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The Inversion of Sampling Solved Algebraically

Jens V. Fischer a,b · Rudolf L. Stens b

Abstract

We show that Shannon’s reconstruction formula can be written as a ∗ (b · c) = c = (a ∗ b) · c with
tempered distributions a, b, c ∈ S′(Rn) where ∗ is convolution, · is multiplication, c is the function being
sampled and restored after sampling, b· is sampling and a∗ its inverse. The requirement a ∗ b = 1 which
describes a smooth partition of unity where b = III is the Dirac comb implies that a is satisfied by unitary
functions introduced by Lighthill (1958). They form convolution inverses of the Dirac comb. Choosing
a = sinc yields Shannon’s reconstruction formula where the requirement a ∗ b = 1 is met approximately
and cannot be exact because sinc is not integrable. In contrast, unitary functions satisfy this requirement
exactly and stand for the set of functions which solve the problem of inverse sampling algebraically.

Keywords: generalized sampling operators, sampling, interpolation, Dirac comb, Lighthill unitary functions, smooth partitions
of unity
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1 Introduction

Let t ∈ Rn, k ∈ Zn, 1≤ n<∞ and 1/W = (1/W1, . . . , 1/Wn) ∈ Rn be such that Wj > 0 for 1≤ j ≤ n. The operation of mapping
continuous variables t 7→ k/W , functions f (t) 7→ f (k/W ) or operations T { f (t)} 7→ T { f (k/W )} on functions to sequences of
real or complex numbers is commonly known as discretization or sampling and it raises the question of whether such sequences
represent their original variables, functions or operations one-to-one, i.e., whether continuous entities can be reconstructed from
samples, either exactly or approximately. In order to reconstruct continuous functions one usually considers (Tamberg [1] and
Stens [2], p.130) the generalized sampling series

(SϕW f )(t) :=
∑

k∈Zn

f
�

k
W

�

ϕ(W t − k) (1)

where f must be W -band-limited (or W -band-localized) in some sense and ϕ must satisfy the condition
∑

k∈Zn

|ϕ(u− k)| <∞ u ∈ Rn (2)

which guarantees that the operator SϕW : f 7→ SϕW f is well-defined. Here, the absolute convergence is understood being uniform
on compact intervals of Rn. Obviously, ϕ(t) = sinc(t) yields the classical (Whittaker-Kotel’nikov-)Shannon operator, where
sinc(0) := 1 and sinc(t) := sin(πt)/(πt) for t 6= 0, for which it is known that (2) is not satisfied because sinc(t) 6∈ L1(Rn),
e.g. Butzer and Nessel [3], p.190. For this reason, many suggestions have already been made to replace sinc functions in (1)
with the aim of achieving a perfect reconstruction of the sampled function f (t). For example, the idea of replacing sinc(t) by
sinc2(t) can already be found in Theis (1919) [4] and further suggestions can be found in a series of systematic studies on the
reversibility of sampling (1) by P. L. Butzer, R. L. Stens and their school since the 1970ies [1].

In this study, we solve the problem of inverse sampling algebraically. This is a completely new approach, it includes (i) the
Whittaker-Kotel’nikov-Shannon sampling theorem (using sinc-functions), (ii) Campbell’s generalized sampling theorem, (using
sinc-functions and an additional convergence factor) [5] as well as (iii) Theis’ approach (using sinc-functions and another sinc
as convergence factor) as special cases. To see this, we simplify (1) and denote it as

(SϕW f )(t) = ϕ 1
W
(t) ∗

∞
∑

k=−∞

f
�

k
W

�

δ(W t − k) = ϕ 1
W
(t) ∗ III 1

W
(t) · f (t) = a(t) ∗ b(t) · c(t) (3)

the sequence of operations a∗ and b · applied to c. First sampling b · is applied to c and then a ∗ is applied to b ·c which neutralizes
sampling. Here, δ denotes the Dirac delta, III 1

W
is the Dirac comb (deltas placed at integral multiples of 1

W ) and ϕ 1
W
(t) := ϕ(W t)
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is the respective interpolation kernel adapted to the sampling rate 1
W . Ideally, this kernel is a rapidly decreasing function (in S,

the Schwartz space) in order to force (1) to converge. In our solution, "unitary functions" ϕ ∈ S will be (i) interpolation kernel
and (ii) convergence factor (forcing convergence), simultaneously. The property ϕ ∈ S replaces thereby condition (2). The sinc
function is known to decrease in the order of 1/|x | which is too slow to guarantee the series convergence [1], i.e., sinc 6∈ S. One
may recall, δ and III are no functions but operators on functions (distributions). For this reason, we choose generalized functions
theory (distribution theory) as our setting. We have a look at operator domains and images in distribution theory which is well
suited for the purposes of treating operations on functions. The notation b(t)≡ III 1

W
(t) in (3) is meant symbolically. It does not

mean that values b(t) ∈ C exist for every t ∈ Rn. In contrast, a(t) and c(t) are ordinary (infinitely differentiable) functions, their
values exist for all t ∈ Rn. We briefly introduce to distribution theory, have a look at the preliminaries in Section 2 and present
our main result in Section 3.

