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Abstract— After many researchers observed fruitfulness from
the recent diffusion probabilistic model, its effectiveness in im-
age generation is actively studied these days. In this paper, our
objective is to evaluate the potential of diffusion probabilistic
models for 3D human motion-related tasks. To this end, this pa-
per presents a study of employing diffusion probabilistic models
to predict future 3D human motion(s) from the previously
observed motion. Based on the Human 3.6M and HumanEva-I
datasets, our results show that diffusion probabilistic models
are competitive for both single (deterministic) and multiple
(stochastic) 3D motion prediction tasks, after finishing a sin-
gle training process. In addition, we find out that diffusion
probabilistic models can offer an attractive compromise, since
they can strike the right balance between the likelihood and
diversity of the predicted future motions. Our code is publicly
available on the project website: https://sites.google.
com/view/diffusion-motion-prediction.

I. INTRODUCTION

Estimating how a human would move in the near future is
an essential task for various applications such as surveil-
lance [1], [2], autonomous driving [3], [4], and human-
robot/computer-interaction [5]. Many approaches have been
proposed to solve this problem, often based on the motion
capture datasets such as Human3.6M [6] or SMPL [7]-based
datasets such as AMASS [8]. In this paper, we concern
with a task whose goal is to predict a sequence of 3D pose
skeletons in Human3.6M and HumanEva-I [9] datasets, when
a previously observed 3D pose sequence is given as an input.

Existing works on 3D skeleton motion prediction can
be categorized as follows. One line of research focuses on
models for deterministic motion prediction [10]–[15]. These
works aim at predicting a single motion that is most likely
to be observed in the future. Therefore, their performance is
usually evaluated based on an L2-distance between a pre-
diction and a ground truth. Another line of research focuses
on generative models for stochastic motion prediction [16]–
[19]. Their performance is evaluated based on the metrics for
likelihood and diversity. After generating a fixed number of
prediction samples from a single observation, the likelihood
is measured based on the minimum distance between the
prediction samples and ground truth, and the diversity is
measured based on the average distance between all pairs
of prediction samples.
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Fig. 1. Example results when diffusion probabilistic models are used for
3D human motion prediction tasks, when observed motion is ‘walking’.
After a single training procedure, diffusion models can be effectively used
for both deterministic (Deter.) and stochastic (Sto.) motion prediction tasks.

However, we cannot judge which approach is always
better than the other, since the efficiency would depend on
the target application values. For instance, when one needs
only the most precise sample with low latency, deterministic
approaches would be better. If we say that both approaches
are necessary, our next question would be whether we can
propose an efficient model for both types of prediction. To
answer the question, we study the possibility of using dif-
fusion probabilistic models [20], [21] for both deterministic
and stochastic 3D motion prediction tasks.

If we propose a diffusion probabilistic model [20], [21]
as a solution, one might ask us whether this is because we
are fascinated by its performance in image generation [22],
[23]. Frankly speaking, yes, we initiated this study out of
our curiosity – can we use diffusion probabilistic models
for 3D motion prediction? Unfortunately, our experimental
results show that the diffusion model cannot perfectly replace
existing state-of-the-arts for both deterministic and stochastic
motion prediction tasks. However, we found a glimpse of
hope in diffusion models, due to their effectiveness in both
prediction types after a single training procedure, and their
ability to properly balance the trade-off between diversity
and likelihood.
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Figure 1 shows the example results when the diffusion
models are used for both deterministic and generative motion
prediction tasks. Although a diffusion model is essentially a
generative model, we found that the deterministic sample
with a fair performance can be obtained from the diffusion
model when all randomness is excluded from its denoising
process. In addition, we found out that the diffusion models
can fix the flaws of several generative methods [18], which
highlight the diversity of generated samples. Existing works
as [18] claim that the likelihood of predicted samples is high
when the minimum distance between samples and ground
truth is low. Because of this, [18] can often generate the mo-
tions that are out-of-context as [24] pointed out. Compared
to this, our diffusion models can generate prediction samples
that are more likely to occur, so the generated motion does
not diverge too much to be called out-of-context.

The remaining paper is constructed as follows. After
representing our literature survey in Section II, Section III
will explain how general diffusion models work as well as
how we design ours to solve 3D motion prediction tasks.
Section IV will show both qualitative and quantitative exper-
iment results, and a related discussion will be also presented.
Finally, this paper will end in Section V by mentioning
limitations and future works.

