-of-fit test for normal distribution, GEV distribution with different shape parameters and GMM 
distributions on the daily maximum temperature data from a random grid cell is presented in Supplementary 
Material Section 1. We used an unsupervised machine-learning package, the “GaussianMixture” package from 
open-sourced machine-learning library Scikit-learn, to compute the unknown parameters of the Gaussian compo-
nents in a mixture that generates all observed data points (Pedregosa et al., 2011). We applied this package to the 
daily maximum near-surface air temperature data in each grid cell of the CMIP6 models. The “GaussianMixture” 
package first randomly assigns values to the component parameters and then uses the expectation-maximization 

Figure 1.  (top) We used 46 land regions defined in Iturbide et al. (2020). See Table S2 for region definitions. (bottom) Future 
periods of the CMIP6 models when the central year of the 20-year running window exceeds global warming levels (GWL) 
relative to 1850–1900 base for the SSP5-8.5 scenario are extracted using the data from Hauser et al. (2022). The colors in the 
graph go from light to dark, each color representing a different level of warming 1.5, 2, 3, and 4°C. These levels are expected 
to be exceeded around 2026, 2040, 2060, and 2070 respectively. The 30-year historical base period is indicated in gray. Note 
that different models have different time periods when they exceed the GWL. Future periods for other Shared Socioeconomic 
Pathway scenarios are presented in Table S3.
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algorithm (EM) to converge their values. EM algorithm fits GMM to data by alternating between two steps, 
Expectation (E) and Maximization (M). In the E step, it randomly assumes components and calculates the prob-
ability of each point to be generated by that component. In the M step, the parameters are tweaked to maximize 
the likelihood found in the first step. It also uses the Bayesian Information Criteria (BIC) score, which is used to 
estimate the goodness-of-fit of a distribution and which accounts for both the likelihood function and the number 
of parameters. Then, the probability distribution function of the mixture model that was fit to multi-year daily 
near-surface temperature can be written as a linear summation of multiple Gaussian components:

𝑝𝑝(𝑥𝑥) =

𝐾𝐾∑

𝑘𝑘=1

𝜔𝜔𝑘𝑘 (𝑥𝑥|𝜇𝜇𝑘𝑘, 𝜎𝜎𝑘𝑘)� (1)

 (𝑥𝑥|𝜇𝜇𝑘𝑘, 𝜎𝜎𝑘𝑘) =
1

𝜎𝜎𝑘𝑘

√
2𝜋𝜋

exp

(
−
(𝑥𝑥 − 𝜇𝜇𝑘𝑘)

2

2𝜎𝜎2
𝑘𝑘

)

� (2)

𝐾𝐾∑

𝑘𝑘=1

𝜔𝜔𝑘𝑘 = 1� (3)

where K is the number of Gaussian components in the mixture. μk, σk, and ωk are the mean, the standard devi-
ation and the weight of the kth component, respectively. Implementing GMM to evaluate multi-year raw daily 
maximum temperatures allows us to investigate the long-term characteristics of the individual components. This 
method does not consider the temporal changes within one period, as they can be assumed to be negligible 
compared to the changes between different time periods. As shown in other studies, mean temperatures are 
increasing all over the globe (Eyring et al., 2020; IPCC, 2021; Robinson et al., 2021). Using the raw temperatures, 
we can analyze how the convergence or divergence of the peaks of the different Gaussian components affect the 
extremes compared to the used historical periods. In our analysis, we have disregarded three or more Gaussian 
components. This choice was supported by the value of the BIC score and the fact that increasing the number 
of components tends to cause overfitting, even though BIC scores penalize adding more parameters. In some 
cases, the BIC scores for the components showed close results for more than three components (see Figure S2 
in Supporting Information S1). For instance, the lowest BIC score was reached for a mixture with seven Gauss-
ian components for the distribution of temperatures in a grid cell. However, the highest change in BIC scores 
occurred when switching from one component to two components. Consequently, we used the gradient of BIC 
scores rather than using the lowest score. We selected the number of Gaussian components where the highest 
gradient change occurs in the BIC scores as the best fit. To further prevent overfitting, we also applied the follow-
ing unimodality test after estimating the BIC scores: If the BIC score returned a bimodal distribution, then the 
parameters of the mixture distribution components were used for the unimodality test. As shown in Equation 4, if 
the difference between the means of Gaussian components was less than or equal to twice the minimum of stand-
ard deviations, then unimodal distribution was assumed, otherwise, the bimodal distribution fit for the data was 
kept. It is worth noting that this procedure had a tendency to favor fitting a unimodal distribution. However, after 
all these tests and checks, the majority of grid cells showed a clear bimodal distribution. For a bimodal distribu-
tion, hereafter we referred to the right (left) Gaussian component as “hot (cold) Gaussian” as shown in Figure 2).

|𝜇𝜇1 − 𝜇𝜇2| ≤ 2min(𝜎𝜎1, 𝜎𝜎2)� (4)