2 Preliminaries

A disadvantage in conventional function theory is the fact that the function that is constantly 1, which is neutral with respect
to multiplication, and the Dirac δ, which is neutral with respect to convolution, are no integrable functions and hence their
Fourier transforms do not exist in the usual sense. The latter is not even a function in the conventional sense—but an operator
applied to functions. Distribution theory [6, 7, 8], the theory of generalized functions [9, 10], overcomes these difficulties.
Here, functions represent operators but operators are not necessarily represented by functions. In this theory, every (ordinary or
generalized) function has a derivative, anti-derivative and a Fourier transform. In particular, 1 and δ map onto each other via
the Fourier transform (Figure 1). Distributions (generalized functions) belong to spaces which may not even be normable [11]
(Banach spaces) nor metrizible [12]. The merit of Laurent Schwartz (Lützen, [13], p.149) is that the theory of duality between
Banach spaces has been extended to a theory of duality on Fréchet spaces (or their inductive limits) and their duals, known as
(DF)-spaces [12]. This approach overcomes the difficulty that δ cannot be distinguished (e.g. Rudin [11] p.33) from the zero
function in ordinary function theory (Lebesgue spaces) where one identifies functions with one another if they coincide (a.e.)
almost everywhere (e.g. [3], p.169). In distribution theory, the Fourier transform F is a structure-preserving isometry between
topological vector spaces, not necessarily a mapping between Banach spaces. The value 〈 f ,ϕ〉 ∈ C, called the application of f
to ϕ, does always exist due to the fact that distributions f ∈D′ belong to the dual space (continuous linear functionals) of D,
the space of compactly supported infinitely differentiable functions ϕ ∈ C∞. The Dirac delta δ is defined to be the operation
〈δ,ϕ〉 := ϕ(0) and for ordinary functions one defines 〈 f ,ϕ〉 :=

∫

Rn f (t)ϕ(t) d tn to be the application of f to ϕ. We may think
of D′ as the transposed space of D. This older term for the dual space (coined by Bourbaki) is due to Schauder (Narici and
Beckenstein [14] , p.228). In this terminology, δ ∈ E ′(Rn) is a column and 1 ∈ E(Rn) a row vector. Applied to one another they
yield 〈δ, 1〉= 1, unity. Here, E ≡ C∞ is Schwartz’ notation for the space of infinitely differentiable functions and E ′, its dual, is
the space of compactly supported (tempered) distributions. Note that 〈 f , 1〉 =

∫

Rn f (t) d tn such that 〈δ, 1〉, the "integral" of δ, is
unity. In general, f ∈D′ applied to 1 determines its generalized integral if it exists. For that, 1 must belong to the dual space of
the operator f . Occasionally, 〈·, ·〉 is understood as generalized inner product (e.g. Vladimirov [15], 2002, p.114). In distribution
theory, D′ is the largest and E ′ the smallest space of distributions (with respect to growth conditions at infinity) and, vice versa,
their duals D and E are the smallest and largest space of (ordinary, infinitely differentiable) functions (with respect to growth
conditions at infinity), respectively. All ordinary functions which are not infinitely differentiable in the ordinary functions sense,
i.e., all functions which are not themselves "test functions", are considered being operators on functions (distributions) instead
of being functions. Such operators become themselves infinitely differentiable (in the generalized functions sense) because
differentiation can always be rolled off to (infinitely differentiable) functions. One defines 〈 f ′,ϕ〉 := −〈 f ,ϕ′〉 because this holds
for ordinary f applied to test functions ϕ. The space S ′ of tempered distributions is E ′ ⊂ S ′ ⊂D′ between E ′ and D′, it implies
D ⊂ S ⊂ E . In this study, we stay (for convenience) in S ′, the space of tempered distributions. This can be done for three reasons:
(i) the Dirac comb III ∈ S ′ is a tempered distribution (itself and all its derivatives are bounded by a constant function), (ii) we
consider sampling on functions which are at most of polynomial growth at infinity (hence, we exclude exponential growth at
infinity) and (iii) the Fourier transform is an automorphism in S ′, i.e., F(S ′) = S ′, which is convenient. The space S ′ together
with its (most important) subspaces is depicted in Figure 1 for the reader’s convenience.

2.1 Schwartz Space and Tempered Distributions

In an ideal theory, one wishes that (i) any function can be multiplied by any function, (ii) any function can be convolved
with any function and (iii) any function has a derivative, anti-derivative and a Fourier transform. Such an ideal setting is the
Schwartz space S, defined by Laurent Schwartz [16]. It is an algebra with respect to multiplication and an algebra with respect
to convolution (e.g. Larcher [17], p.8), given by the complete metrizable locally convex topological vector space (Fréchet space)

S(Rn) := {ϕ ∈ C∞(Rn) | sup
x∈Rn
|xβDαϕ(x)|<∞}

of infinitely differentiable functions (allowing arbitrary multiplication) which decrease rapidly at ± infinity (allowing arbitrary
convolution) together with all their derivatives (allowing arbitrary differentiation and integration). Here, α,β ∈ Nn are
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multi-indices, N the natural numbers including zero, Dα = D1
α1 . . . Dn

αn the partial differential operator, Dk := ∂ /∂ xk and
xβ = x1

β1 . . . xn
βn . The symbol |α| = α1 + · · ·+αn is the order of the partial differential operator. An order-zero partial differential

operator coincides with the identity operator. We say a sequence (ϕ)k∈N of elements in S tends to zero as k tends to infinity if

lim
k→0

sup
x∈Rn
| xβDαϕk(x) | = 0

for all multi-indices α,β ∈ Nn and write ϕk → 0 in S, briefly. More generally, ϕk → ϕ ∈ S if and only if (ϕk −ϕ)→ 0 ∈ S, see
e.g, Gasquet & Witomski [18], 1999, p.173. A generalization of the double-algebra structure of S can be found in its dual space
(continuous linear functionals), the space of tempered distributions. Here, f (ϕ)≡ 〈 f ,ϕ〉 ∈ C denotes the application of f to ϕ
which is a complex number. For any space X ′ ⊂ D′ of distributions, one says that ( f )k converges to f ∈ X ′ if 〈 fk,ϕ〉→ 〈 f ,ϕ〉
converges in C for all ϕ ∈ X .