II. RELATED WORK

A. 3D Motion Prediction

Deterministic Models. The goal of deterministic 3D motion
prediction is to minimize the distance between a predicted
motion and ground truth. To solve this problem, early works
relying on deep neural networks [10]–[12] often employed
recurrent neural networks (RNNs) [25], [26], which are
still well-known for their effectiveness in processing time-
series data. Among RNN-based works, a notable model
is a structure RNN (S-RNN) [12], which considers the
spatio-temporal information of human motion, by manually
designing the high-level spatio-temporal graph to explicitly
model the human body structure (i.e., spine, arm, and leg).

While S-RNN understands the human body structure based
on the handcrafted network structure, there is another line of
research [13], [27] that uses graph convolutional network
(GCN) to overcome this manually designed spatial relation-
ship understanding. For instance, [13] suggested a model
named DCT-GCN, where discrete cosine transform (DCT)
understands the temporal information of motion, and GCN
learns the spatial relationship between human body joints.
DCT-GCN obtains the state-of-the-art result when evaluated
on Euler-angle-based mean squared error, but its best result
can be obtained when the model is separately trained for
each short- or long-term prediction.

Recently, several works for deterministic motion predic-
tion [14], [15] are based on the Transformer [28], which was
originally suggested for language understanding problems.
Models named Spatio-Temporal Transformer (ST-TR) [14]
and 2-Channel Transformer (2CH-TR) [15], understand the
spatio-temporal relationship of human motion by putting the
self-attention mechanism on each pose-parameter (spatial)

and time (temporal) dimension. After understanding each
spatial and temporal information in parallel, outputs from
both attention mechanisms are properly combined. The dif-
ference between ST-TR and 2CH-TR comes from when
and how often the model combines spatial and temporal
information.

Generative Models. The goal of stochastic 3D motion
prediction is to build a generative model which can sample
out several future motions that are likely to happen after
the observed human motion. To solve this problem, early
works [16], [17] employed deep generative models such as
variational autoencoders (VAEs) [29] or generative adver-
sarial networks (GANs) [30]. For instance, [17] suggested
a generative model based on the conditional VAEs, and
showed that VAEs can sample out several future motions that
are reasonable as well as diverse. Compared to VAE, [16]
showed that GANs based on the Wasserstein loss function
can be effectively used in stochastic motion prediction tasks.

While these works [16], [17] focused on exploring the po-
tential of using deep generative models in stochastic motion
prediction tasks, another line of works [18], [19] focused on
sampling out as much as diverse motions that can contain the
most plausible motion at the same time. For instance, [18]
proposed to train a post-hoc model which can be attached to
the pre-trained deep generative model. This post-hoc model
maps a random variable to several latent vectors of the pre-
trained generative model. Based on the diversity-promoting
prior, the post-hoc model is trained to improve the diversity
between samples, which can be obtained by decoding the
mapped latent vectors.

Experiments in [18], [19] evaluate the likelihood of pre-
diction samples based on the minimum distance between the
samples and the ground truth(s). They denote the prediction
samples as plausible based on the sample that is closest to the
ground truth(s). However, this can make it difficult for users
to choose the most plausible motion among the prediction
samples, since all samples will not be distributed near the
most plausible motion. For instance, if the observed motion
is a human sitting down and drinking something, [18] and
[19] can produce motion samples that predict the human
suddenly standing up and starting discussing something with
others. As [24] has pointed out, we would like to also focus
on the necessity of contextually plausible and diverse motion
sampling. Therefore, our paper would evaluate the likelihood
of prediction also based on the mean and standard deviation
of distances between the samples and ground truth.

B. Diffusion Probabilistic Models

Diffusion probabilistic models [20] have become a new
rising star in generative models after showing excellent
performance in image synthesis. Especially, its performance
on text-conditioned image synthesis [22] makes researchers
as well as the public in awe. Diffusion models consider
two processes: a forward process that slowly destructs the
data sample by gradually injecting the random noise, and
a reverse process that learns how to reconstruct the data



sample by gradually denoising the random noise. While the
advantage of diffusion models can be empirically shown
based on their performances, the disadvantage is the speed
of their sampling process. If the reverse process includes
1000 times of denoising processes, it means that the data
sample can be obtained after feed-forwarding the random
noise to the denoising network for 1000 times. Of course,
this disadvantage can be circumvented if the application does
not require the prediction samples with low latency.