First, we grouped grid cells of a region depending on their modality, either unimodal or bimodal, for each CMIP6 
model, and calculated the percentages of grid modalities among all grid cells of a region for each CMIP6 model. 
We then determined the multi-model mean percentages of grid cell modalities of a region as shown in Figure 3. 
Additionally, we calculated the global multi-model mean percentage of grid cell modalities using all regions and 
CMIP6 models. We found that globally 89.58% of all grid cells follow a bimodal distribution in the historical 
period as shown in the white box in the upper center part of Figure 3. Furthermore, we analyzed the ECMWF-
ERA5 data set for the same historical time period (1985–2014) to confirm whether bimodality is also found 
in data other than model simulations. We regridded the ECMWF-ERA5 data from a 25-km grid to a coarser 
1-degree 100-km grid using the nearest neighbor method to have a similar resolution as many CMIP6 data sets. 
The ECMWF-ERA5 reanalysis data set shows similar results to the CMIP6 models: Globally 86.95% of all 
grid cells in the ECMWF-ERA5 reanalysis data set follow a bimodal distribution as shown in the white box in 
the upper center part of Figure 4, while only 13.05% of them follow a unimodal distribution. The temperature 
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distributions in the ERA5 and CMIP6 data sets show predominantly similar patterns across various regions, 
although certain exceptions are observed, particularly in South America. These differences can most likely be 
attributed to several factors. First, resampling of ERA5 data from a 25 km grid to a coarser 1-degree grid intro-
duces a smoothing effect on the data, which would increase the unimodal grid cells. Additionally, biases in 

Figure 3.  Multi-model mean percentages of grid modalities for the historical period in study regions grouped by continents. 
Dark and light blue bars show the percentage of grid cells with unimodal or bimodal distribution, respectively, for the 
historical period of 29 CMIP6 simulations.

Figure 2.  Exemplary bimodal distribution of daily maximum temperatures from a grid cell for the historical 30-year period 
of 1985–2014 (blue) and future 20-year global warming levels period (red). Blue and red lines show the corresponding 
Gaussian Mixture Models fit for the historical and future periods, respectively. The shape of the distribution is determined by 
the parameters of each Gaussian component, which are the means, standard deviations and weights. Here, the means of cold 
and hot Gaussian peaks are shown with blue (red) dots and squares for the historical (future) period, respectively. The hot 
Gaussian component used in the analysis is shown with a dashed blue (red) line for the historical (future) period. The bottom 
two plots show what convergence and divergence of the peaks mean based on the ΔT value.
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surface temperature in CMIP6 data set. also contribute to the observed variations from ERA5 (Bock et al., 2020). 
Nevertheless, as we aim to evaluate the shape of temperature distributions, we did not apply a bias correction and 
used raw multi-year daily temperature data from CMIP6 models for our analysis.

Then, the parameters of the hot Gaussian component, 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑜𝑜𝑜𝑜
 , 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑜𝑜𝑜𝑜
 and 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑜𝑜𝑜𝑜
 , were used to calculate the 

change in return periods. We only analyzed 1-year, 5-year, 10-year and 20-year events, as GMM are unbounded. 
One should be careful while calculating the return periods using GMM, as the unbounded tails of the Gaussian 
component could overestimate the probabilities of longer return periods. Therefore, return periods equal to or less 
than the analysis period were calculated using GMM. The change in return periods is calculated first in each grid 
cell of a region and then averaged together to produce regional results for each CMIP6 simulation.

For normally distributed data, the expected percentage of the population inside the μ ± dσ range is defined as

𝐸𝐸(𝜇𝜇 ± 𝑑𝑑𝑑𝑑) = erf

(
𝑑𝑑
√
2

)

� (5)

where erf is the error function and d is the standard deviation distance. The approximate expected frequency, f, 
outside this range is then defined as the return period of an extreme.

1 𝑖𝑖𝑖𝑖
1

1 − erf
(

𝑑𝑑√
2

) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� (6)

The return period of an event describes the average time between the occurrences of a certain event of a defined 
size, where an n − year event has an occurrence probability of 1/n as the climate is not stationary, where “year” 
is defined as the number of days covered by the hot Gaussian component. The reason for this definition is that 
the entire probability distribution is composed of both the cold and warm periods of a year, however, our data set 
consists of daily maximum temperature data spanning 30 (or 20) years, totaling 10,950 (or 7,300) days. Since our 
analysis specifically aims to identify extreme values using parameters from the hot Gaussian component, we need 
to consider the number of data points generated by this component as the definition of a “year.” We determine 
the length of a “year” by dividing the data points falling under the hot Gaussian component by the length of the 
analysis period as shown in Equation 7. For example, we can assume that a symmetrical bimodal distribution 
results in ∼180 days of cold weather and ∼180 days of hot weather in a normal 365-day calendar year. For such 
a symmetric case, a 10-year event would then be a temperature event in 1,800 days (10 years𝐴𝐴 ×180

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
 ). Since we 

Figure 4.  Same as Figure 3 but for ECMWF-ERA5 reanalysis data set.
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cannot assume a symmetric distribution for grid cells of each model, we calculated the number of days covered 
by the hot Gaussian component using the component weights and data set size.