2.2 Spaces of Multipliers and Convolutors

In contrast to S which has a double-algebra structure, S ′ has a double-module structure. It is a module with respect to its
subspace OM, an associative commutative algebra with respect to multiplication, and it is a module with respect to its subspace
OC
′ , an associative commutative algebra with respect to convolution (e.g. Petersen [19], 1983, p.91). The two "kernel spaces" in

S ′, see Figure 1, are best described (cf. Dijk [20], p.87, Bargetz & Ortner [21]) by

OM := {α ∈ S ′ | α · g ∈ S ′ ∀g ∈ S ′} and OC
′ := { f ∈ S ′ | f ∗ g ∈ S ′ ∀g ∈ S ′}

following their module property in S ′. Originally, OM and OC
′ were defined by Schwartz [6, 7] as the space of infinitely

differentiable functions which do not grow faster than polynomials at infinity, together with all their derivatives, and the space
of rapidly decreasing tempered distributions, respectively. O stands for operators, M for multiplication, C for convolution,
the prime in OC

′ reminds to the fact that it is a space of generalized functions (distributions), i.e., operators which are not
necessarily represented by functions and, in contrast to that, no prime in OM means it is a space of (infinitely differentiable)
ordinary functions. The Fourier transform is a one-to-one mapping F(OC

′) = OM and F(OM) = OC
′ between multipliers OM

and convolutors OC
′ , e.g.Petersen [19]. The double-module structure means α · g ∈ S ′ if α ∈ OM and f ∗ g ∈ S ′ if f ∈ OC

′ for
arbitrary g ∈ S ′. Both products α · g = g ·α and f ∗ g = g ∗ f are commutative but not necessarily associative

(α · g) · β 6= α · (g · β) (4)

( f ∗ g) ∗ h 6= f ∗ (g ∗ h) (5)

in a sequence of products where α,β ∈ OM and f , h ∈ OC
′ if g ∈ S ′ is arbitrary. Counterexamples are commonly known (e.g.

Petersen [19], p.54). The products (4) and (5) exist if at most one element is arbitrary (g ∈ S ′). Furthermore, (4) and (5) are
associative if g ∈OM and OC

′ respectively, because OM and OC
′ are commutative associative algebras, mapped one-to-one onto

each other via the exchange theorem (e.g. Petersen [19], p.93, Horváth [22], p.424, Edwards [23], p.388). It states that

F(α · g) = Fα ∗F g (6)

F( f ∗ g) = F f ·F g (7)

for α ∈ OM, f ∈ OC
′ and arbitrary g ∈ S ′. In particular, 1 ∈ OM and the Dirac δ ∈ OC

′ , the neutral elements with respect
to multiplication and convolution, are mapped F1 = δ and Fδ = 1 one-to-one onto each other via the Fourier transform F
given by (Fϕ)(y) :=

∫

Rn ϕ(x) e
−2πi x ·y d xn for ϕ ∈ S and 〈F f ,ϕ〉 := 〈 f ,Fϕ〉 for tempered distributions f ∈ S ′. It reduces to

〈 f̂ ,ϕ〉=
∫

Rn f (x)ϕ̂(x) d xn if f is an ordinary function. We write f̂ ≡ F f and ϕ̂ ≡ Fϕ, briefly.

2.3 Algebraic Structure of the Space of Tempered Distributions

The terms "time" and "frequency" may be misleading, they actually stand for any variable x = y−1 ∈ Rn and its reciprocal
y = x−1 ∈ Rn which are connected to one another via the Fourier transform in x · y = x1 y1 + · · ·+ xn yn = 1. So, in order to use a
more neutral terminology we will use the terms "original domain" for f ∈ S ′(Rn) on real axes t ∈ Rn and "reciprocal domain" for
f̂ ∈ S ′(Rn) on reverse real axes t−1, i.e., their f̂ ≡ F f Fourier transforms. The "reciprocal space" (e.g. Koster [24], eq.(13)) can
be traced back at least to Born, e.g. [25], p.69. Note that the Fourier transform (here) is defined such that F1= δ and Fδ = 1,
i.e., the neutral elements with respect to multiplication and convolution map one-to-one onto each other (Figure 1). One may
recall, this definition of the Fourier transform is the only one among a variety of different Fourier transform definitions to turn F
into both an isometry and an algebra homomorphism (Folland [26], p.5), simultaneously, depicted red versus blue in Figure 1.

The details used to create Figure 1 go back to (i) Schwartz’ diagram of continuous space embeddings [16], p.420 and
(ii) commonly known one-to-one mappings [27] between subspaces F(S) = S, F(D) = Z, F(E ′) = PW , F(OC

′) = OM,
F(S ′) = S ′ within the space of tempered distributions S ′ via the Fourier transform F where (iii) F(OC

′) = OM is an algebra
homomorphism, F(E ′) = PW a subalgebra homomorphism, F(D) = Z another subalgebra homomorphism and F(S) = S is
a double-algebra automorphism (indicated in violet color). Furthermore, {Ω, Ω̂} is a pole of smoothness, {δ, 1} and {1,δ} are
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Figure 1: Algebraic structure of tempered distributions.

poles of semi-discreteness (time or band-limitness) and {III, ÎII} is a pole of discreteness in S ′, [28]. However, all four {Ω,δ, 1, III}
represent unity. Note that III ≡ ÎII is its own Fourier transform and, in contrast to that, there is no (non-trivial) unitary function
Ω such that Ω ≡ Ω̂ [28] due to the fact that being entire (holomorphic everywhere in the complex plane) and being finite
(compactly supported) are mutually exclusive function properties E ′ ∩ PW = {0} = D ∩ Z, e.g. Zemanian [27], p.197. The
Paley-Wiener space (band-limited functions) is given by the Fourier transform PW := F(E ′) of compactly supported (tempered)
distributions, e.g. Berenstein & Gay [29], p.82.

2.4 Translation, Discretization, Periodization, Finitization and Entirization

The translation operator τa : S ′→ S ′, f 7→ τa f is defined as τa f (t) := f (t−a) for ordinary functions, a ∈ Rn, and for generalized
functions one defines 〈τa f ,ϕ〉 := 〈 f ,τ−aϕ〉 where f ∈ X ′ ⊂D′ is a distribution and ϕ ∈ X ⊃D its test functions. For translations
of the Dirac delta one briefly writes δa := τaδ or δ(t − a) although it is no ordinary function. A property that we need below is
the following, e.g. Petersen [19], p.90.

Lemma 2.1. Let a ∈ Rn, f ∈OC
′ and g ∈ S ′ then τa( f ∗ g) = (τa f ) ∗ g = f ∗ (τa g).

These products exist because f ∈ OC
′ is a rapidly decreasing (summable) distribution (e.g. Dijk [20], p.87). In particular,

because δ ∈ E ′ ⊂OC
′ is compactly supported and ϕ ∈ S ′ may be arbitrary we obtain ϕ(t − a) = δ ∗ϕ(t − a) = ϕ(t) ∗δ(t − a).

More generally, using the linearity of the translation operator
∑

k∈Zn

f (k)ϕ(t − k) = ϕ(t) ∗
∑

k∈Zn

f (k)δ(t − k) (8)

which will be needed below. For f ∈ S ′, one may define fa := τa f such that the following rule holds.

Remark 1 (Translation). Obviously, translation may be defined as the convolution-type operator τa f := δa ∗ f = fa.

Remark 2 (Differentiation). Similarly, differentiation may be defined as the convolution-type operator ( d
d t )

k f := δ(k) ∗ f = f (k).

The idea to interpret f ∈ S ′ as (convolution-type or multiplication-type) operator will come across us many more times. For
example, it may be used to define sampling (discretization) or periodic replication (periodization) applied to a function [30].
Useful is the definition of a Dirac comb IIIW :=

∑

k∈Zn δkW which is a tempered distribution (e.g. Zemanian [27], p.106). We write
III for W = [1, . . . , 1] ∈ Rn in short. Now, sampling is the following multiplication-type operator [30]. It connects the Fourier
transform, Fourier series and the Discrete Fourier Transform (DFT) to one another [31], in the common setting of S ′. This
definition corresponds (in S ′) to what is usually understood (e.g. Butzer et al. [32], eq.(3.7), p.11) as a sampled function.

Definition 2.1 (Discretization). For functions f ∈OM one defines an operation ⊥⊥⊥ : OM→ S ′, f 7→ ⊥⊥⊥ f given by

⊥⊥⊥ 1
W

f := III 1
W
· f =

∑

k∈Zn

f
�

k
W

�

δ

�

t −
k
W

�

:=
∑

k∈Zn

f (k/W ) τk/Wδ

called sampling or discretization. The result ⊥⊥⊥ 1
W

f ∈ S ′ is a discrete function (distribution), sampled at multiples of 1
W .

Definition 2.2 (Periodization). For distributions g ∈OC
′ one defines an operation 444 : OC

′→ S ′, g 7→ 444g given by

444W g := IIIW ∗ g =
∑

k∈Zn

g(t − kW ) :=
∑

k∈Zn

τkW g

called periodic continuation or periodization. The result 444W f ∈ S ′ is a periodic function or distribution of period W .

These definitions are well-defined because the products III 1
W
· f and IIIW ∗ g exist for f ∈OM and g ∈OC

′ according to the
exchange theorem, F(OM) =OC

′ and F(OC
′) =OM, in S ′ and they are Fourier transforms of one another in the sense that

F(⊥⊥⊥ 1
W

f ) = F(III 1
W
· f ) =W IIIW ∗ g =W 444W g (9)

F(444W g) = F(IIIW ∗ g) = 1
W

III 1
W
· f = 1

W
⊥⊥⊥ 1

W
f (10)
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where the factors in front, W and 1/W , are volume balancing. F(III 1
W
) =W IIIW and F f = g. In particular, F(III) = III is the

Fourier transform of itself if W ≡ 1. In other words, (9) and (10) state that discrete functions and periodic functions are Fourier
transforms of one another. Now, let W > 0 be some non-zero and (without restriction of generality) positive real number and
Ω ∈D, hence, an ordinary (infinitely differentiable) compactly supported function such that

444WΩ=
∞
∑

k=−∞

Ω(t − kW ) = 1 (11)

then Ω is called unitary function, denoted ΩW with respect to its parameter W , according to Lighthill (1958), [10], p.61, also
Zemanian [27], p.315, Campbell [5], p.635, Walter [33], p.149, King [62], p.509. Unitary functions (with respect to W > 0) are
those which periodized (with respect to W > 0) yield the function that is constantly 1 (Figure 2). The set of functions Ω satisfying
(11) form a subspace UW of D (Zemanian [27], p.315). Furthermore, Û 1

W
:= F(UW ) is a subspace of Z := F(D). Now, let us

use unitary functions ΩW and their Fourier transforms Ω̂ 1
W

to define operations which have the potential to neutralize (reverse)
discretizations (sampling) and periodizations (replicating), respectively.