Let 𝐴𝐴  denote the number of days in L years. Then, a “year” in the historical period, ||
|


(

�ℎ���������
ℎ�� , �ℎ���������

ℎ��

)

|

|

|

 is 
defined as

|

|

|


(

�ℎ���������
ℎ�� , �ℎ���������

ℎ��

)

|

|

|

=
�ℎ���������

ℎ�� 
�

� (7)

where 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑜𝑜𝑜𝑜
 is the mean, 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑜𝑜𝑜𝑜
 is the standard deviation and 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑜𝑜𝑜𝑜
 is the weight of hot Gaussian compo-

nent. The expected frequency of n-year events in the historical period, 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛  , is then calculated by using the 

length of a year,

�ℎ���������
� = � × |

|

|


(

�ℎ���������
ℎ�� , �ℎ���������

ℎ��

)

|

|

|

� = 1, 5, 10, 20� (8)

The standard deviation distance of range, 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛  , for an extreme event in the historical period can be calculated 

by using Equation 6,

𝑑𝑑ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛 = erf

−1

(
1 −

1

𝑓𝑓ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛

)√
2� (9)

where erf −1 is inverse error function. Now, we can calculate a temperature threshold, 𝐴𝐴 𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛  , for an n-year event 
in the historical period.

𝜏𝜏ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 = 𝜇𝜇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑜𝑜𝑜𝑜
+ 𝑑𝑑ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛 𝜎𝜎ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑜𝑜𝑜𝑜� (10)

Using this temperature threshold from the historical period, we calculate the standard deviation distance of the 
temperature threshold of n-year event in the future, 𝐴𝐴 𝐴𝐴

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑛𝑛  , by using the mean 𝐴𝐴 𝐴𝐴

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

ℎ𝑜𝑜𝑜𝑜
 , and standard deviation 𝐴𝐴 𝐴𝐴

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

ℎ𝑜𝑜𝑜𝑜
 

from the hot Gaussian component of the future distribution.

𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑛𝑛 =

𝜏𝜏ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 − 𝜇𝜇
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

ℎ𝑜𝑜𝑜𝑜

𝜎𝜎
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

ℎ𝑜𝑜𝑜𝑜

� (11)

𝑓𝑓
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑛̇𝑛
=

1

1 − erf
(

𝑑𝑑
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑛𝑛√

2

)� (12)

Finally, the new value of the return period in the future 𝐴𝐴 𝐴𝐴𝐴 , that is, 𝐴𝐴 𝐴𝐴𝐴 -year event, is calculated by using Equation 8

�̇ =
�������
�̇

|

|

|


(

�������
ℎ�� , �������

ℎ��

)

|

|

|

� (13)

where ||
|


(

�������
ℎ�� , �������

ℎ��

)

|

|

|

 is length of a “year” in the future period.

With this method, we can also analyze if and how much the Gaussian components will shift in the future relative 
to the historical period. We defined ΔT, as the change in the difference between the means of cold and hot Gauss-
ian components as shown in Equation 14:

Δ𝑇𝑇 = 𝛿𝛿𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝛿𝛿𝛿𝛿ℎ𝑜𝑜𝑜𝑜� (14)

𝛿𝛿𝛿𝛿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜇𝜇
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
− 𝜇𝜇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� (15)

𝛿𝛿𝛿𝛿ℎ𝑜𝑜𝑜𝑜 = 𝜇𝜇
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

ℎ𝑜𝑜𝑜𝑜
− 𝜇𝜇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

ℎ𝑜𝑜𝑜𝑜� (16)

In Figure 2, this change in hot and cold Gaussian means is schematically illustrated. Assuming the future means 
of Gaussian components are higher than the historical periods, δTcold and δThot will always be positive. Therefore, 
a negative ΔT means that the peaks are diverging in the future: the hot Gaussian moves toward warmer tempera-
tures faster than the cold Gaussian, which increases the frequency of hot extremes and induces an overall warmer 
climate. A positive ΔT means that the peaks are converging: the cold Gaussian moves closer to the hot Gaussian, 
which increases the number of days with warmer temperatures in the colder mode.
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3.  Results
First, we checked the change in the percentage of modalities from the present to the future time periods. For 
this, we analyzed the modality of the temperature data from each individual grid cell of an IPCC land region by 
counting the number of grid cells with each modality. We found that the percentages of grid cells with bimodal 
distributions stay almost the same under different warming levels. As some of the CMIP6 data sets do not exceed 
certain warming levels, the number of data sets are not identical for the historical and future period and therefore 
affect the change in percentages. We analyzed modalities of grid cells under different GWL for all SSP scenarios 
but we only present SSP5-8.5 results here, as the SSP5-8.5 scenario had data from 29 CMIP6 models and the 
GWL is scenario independent. Globally, almost 90% of all grid cells follow a bimodal distribution as shown 
in Figure 3 for the historical period, Figure 4 for the reanalysis data and Figure 5 for GWL 3.0°C for different 
regions grouped by continents (See Table  S3 for other warming levels). Global averages and the number of 
data sets are shown in the white box in the upper center part of each figure. In the historical period, the grid 
cells in tropical and sub-tropical regions have slightly higher percentages of unimodal distributions compared 
to higher latitude regions. However, regions still mostly follow a bimodal distribution as shown in Figure 3. The 
multi-model mean percentage of unimodal distributions does not exceed 50% of grid cells in any of the regions, 
except in N.W.South-America (NWS) and South-American-Monsoon (SAM) regions where 51.94% and 50.33% 
of the grid cells follow a unimodal distribution, respectively, in the historical period. The higher percentage of 
unimodal distributions in lower latitudes is consistent with tropical climate features, where hot temperatures are 
observed all year round and the annual temperature range is small (Beck et al., 2018; Richter, 2016). This climate 
type is therefore expected to likely experience a temperature distribution close to a single Gaussian. All grid cells 
(99.9%) in CMIP6 models follow a bimodal distribution in the Mediterranean (MED) region in the historical 
period and under all future periods. In polar regions, more than 90% of the grid cells follow a bimodal distribu-
tion in the historical period. The percentage of grid cells with unimodal distributions in polar regions slightly 
increases under future GWL.