Definition 2.3 (Finitization). For distributions f ∈ S ′ one defines an operation uW : S ′→ E ′, f 7→ uW f given by

uW f := ΩW · f (12)

called truncation or finitization. The result uW f ∈ S ′ is a finite (compactly supported) function or distribution.

Definition 2.4 (Entirization). For distributions g ∈ S ′ one defines an operation û 1
W

: S ′→ PW , g 7→ û 1
W

g given by

û 1
W

g := Ω̂ 1
W
∗ g (13)

called band-truncation or entirization. The result û 1
W

g ∈ S ′ is an entire (Paley-Wiener) function.

In this way, E ′W := { f ∈ E ′ | ∃0<W <∞ : uW f = f } and PW 1
W

:= F(E ′W ) = {α ∈ PW | ∃0<W <∞ : uW α̂= α̂ } denote
the spaces of W -time-limited distributions and W -band-limited (Paley-Wiener) functions (Figure 1), respectively. The factor
1/W limits the resolution in α ∈ PW 1

W
(e.g. [40], Appendix B.2), i.e., no detail can be finer than 1/W in α ∈ PW 1

W
. Finitization

(truncation) and entirization (band-truncation) are particular cases of regularization (convolution with a Schwartz function)
and localization (multiplication with a Schwartz function), respectively. It has recently been found that regular functions and
local functions are Fourier transforms of one another [34]. They stand for the insight that infinite differentiability and finite
summability, given by PW ⊂OM and E ′ ⊂OC

′ , are Fourier transforms of one another. The term finite reminds to the fact that uW f
is compactly supported, thus, integrations or summations over it will be finite. This property allows to restore functions exactly
rather than approximately. The term entire reminds to the fact that û 1

W
g is a Paley-Wiener function which is, in particular, entire

(holomorphic everywhere in the complex plane). As above, it is clear that (12) and (13) are Fourier transforms of one another if
F f = g. For unitary functions one has F ΩW =W Ω̂ 1

W
and F Ω̂ 1

W
= 1

W ΩW in contrast to F IIIW =
1
W III 1

W
and F III 1

W
=W IIIW. In

particular, F Ω = Ω̂ and F Ω̂ = Ω for W ≡ 1 is an important special case. Recall Ω 6≡ Ω̂ holds for all unitary functions [28] in
contrast to III ≡ ÎII. The usefulness of functions satisfying (11) is commonly known in sampling theory, e.g. Higgins & Stens [2],
p.137. Note that in distribution theory the usual summability condition (e.g. (6.3.5) in Higgins & Stens [2], p.137) is elegantly
replaced by the condition Ω ∈D which guarantees summability. We will now see that the operational inverse of sampling III 1

W
· is

the operation Ω̂ 1
W
∗ applied to discrete (sampled) functions f ∈ S ′.

2.5 Argumentation in Distribution Spaces

An argumentation via norms ‖·‖ is not applicable in distribution theory, nor is it required to show that 〈 f ,ϕ〉 exist, it is guaranteed
by the fact that f ∈ X ′ and ϕ ∈ X belong to dual spaces. Furthermore it is not required to show that sequences of functions or
distributions converge within the spaces to which they belong, this is guaranteed by the sequential completeness of Fréchet spaces
and the Banach-Steinhaus theorem (e.g. Friedlander [35], p.15, Dijk [20], p.96), respectively. (i) An equality f = g holds in S ′ if
〈 f ,ϕ〉 = 〈g,ϕ〉 for all test functions ϕ ∈ S, e.g. Gasquet & Witomski [18], p.290. (ii) Once, such equalities have been shown (e.g.
F1= δ and Fδ = 1) one may use and combine them without the necessity to show them again on test functions. This is what
we do in this study. (iii) As elements in S ′ represent operations on functions, it is required that the image of an operator applied
first (e.g. sampling) is in the domain of an operator applied next (e.g. interpolation). For that it is convenient to have, on one
hand, operator definitions (Section 2.4) and, on the other, (continuous) space embeddings (Figure 1) in mind. (iv) All elements
in S ′ and, hence, all operations in S ′ expressed by its elements have a Fourier transform. This is due to F(S) = S and F(S ′) = S ′

which are automorphisms in S ′. Any proof in S ′ may therefore alternatively be given in reciprocal (Fourier) domain (blue versus
red in Figure 1). Their link is the exchange theorem, the double-algebra structure of S, the algebra homomorphism between OM

and OC
′ as well as the double-module structure of S ′ around these two algebraic kernels (Section 2.3).
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3 Main Result

3.1 Inversion of Sampling

The following theorem generalizes (i) the Whittaker-Kotel’nikov-Shannon Sampling theorem (where ϕ ≡ sinc), (ii) Campbell’s
sampling theorem (where ϕ ≡ θ · sinc includes an additional convergence factor θ) and (iii) Theis’ sampling theorem (where
ϕ ≡ sinc · sinc = sinc2, i.e., sinc plays the role of its own convergence factor, cf. Boyd [36], Table 2). It is furthermore consistent
to several other already known results (e.g. [2, 32]) obtained by P. L. Butzer, R. L. Stens and their school on generalized sampling
series in ordinary functions theory such as convergence factors or growing conditions imposed on ϕ, the interpolation kernel.

Theorem 3.1 (Inversion of Sampling). Let f
�

k
W

�

be the samples of a function f : Rn→ C on real axes t ∈ Rn, k ∈ Zn and W ∈ Rn

where W = (W1, . . . , Wn) are non-zero and (without restriction of generality) positive Wk > 0, 1≤ k ≤ n, then

(SϕW f )(t) :=
∑

k∈Zn

f (tk)ϕ(t − tk) where tk = k/W (14)

is an operation that restores f from its samples exactly, SϕW f ≡ f , if and only if (14) may be written (applied from left to right) as

a ∗ (b · c) = c = (a ∗ b) · c where a, b, c ∈ S ′(Rn) (15)

and c ≡ f ∈ PW 1
W
(Rn) is a Paley-Wiener function, b ≡ III 1

W
∈ S ′ the Dirac comb and a ≡ ϕ ∈ Û 1

W
(Rn) an entire unitary function.

In terms of operations, b· is sampling, a∗ its operational inverse and a ∗ b = 1 denotes a smooth partition of unity.

Proof. Due to δ ∈ E ′ ⊂OC
′ , Lemma 2.1 and the linearity of the translation operator τ we may formally write

(SϕW f )(t) :=
∑

k∈Zn

f (tk)ϕ(t − tk) = ϕ(W t) ∗
∑

k∈Zn

f (tk)δ(t − tk) = ϕ 1
W
(t) ∗ [ III 1

W
(t) · f (t) ] = ϕ 1

W
∗ III 1

W
· f (t)

where ϕ 1
W
(t) := ϕ(W t) and the sequence of operations applied to f must not be changed. (i) We now assume SϕW f ≡ f in (14)

and show (15). The equation f = ϕ 1
W
∗ III 1

W
· f for all applicable f ∈ S ′ implies ϕ 1

W
∗ III 1

W
= 1. But this means that ϕ 1

W
∈ Û 1

W
(Rn)

is an entire unitary function according to its definition. It proves the claim for a ∈ S ′. Furthermore, b ≡ III 1
W
∈ S ′ is commonly

known and it remains to show that c ∈ S ′ is a Paley-Wiener function. The comb III 1
W
· being applicable to f ∈ S ′ means that

f ∈OM ⊂ S ′ in order to allow sampling to be well-defined according to the exchange theorem. Thus, f̂ ∈OC
′ and we need to

show that f̂ ∈ E ′ ⊂ OC
′ has compact support such that f ∈ PW ⊂ OM is a Paley-Wiener function. However, this is true due to

the truncation in f̂ = ( 1
W ϕ̂W ) · (W IIIW) ∗ f̂ caused by the cutout function ϕ̂W where ϕ̂W · IIIW = δ. It proves the claim in this

direction. (ii) We now assume (15) and show SW f ≡ f in (14). We have a ∗ (b · c) = c = (a ∗ b) · c where a ≡ ϕ ∈ Û 1
W
(Rn) is an

entire unitary function, b ≡ III 1
W
∈ S ′ the Dirac comb and c ≡ f ∈ PW 1

W
(Rn) is a Paley-Wiener function. Now, according to the

definition of an entire unitary function a ∗ b = 1 forms a partition of unity and this already implies that SϕW f ≡ f .

Corollary 3.2 (Inversion of Periodization). Let the conditions be as in Theorem 3.1 then (14) and (15) in reciprocal domain are
expressed (applied from left to right) as

a · (b ∗ c) = c = (a · b) ∗ c where a, b, c ∈ S ′(Rn) (16)

and c ≡ f̂ ∈ E ′W (R
n) is a compactly supported (tempered) distribution, b ≡ IIIW ∈ S ′ the Dirac comb and a ≡ ϕ̂ ∈ UW (Rn) a finite

unitary function. In terms of operations, b∗ is periodization, a· its operational inverse and a · b = δ is a smooth cutout of delta.

Proof. By the exchange theorem, (15) exists in S ′ if and only if (16) exists in S ′.

Equations (15) and (16) have many applications, see e.g. Liu [57], p.286, eqs. (5) and (6) or Corcoran & Pasch [58], p.464,
eqs. (10) and (11). An equation in the sense of tempered distributions holds true if and only if its Fourier transform holds true in
the sense of tempered distributions. In particular, the symbolic calculation introduced above can be used to see that

f̂ = uW (444W f̂ ) = ΩW · IIIW ∗ f̂ (17)

f = û 1
W
(⊥⊥⊥ 1

W
f ) = Ω̂ 1

W
∗ III 1

W
· f (18)

hold simultaneously in the sense of tempered distributions. We see that ΩW · IIIW = δ if and only if Ω̂ 1
W
∗ III 1

W
= 1 such

that f can be reconstructed from its discretization ⊥⊥⊥ 1
W

f if and only if f̂ can be reconstructed from its periodization 444W f̂ .

Another consequence is that functions which are just continuous (and not infinitely differentiable) cannot be reconstructed
exactly from their samples. This is due to the fact that f̂ is compactly supported if and only if f is a Paley-Wiener function (which
is infinitely differentiable). Another consequence, due to the embedding PW ⊂ OM, is that f is "tempered", i.e., it grows (at
infinity) at most polynomially. It leads to the insight that functions which grow (at infinity) exponentially cannot be sampled and
reconstructed from their samples using equidistant sampling operators. It is obvious that equidistant sampling cannot keep pace
with exponentially growing functions.
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3.2 Quadruples of Operations

We have seen that Φ= {III 1
W
·, Ω̂ 1

W
∗, IIIW∗, ΩW ·} forms a quadruple (family) of equivalent operations (sampling, interpolation,

periodization, truncation) generated by sampling. The other three family members are its operational inverse (interpolation), its
Fourier transform (periodization) and the operational inverse of its Fourier transform (truncation). In other words, all these
operations are equivalent, one element determines all others. The same pattern (cross-type inverses) and a complementary
pattern (co-type inverses) may be found for other operations in S ′. We distinguish co-type and cross-type families.