As previously mentioned in Section 2.2, large values of ΔT (see Equation 14) will cause the temperature distribu-
tion to change its modality for future GWL periods with respect to the historical base period of 1985–2014. We 
analyzed all regional grids for all CMIP6 models for the modality changes under GWL 1.5, 2, 3, and 4°C. Figure 6 
shows the percentage of changes in grid cell distribution modalities under GWL3.0°C. Globally, the percentage 
of grids changing from a unimodal (bimodal) distribution in the historical period to a bimodal (unimodal) distri-
bution in the future periods is between 2.79% (2.26%) and 6.02% (3.88%) for different scenarios and GWL as 
shown in Table 2. The change from unimodal to bimodal distribution in the future period is most prevalent in 

Figure 5.  Same as Figure 3 but for future SSP5-8.5 scenario under global warming levels 3.0°C.
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regions where the highest percentage of unimodality was observed in the historical period, as shown in Figure 3. 
This suggests that regions that were previously characterized by more consistent temperatures (as indicated by a 
unimodal temperature distribution) may experience more variability in temperature in the future. As our analy-
sis uses the mean and standard deviation of the same component from the historical and future daily maximum 
temperature distributions, we only used the grid cells which have the same modality in the historical and future 
periods. We disregarded the grid cells with changing modalities, that is, unimodal to bimodal or vice versa, as this 
will affect the mean and standard deviation, and hence the return period analysis.

We also analyzed the movements of the Gaussian components relative to each other using the ΔT definition from 
Equation 14 in grid cells with a bimodal distribution. Figure 7 shows the ΔT results for all analyzed regions for 
SSP5-8.5 under 3.0°C warming (see Figures S7–S12 in Supporting Information S1 for other warming levels). 
Changes in distribution peaks are smaller for the lower warming levels. This is consistent with the fact that the 
time periods for exceeding warming levels are very close to the historical period as shown in Figure 1. For the 
future 3.0°C warming scenario, we observed that the mean temperatures are increasing in all regions. Tempera-
ture distributions for the European regions have negative ΔT values, −0.42° on average. This will cause already 
bimodal peaks in the historical period to separate further from each other in the future, while the whole distri-
bution moves toward higher temperatures. Divergence of peaks will result in more extreme hot temperatures in 
Europe, as the hot Gaussian moves faster. This result is in agreement with findings from the IPCC AR6 report, 
in which temperatures in Europe are reported to increase faster than the rest of the globe (IPCC, 2021). Polar 
regions, Northern America and parts of Northern Asia have positive ΔT values, that is, converging peaks in 
grid cells with bimodal distributions. The distribution shape shifts to warmer temperatures and approaches a 
unimodal distribution as the cold Gaussian part of the distribution moves toward the warmer temperatures faster 

Figure 6.  Percentage of changes in grid cell modalities relative to 1985–2014 distribution shape for SSP5-8.5 under GWL3.0°C. Each cell represents a region of 
a CMIP6 model and is divided into four quadrants. Each quadrant of squares, qij, uses index notation, where i represents the modality in the historical period and j 
represents the modality in the future period, 1 for a unimodal distribution and 2 for a bimodal distribution. The top-left quadrant, q11, shows the percentage of grid 
cells with unimodal distribution both in the historical and the future periods, that is, unimodal to unimodal (UU). The top-right quadrant, q12, shows the percentage of 
grid cells that change from unimodal distribution in the historical period to bimodal distribution in the future (UB). The bottom-left quadrant, q21, shows bimodal to 
unimodal (BU). The bottom-right quadrant, q22, shows bimodal to bimodal distribution (BB). The color of the quadrants shows the percentage of grid cells.
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than the hot Gaussian part. This convergence is also consistent with the slight 
increase in the percentage of unimodal distribution in polar regions as shown 
in Figure 5. This will cause polar regions to have more days with warmer 
temperatures also in the colder mode while also having an overall warmer 
climate. The convergence of peaks in three polar regions (EAN, WAN, GIC) 
and three northern regions (RAR, NEN and NWN) becomes clear when  the 
regions are sorted by the mean temperature of cold Gaussian component as 
shown in Figure 8. High ΔT values in polar regions are also supported by 
previous studies reporting that Arctic regions are warming faster than the 
global average (Taylor et al., 2022). The lowest ΔT values are in MED and 
SAM regions, −0.90 and −1.21° respectively, which will cause both bimodal 
peaks to diverge from each other while both are moving toward warmer 
temperatures. Regions in Oceania, Central- and parts of South-America 
have ΔT values close to zero, that is, the cold and hot Gaussian peaks shift 
toward the warmer temperatures at the same rate. This will cause these 
regions to have warmer cold and hot periods under future GWL compared to 
the historical period. When all regions are considered, we observe that the 
extreme temperature events will increase everywhere, as the mean tempera-
tures increase in all regions compared to the historical distributions. The fact 
that the peaks are converging only in cold climate regions while diverging 
in other regions shows that shifts in the Gaussian components with respect 
to each other are essential for extreme temperature event analyses as these 
changes affect the overall distribution shape and extent. Also, these results 
are consistent with the change in skewness in temperature distribution as 