3.2.1 Co-Type Families

Co-type families of operations are generated either by multiplication-type operators such that their operational inverse is another
multiplication-type operator or they are generated by convolution-type operators such that their operational inverse is another
convolution-type operator. Translation, for example, belongs to

Φt rans = { δa∗ , δ−a ∗ , e−2πiat · , e2πiat · } (19)

which is a co-type family. Here, δa∗ and δ−a ∗ are operational inverses of one another because δa ∗ δ−a = δ. The other two
operations are their Fourier transforms, they yield e−2πiat · e2πiat = 1.

3.2.2 Cross-Type Families

A typical cross-type family is the quadruple Φsamp = {III 1
W
·, Ω̂ 1

W
∗, IIIW∗, ΩW ·} generated by sampling. Obviously, III 1

W
· has no

multiplication-type operational inverse. It is clear that locations t ∈ Rn deleted by III 1
W
· cannot be restored from zero via a

multiplication. The way out are convolution-type operators which form a smooth partition of unity. These operations are given
by Lighthill’s unitary functions (Lighthill [10], p.61, Campbell [5], p.635, Boyd [36]).

3.2.3 Inverses versus Cross-Inverses

The quadruple Φsamp of sampling shows that a · b = 1 has no solution a if b is the Dirac comb. In this case, it is convenient
to consider its cross-inverse a ∗ b = δ where a is an inverse of b with respect to convolution. These kind of considerations
have, according to our knowledge, never been investigated before and as a result of this many questions arise. For example, can
cross-inverses always be found if direct inverses do not exist? Such questions need to be clarified in further studies.

4 Conclusions

The fact that regularity (infinite differentiability) and locality (finite summability) are Fourier transforms of one another is an
important insight. It goes back to studies of Paley and Wiener who found that growing conditions of functions are related to
regularity conditions of their Fourier transforms (e.g. Walter [33], p.185). If regularity is missing then locality is missing in
reciprocal domain and, vice versa, if locality is missing then regularity is missing in reciprocal domain [34]. Many standard
problems in ordinary functions theory can be traced back to the fact hat sinc is not local (finitely summable) and, equivalently,
rect is not regular (infinitely differentiable). The Gibbs phenomenon, for example, disappears if Cesàro-summation is applied (e.g.
Debnath & Bhatta [37], p.54), that is, sinc functions are replaced by θ · sinc which include a convergence factor θ ≡ sinc, hence,
rect is its own mollifier in F(rect ∗ rect) = sinc ·sinc, see Moore [38], Butzer & Nessel [3], p.190, Weisz [39] for details. The fact
that sinc is not summable (integrable) is also responsible for the fact that the Fourier transform is no automorphism in L1(Rn),
the space of Lebesgue integrable functions. One may recall, rect is integrable and sinc is not. Vice versa, sinc is regular and rect
is not [28, 40]. All these problems disappear if one uses instead of rect and sinc unitary functions. The Schwartz space S(Rn),
to which unitary functions belong, may be seen as an idealization of L1(Rn), it allows F to become an automorphism (in S and,
as a consequence of this, in S ′). One may say S lies at the heart of the theory of functions (violet color in Figure 1) and its core is
formed by unitary functions. Unitary functions may be used (instead of rect and sinc) in either ordinary or generalized functions
theory to solve standard problems. It solves, for example, the problem of multiplying distributions ([28], Remark 1). Their use
in generalized functions theory, furthermore, includes a calculus for operations on functions and their calculation rules play an
important role in quantum mechanics (e.g. Susskind & Friedman [41], p.246, Messiah [42], p.474, Becnel & Sengupta [43]),
quantum optics (e.g. Schleich [44], p.37) and quantum field theory (e.g. Folland [26], p.3, Glimm & Jaffe [45], p.12, Reed &
Simon [46], p.6). The validity of (15) and (16) is moreover of great interest in electrical engineering (e.g. Pfaffelhuber [52, 54],
Rao [55]), communication theory (e.g. Blachman [56], eq.(24) is a partition of unity composed of sinc2 functions which can be
found as eq.(36) in Theis [4]), optics (e.g. Liu [57], Corcoran & Pasch [58], Wei [59]) and radar (e.g. Woodward [60], p.33,
eqs.(28) and (29), Brandwood [61], p.91, eqs.(5.1) and (5.2)). It is therefore important to further explore the rules of validity
for a generalized functions calculus.
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5 Appendix: Unitary Functions

The use of unitary functions (mollifiers) is required because rect is not a regular (infinitely differentiable) function. It implies
that III · rect 6∈ S ′ is not a tempered distribution. Equivalently, the use of unitary functions (convergence factors) is required
because sinc is not a finitely summable (integrable) function. It implies that III ∗ sinc 6∈ S ′ is not a tempered distribution. For any
fix W > 0, unitary functions ΩW may be constructed such that ΩW and its translates τkWΩW (t) := ΩW (t − kW ) overlap at most
twice in the formation of 444W (ΩW ) = IIIW ∗ΩW = 1 the function that is constantly 1. Furthermore, ⊥⊥⊥ 1

W
(Ω̂ 1

W
) = III 1

W
· Ω̂ 1

W
= δ,

its Fourier transform, is the cutout of one Dirac δ from its periodization known as the Dirac comb (Figure 2).

partition of unity
cutout of delta

. . . . . .