shown in previous studies (Skelton et al., 2020; Tamarin-Brodsky et al., 2020). Skelton et al. (2020) found an 
abrupt change in skewness in Europe. Tamarin-Brodsky et al. (2020) found that changes in skewness in winter 
and summer months will cause cold anomalies in Southern Europe, while warm anomalies intensify in Northeast-
ern Europe. They emphasize the importance of analyzing the shape of temperature distributions.

After analyzing the distribution shapes and peak movements, we calculated the return periods -the average time 
between the occurrences of a certain event- of 1-year, 5-year, 10-year and 20-year events using only the grid cells 

Experiment GWL
Unimodal 

→ unimodal
Unimodal 
→ bimodal

Bimodal → 
unimodal

Bimodal 
→ bimodal

SSP1-2.6 1.0°C 11.01% 2.79% 2.26% 83.94%

SSP1-2.6 2.0°C 10.31% 3.53% 2.45% 83.71%

SSP2-4.5 1.5°C 11.02% 2.78% 2.26% 83.95%

SSP2-4.5 2.0°C 10.24% 3.56% 2.70% 83.50%

SSP2-4.5 3.0°C 8.79% 4.71% 3.08% 83.42%

SSP2-4.5 4.0°C 7.21% 6.02% 3.42% 83.35%

SSP3-7.0 1.5°C 10.82% 2.95% 2.40% 83.83%

SSP3-7.0 2.0°C 10.15% 3.62% 2.89% 83.34%

SSP3-7.0 3.0°C 8.92% 4.68% 3.44% 82.96%

SSP3-7.0 4.0°C 7.80% 5.50% 3.81% 82.89%

SSP5-8.5 1.5°C 11.05% 2.85% 2.31% 83.78%

SSP5-8.5 2.0°C 10.32% 3.58% 3.04% 83.06%

SSP5-8.5 3.0°C 9.14% 4.76% 3.78% 82.32%

SSP5-8.5 4.0°C 8.21% 5.47% 3.88% 82.45%

Table 2 
Global Average Percentage of Grid Cells With Varying Distribution 
Modality Between the Historical and Future Periods

Figure 7.  Multi-model peak mean change of region temperature distributions from bimodal grid cells for SSP5-8.5 under 
GWL3.0°C. Blue (red) dots and squares are the means for cold (hot) peaks of the historical (future) period, respectively. 
They are plotted on the left y-axis. Green bars describe ΔT, the change in the difference between the means of cold and hot 
Gaussian components, and are plotted on the right y-axis. The upward shift in markers represents the overall warming (see 
Figures S7–S9 in Supporting Information S1 for other warming levels).
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with constant modalities, that is, unimodal or bimodal both for the historical and future periods, as described in 
Equation 13. Instead of analyzing extreme temperatures within specific time blocks, our analysis focused on the 
extremes in the region's probability distribution of 30 (20)-years of daily maximum temperatures. Since we used 
the hottest component in the mixture of Gaussian components to define n-year events, we considered the number 
of data points falling under the Gaussian component to define year-length according to Equation 7. For example, 
globally a 10-year event was a temperature event once in every 1,880 days (10 years𝐴𝐴 ×188

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
 ) (for bimodal distri-

butions) in the historical period, but it will occur once in every 643, 355, 138, and 63 days under GWL 1.5, 2.0, 
3.0, and 4.0°C scenarios, as shown in the plot showing global results in Figure 9 (also in Figure 10), respectively. 
In other words, historical 10-year events will be 3.42-year, 1.89-year, 0.73-year and 0.34-year events under the 
future GWL 1.5, 2.0, 3.0, and 4.0°C scenarios, respectively. After calculating the frequency of extreme events 
using the temperature distributions in each grid cell individually for an IPCC land region, we averaged the results 
for the whole region for a single model. The global map with box plots in Figure 9 shows multi-model 10-year 
event frequencies of each region for SSP5-8.5 scenario under different GWL, where the boxes from light to dark 
shades of red represent 1.5, 2.0, 3.0, and 4.0°C. Results for 1-year, 5-year, and 20-year events are left out for 
simplicity and presented in Figures S13–S27 of Supporting Information S1. The length of a “year” in each region 
that is used for return period calculations, that is, the number of days in 10 years, is shown on the top right corner 
of each sub-plot in Figure 9.

As shown in Figure 9, return periods of extreme temperature events are getting shorter for all regions under all 
GWL scenarios as the median of each box is smaller than the historical period. The frequency of extreme events 
is higher in lower latitudes compared to higher latitudes. For example, the return periods are getting prominently 
shorter in regions around the equator -where a higher percentage of unimodal grid cells was observed- compared 
to the other regions. Furthermore, CMIP6 models show narrower boxes and shorter whiskers in lower latitudes 
compared to wider boxes and longer whiskers in higher latitudes for all analyzed GWL. Among all analyzed 
regions, the Caribbean (CAR) region has the highest increase in the frequency of a 10-year event, from once in 
1,910 days for the historical period to once in every 137.3, 35.32, 5.5, and 2.0 days under GWL 1.5, 2, 3, and 4°C, 
respectively. Regions around the equator (namely CAR, NSA, NWS, NES, SEA, SCA, SAM, MDG, WAF, and 
SEAF regions) are the top 10 regions with the highest increase in the frequency of extreme events under all GWL. 
The frequency of a temperature event equivalent to a 10-year event (historically once in every 1,610 days) in the 
Mediterranean (MED) region increases to once in 405.6, 215.7, 72.4, and 30.6 days in the future under GWL 

Figure 8.  Multi-model peak mean change of region temperature distributions sorted by cold Gaussian mean temperatures 
(blue dots) for SSP5-8.5 under global warming levels 3.0°C. Blue (red) dots and squares are the means for cold and hot peaks 
of the historical (future) period, respectively. They are plotted on the left y-axis. Green bars describe ΔT, the change in the 
difference between the means of cold and hot Gaussian components, and are plotted on the right y-axis. The colder regions 
have positive ΔT values and their absolute values are higher than the other regions. The upward shift in blue dots shows that 
the temperature of cold days is getting warmer and this increase is faster in polar regions compared to the rest of the world 
(see Figures S10–S12 in Supporting Information S1 for other warming levels).
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1.5, 2, 3, and 4°C, respectively. Within the European continent, the West&Central Europe (WCE) region has a 
higher increase in the frequency of extreme events compared to the Eastern Europe (EEU) and the North Eastern 
Europe (NEU) regions, where the latter two regions are among the regions with the least increase in extreme 
temperature event frequency. The smallest increase in the frequency of hot extremes is observed in the Western 
Antarctica (WAN) region, where the return periods of 10-year events will decrease from once in 1,790 days to 
once in 1,070.1, 827.6, 542.7 and 338.7 days under GWL 1.5, 2, 3, and 4°C, respectively. High latitude regions, 
such as WAN, NEU, EAN, NWN, ESB, GIC, RAR, SSA, TIB, and NEN regions are the 10 regions with the 
smallest decrease in return periods of extreme hot temperature events. Some of these regions are polar regions 
with positive ΔT values as shown in Figure 8. This will cause more days with warmer temperatures in the colder 
mode of these regions while having an increase in hot extremes.

4.  Summary and Discussion
Detection of extreme events is important to mitigate their impact on natural and anthropogenic systems. Future 
projections suggest that the mean and standard deviations of maximum surface temperature will increase. This 
change in the shape of maximum surface temperature distributions increases the intensity and frequency of 
extreme events in the future. However, not only the shift to warmer temperatures but also the modality of temper-
ature distribution affects the parameters of the entire distribution which is important to calculate the return peri-
ods as shown in this study.

GMM are a promising method for calculating the return periods of extreme events, and additionally determin-
ing the shape of the entire distribution for daily maximum temperature data. GMM can provide information on 
different climate features in different regions such as cold and hot periods, and their changes. We showed that 
bimodality is a prominent characteristic observed in multi-year daily near-surface maximum temperature data. 
To understand the underlying factors of this bimodal pattern, we analyzed temperature distributions from grid 
cells with distinct bimodality across different months, seasons and 6-month running windows. We observed 