1

δδ δ

Wε ε

Figure 2: The products IIIW ∗ΩW = 1 (thick black line) and IIIW ·ΩW = δ (thick black delta) do both exist in S′.

Another property of unitary functions is that their Fourier transforms are again unitary in the sense that their periodization is
1 and their discretization is δ. We distinguish entire unitary functions and finite unitary functions (Fischer & Stens [28, 40]) due
to the circumstance that the function properties of being entire and finite are mutually exclusive.

5.1 Construction via Integration

Let ε > 0 be a (small) regularization parameter used in the construction of a bump function ρε ∈D(Rn), n= 1 for simplicity,

ρε(t) = e−1/(1−(2t/ε)2)/

∫ +∞

−∞
e−1/(1−(2t/ε)2)d t

whose integral is unity. It is non-zero in ]−ε/2,+ε/2[ and zero else. We use it to construct the derivative

d
d t
ΩW = τ−W/2ρε − τ+W/2ρε (20)

of a unitary function ΩW of width W + ε. Here, τa ρε(t) := ρε(t − a) denotes the repositioning of ρε at a. Positive and negative
bumps moved to −W/2 and +W/2, respectively, shall not overlap in (20). Hence, the regularization is bounded 0< ε≤W by
the targeted interval length W . The case ε≡W yields the bump function ρε ≡ ΩW that is usually used in the literature (e.g., in
[Horvath, p.401]) for the regularization of a distribution. An integration over (20) now yields a unitary function

ΩW (t) =

∫ t

−∞

d
d t
ΩW (τ) dτ (21)

such that 1
W

∫ +∞
−∞ ΩW (t) d t = 1 for any 0< ε≤W . Obviously,

ΩW

ε→0
−→ rectW (22)

where ε > 0, the rect ∈ E ′(Rn) function being defined as rectW (t) := 1 for t ∈ ]−W/2,+W/2[, rectW (±W/2) := 1/2 and zero
else. We say ΩW is double-sided unitary because it satisfies IIIW ∗ΩW = 1 and IIIW ·ΩW = δ, simultaneously. Figure 2 illustrates
that according to construction IIIW ∗ΩW = 1 is the periodization of ΩW that yields 1 (partition of unity) and IIIW ·ΩW = δ is the
discretization ofΩW that yields δ (cutout of delta). The latter is another partition of unity Fδ = F(IIIW ·ΩW ) = (

1
W III 1

W
)∗(W Ω̂ 1

W
) =

IIIW ∗ Ω̂W = 1 in reciprocal domain.

5.2 Construction via Regularization

Unitary functions ΩW can equivalently be constructed as regularization (mollification) ρε∗ of the rectangular function

ΩW := ρε ∗ rectW (23)

where ρε is the bump function constructed in the previous section, 0< ε≤W . A regularization of rect by ρε widens its support
by ε. The function ρε is called mollifier (Friedrichs [47], Schechter [48], Petersen [19]) or regularizer (e.g. Wei [49, 50]) and its
Fourier transform Fρε =

1
ε θ 1

ε
is occasionally called convergence factor (e.g. Sommerfeld [51], p.58, Campbell [5] 1968, p.627,

Pfaffelhuber [52], p.654, García et al. [53] 1998, p.50) or just θ -factor (Butzer & Nessel [3], p.190) because it accelerates the
respective convergence. Obviously,

Ω̂ 1
W

:= θ 1
ε
· sinc 1

W
(24)
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is the Fourier transform of (23). So, compared to the classical Whittaker-Kotel’nikov-Shannon sampling theorem, these sinc
functions (24) are now equipped with a built-in convergence factor. We just used that regular (infinitely differentiable) functions
and local (finitely summable) functions are Fourier transforms of one another [34]. For the connection between summability and
convergence factors see Moore [38]. Compared to the previous section this is an equivalent construction of ΩW because

d
d t
ΩW =

d
d t
(ρε ∗ rectW ) = ρε ∗

d
d t
(rectW ) = ρε ∗ (δ−W/2 − δ+W/2) = τ−W/2ρε − τ+W/2ρε

equals (20). The rule d
d t ( f ∗ g) = f ∗ ( d

d t g) = ( d
d t f ) ∗ g is commonly known (e.g. Zemanian [27], p.132). It obeys the same rule

as τa( f ∗ g) = f ∗ (τa g) = (τa f ) ∗ g (Petersen [19], p.90) and 444W ( f ∗ g) = f ∗ (444W g) = (444W f ) ∗ g (Fischer [30], Lemma 2)
for convolution-type operators. Moreover, 1

W (δ−W/2 − δ+W/2) is the derivative of δ for W → 0 and 1
W rectW → δ for W → 0.

Obviously, 1
W ΩW →

1
W rectW for ε→ 0 where 1

W

∫

Rn ΩW d tn = 1 and 1
W

∫

Rn rectW d tn = 1 independent of ε > 0.

Remark 3. An early use of unitary functions U can already be found in Sommerfeld (1947) [51], p.59, where (1) is

f (x) =

∫ ∞

−∞
f (ξ) U(x − ξ) dξ

for W →∞, symbolically (cf. Mallat [63], p.33, Benedetto [64], p.2, eq.(δ)). The connection between U and Green’s function G
is [51], p.65, eq.(8). ’ We conclude that U has the "character of a δ-function" ’ [51], p.59. The back and forth switching between
unitary functions U and δ given by ⊥⊥⊥ 1

W
(U) = δ and û 1

W
(δ) = U using discretization ⊥⊥⊥ 1

W
and regularization û 1

W
expresses a

duality (one-to-one correspondence) between discreteness and smoothness on Paley-Wiener functions (0<W <∞).
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