Figure 9.  Multi-model median of event frequencies for 10-year hot temperature events compared to the 1985–2014 period under global warming levels 1.5, 2, 3 and 
4°C relative to 1850–1900 baseline for SSP5-8.5 scenario. The boxes from light to dark shades red represent 1.5, 2.0, 3.0, and 4.0°C, respectively. The orange lines 
inside the boxes show the CMIP6 multi-model median, and the boxes extend between the first quartile (Q1) to the third quartile (Q3) of the data, that is, inter-quartile 
range (IQR). The vertical lines, that is, whiskers, stretch out 1.5 IQR from the box. The circles represent the models outside of the interquartile range, that is, outliers. 
The length of the hot period used for return period calculations, that is, number of days in 10 years, is shown in the top right corner of each plot. The global return 
periods are shown on the left. The more outlier points in the global box plot are because of the differences between regional return periods (See Figures S13–S27 in 
Supporting Information S1 for other return periods).
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that the winter and summer seasons emerged as the primary contributors to the peaks observed in the bimodal 
distribution. In grid cells of different regions with distinct bimodal distributions, the transition from winter to 
summer occurs swiftly, leading to a more distinct separation of the temperature modes. Consequently, the distri-
butions during transitional seasons, such as spring and autumn, appeared to be wider (covering a broader value 
range) compared to the more distinct distributions observed during winter and summer (covering a very small 
value range). Furthermore, analyses of 6-month running windows also showed an agglomeration of similar 
temperatures around winter (summer) months from November (May) to April (October) that creates the peaks 
in the bimodal distribution (See Figure S2 in Supporting Information S1 for the distributions of seasons and 
months.). Here, the advantage of GMM becomes evident. For analyses to uncover the origins of bimodality, 
we had to select certain seasons or months. Seasonal periods are commonly used in previous studies to analyze 
extreme events (Prodhomme et al., 2022; Qian & Zhang, 2015, 2019; Walt & Fitchett, 2021). For example, Qian 
and Zhang (2015) found that the seasonality is weakening in the northern high-latitude regions and East Asia 

Figure 10.  Global multi-model median of event frequencies for 10-year temperature events under 1.5, 2, 3 and 4°C warming 
levels for (a) SSP1-2.6, (b) SSP2-4.5, (c) SSP3-7.0 and (d) SSP5-8.5 scenarios. The orange lines inside the boxes show the 
CMIP6 multi-model median, and the boxes extend between the first quartile (Q1) to the third quartile (Q3) of the data, that 
is, inter-quartile range (IQR). The vertical lines, that is, whiskers, stretch out 1.5 IQR from the box. The circles represent the 
models outside of the interquartile range, that is, outliers. The length of the hot period used for return period calculations, that 
is, number of days in 10 years, is shown in the top right corner of each plot. The number of data sets is given in parenthesizes. 
All plots show similar results for different Shared Socioeconomic Pathway scenarios as the global warming levels are 
scenario-independent.
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while strengthening in the Mediterranean. This can also be seen in Figure 8, as the northern regions and east/
central Asia regions have converging peaks which means that these regions will have a distribution closer to a 
unimodal distribution. Meanwhile, diverging peaks in MED will introduce more distinct cold and warm periods. 
However, onsets and length of seasons are predicted to change with climate change (Wang et al., 2021). There-
fore, the definition of current seasonal periods or months will not necessarily be valid for future climates. One 
can utilize GMM to determine the hot Gaussian component of a region to define the length of the analysis period 
instead of using fixed seasonal definitions. Moreover, the bimodality analysis also shows how peaks are changing 
in the future, effectively changing the expected climate of the area.

ETCCDI indices are commonly used in extreme event analysis as they offer a simple and concise way to define 
extremes (Vogel, Hauser, & Seneviratne, 2020; X. Zhang et al., 2011; Zhao et al., 2021). ETCCDI indices use 
block maxima methods such as TXx (Monthly maximum value of daily max temperature), TNx (Monthly maxi-
mum value of daily min temperature) or percentile-over-threshold (POT) methods such as TX90p (Percentage 
of time when daily max temperature >90th percentile), TN90p (Percentage of time when daily min temperature 
<90th percentile) (X. Zhang et al., 2011). These exceedances can be modeled with GEV distributions or general-
ized Pareto distribution. However, GEV distributions are a better fit for longer block sizes than for shorter blocks 
like daily data. If the available data set is short, the longer block sizes will produce fewer data which can increase 
the variability in parameter estimation (Huang et al., 2016; Wang et al., 2016). For example, if there is more than 
one extremely hot day in the block (month, season or year), for example, several consecutive days, block maxima 
methods consider only the hottest, and hence only 1 day in a block, while GMM considers all days hotter than the 
threshold. Assuming that a heat wave lasts usually days to a few weeks, a substantial number of hot days might 
not be seen by block maxima methods as long as they fall into the same block. Percentile-over-threshold methods 
together with count-day indices such as WSDI (Warm spell duration indicator) are useful for analyzing the dura-
tions of events. However, the derivation of percentiles is strongly affected by the choice of the base period, a right 
shift in the distribution will result in a higher threshold and erroneously reduce the frequency of extreme events 
(Yosef et al., 2021). Seasonality in temperature extremes adds complexity to the process of selecting percentiles 
to define extreme temperatures (Huang et al., 2016). The advantage of GMM is that the model analyses the distri-
bution of temperatures without any previous assumption and learns the hot periods from the data. Also, GMM 
uses all available data in contrast to block maxima methods, which makes it useful if the available data is short 
or bimodality exists (Ben Alaya et al., 2020; Knoben et al., 2019; Sardeshmukh et al., 2015; Wang et al., 2016).

However, since the Gaussian components of GMM are not bounded, it is important to only calculate the return 
periods of extreme events equal to or less than the study period when applying GMM. Additionally, we only 
used grid cells which have the same number of Gaussian components in their temperature distribution, that is, 
unimodal or bimodal distribution, both for the historical and future periods. Grid cells with changing distribution 
shapes, for example, transforming from a bimodal distribution in the historical period to a unimodal distribution 
in the future or vice versa, were found in less than 10% of the grid cell for each GWL as shown in Table 2, and 
were disregarded in the analysis as calculating the temperature thresholds becomes problematic with the abrupt 
change in means and standard deviations.

For the first time, the IPCC AR6 Report includes a new dedicated chapter on weather and climate extreme 
events (IPCC, 2021). This emphasizes the importance of robust methods of extreme event detection to be able 
to mitigate the impact of such events. IPCC AR6 reports that the return periods of 10-year events will increase 
around the world, with the highest changes projected to happen in some mid-latitude and semi-arid regions. Our 
findings are in agreement with these results. Furthermore, IPCC AR6 projects the warming rate in mid-latitudes 
to be higher than the average global warming rate. GMM might explain why these regions are projected to have 
higher warming, as we observed that grid cells in these regions predominantly follow a bimodal distribution in 
the historical (future) period as shown in Figure 3 (5). Furthermore, these regions have diverging peaks as shown 
in Figure  8, that is, mode for warm temperatures moving toward warmer temperatures faster than the mode 
for colder temperatures. These diverging bimodal peaks will create distinct Gaussian components in the entire 
multi-year daily maximum temperature, which in turn results in a higher increase in extremes in these regions. 
For example, almost all grid cells in the Mediterranean region follow a bimodal distribution, and the  peaks 
of bimodal distribution will diverge in the future as shown in Figure 7. Mediterranean region is identified as 
one of the most responsive regions to climate change and a hot spot of climate extremes (Feng et  al.,  2022; 
IPCC, 2021). Similarly, Arctic regions are projected to have the highest increase in temperature of the coldest 
days (IPCC, 2021; C. Li et al., 2021). Our results are also consistent with these increases as shown in Figure 7, 
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where diverging bimodal peaks in mid-latitude regions will shift the mode for warm temperatures, that is, hot 
Gaussian, to the higher temperature ranges. This shift in the Gaussian components of temperature distribution 
will cause those land regions to have warmer temperature extremes and can explain the higher average warming 
rate than the global average. Likewise, converging peaks in polar regions as shown in Figure 7 will move the cold 
Gaussian part toward warmer temperatures, thereby introducing higher warming on the coldest days.

According to our analyses, 10-year events will increase almost 3-fold under GWL 1.5°C compared to the histor-
ical period for all SSP scenarios as shown in Figure 10 when looking at the whole globe. This means a temper-
ature event that occurs once in every 10 years (1,880 days) will be expected to occur 2.9 times in every 10 years 
under GWL 1.5°C. 10-year extreme temperature events will become even more frequent globally under GWL 
2, 3, and 4°C; 5.3, 13.6, and 29.5 times every 10 years, respectively. In other words, current 10-year events will 
be 3.42-, 1.89-, 0.73-, and 0.34-year events in the future under GWL 1.5, 2, 3, and 4°C, respectively. Our results 
show a higher increase compared to the IPCC AR6 report, where the frequency of 10-year events is projected 
to increase approximately 3, 4, 5.5 and 9-fold under GWL 1.5, 2, 3, and 4°C, respectively (IPCC, 2021), using a 
block maxima method for determining the extreme events. The higher increase in our method compared to IPCC 
AR6 can most likely be explained by the fact that we used GMM to model the distribution of temperatures and 
GMM considers all days hotter than the threshold, while the block maxima method only uses the maximum of a 
block. Another important point deduced from the analyses of different regions for several CMIP6 models is that 
the ensemble of analyzed CMIP6 models shows coherent results for regions as shown in the regional box plots 
in Figure 9. Most of the individual model results fall within the first and third quartile, and only a few models 
fall outside this range. The higher number of outlier points in the global box plot in Figure 9, and also shown 
for different SSP scenarios in Figure 10, are caused by the differences between regional return periods. All SSP 
scenarios show similar results with each other as the return periods are calculated for GWL which have the same 
forcing on climate.

Return periods of extreme events become shorter in every region, which means that the frequency of extreme 
temperature events increases. This will become larger with increasing GWL. Some climate models have already 
exceeded GWL 1.5°C with respect to the 1850–1900 period as shown in Figure 1. This fact further emphasizes 
the importance of robust methods to detect extreme events. Even though there is a delay in taking the necessary 
precautions to reduce the speed of the warming of the climate, as time goes by, tomorrow's projections become 
today's reality.

Data Availability Statement
The recipes to extract regional data from CMIP6 models using ESMValTool, python scripts to analyse extreme 
events and to produce all figures of this manuscript are accessible in the following GitHub repository: https://
github.com/EyringMLClimateGroup/pacal23jgr_GaussianMixtureModels_Extremes. The regional output files 
amount to hundreds of GB. The latest release of ESMValTool is publicly at https://github.com/ESMValGroup/
ESMValTool (Andela et al., 2022).
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