Aside from image generation tasks, nowadays researchers
are suggesting to use diffusion models in various generation
tasks, such as text-to-speech [31], text-to-sound [32], and
video [33]. Focusing on motion-related tasks like ours, sev-
eral works incorporate diffusion models in text-conditioned
motion generation tasks [34], [35]. For the motion of in-
telligence agents, [36] suggests using diffusion models to
sample out trajectories for properly solving a given task. In
our paper, we use diffusion models in 3D human motion
prediction tasks, but to the best of our knowledge, there is
no attempt yet to use diffusion models in the 3D motion
prediction task. But we believe more researchers would
involve in using diffusion models to answer this question
– can diffusion models be our new savior in any kind of
data generation tasks?

III. METHOD

A. Preliminaries

We will provide a short description of diffusion
probabilistic models first. Note that our description relies
on [20] and [21], which provide a basis for our work.

Diffusion Probabilistic Model. Let x0 ∼ q(x0) denote
a data point sampled from its distribution q. In order to
learn pθ(x0) which can model q(x0), diffusion probabilistic
models consider two processes. One is a forward process
which gradually deconstructs x0 by injecting a subtle
Gaussian noise for K times, such that x0 can be destroyed
into x1, . . . ,xK , where p(xK) = N (0, I). This process can
be formulated as below, which is to follow a Markov chain
q(xk|xk−1) for K times:

q(x1:K |x0) =

K∏
k=1

q(xk|xk−1) (1)

q(xk|xk−1) = N (
√

1− βkxk−1, βkI), (2)

where βk denotes a constant for a noise level. Note that xk

can be sampled from x0 directly with a closed-form solution:

xk =
√
αkx

0 +
√
1− αkε, ε ∼ N (0, I), (3)

where α̂k = 1− βk and αk =
∏k
i=1 α̂i.

Another is a reverse process, which goal is to obtain x0

starting from xK ∼ N (0, I), by gradually denoising xK .
This process can also be formulated as following a Markov
chain pθ(xk−1|xk) for K times:

pθ(x
0:K) = p(xK)

K∏
k=1

pθ(x
k−1|xk), (4)

pθ(x
k−1|xk) = N

(
xt−1;µθ(x

k, k), σ2(k)I
)
, (5)

where p(xK) = N (0, I). To obtain µθ and σ, [20] suggests
denoising diffusion probabilistic models (DDPM), which get
σ2(k) = 1−αk−1

1−αk
βk, parameterize µθ with θ, and sample

xk−1 ∼ pθ(xk−1|xk) as below:

µθ(x
k, k) =

1√
α̂k

(
xk − βk√

1− αk
εθ(x

k, k)

)
. (6)

xk−1 = µθ(x
k, k) + σ(k)z, z ∼ N (0, I). (7)

In practice, εθ is modeled with a neural network, and it
learns how much to denoise from xk. To train this, [20]
suggested a simplified loss function as below:

L(θ) = ‖ε− εθ(x
k, k)‖2

= ‖ε− εθ(
√
αtx

0 +
√
1− αtε, k)‖2. (8)

In a training process, k is randomly sampled to obtain
L(θ). For more details, please refer to [20] and [21].

Conditional Diffusion Model. A conditional score-based
diffusion model for imputation (CSDI) [21] is proposed
to solve a time-series imputation problem using diffusion
models. It adds conditional information xco to eq. (4)-(5):

pθ(x
0:K) = p(xK)

K∏
k=1

pθ(x
k−1|xk,xco), (9)

pθ(x
k−1|xk,xco) = N (xk−1;µθ(x

k, k|xco), σ2(k)I) (10)

To define µθ(x
k, k|xco), eq. (6)-(7) can be rewritten

by adding xco as a condition to µθ and εθ. Note that
εθ(x

k, k|xco) is modeled with a neural network to learn
how much to denoise from xk given xco. When training
the network, the same loss function as eq. (8) is used, by
replacing εθ properly with xco as a condition.

B. Problem Formulation

Let pt ∈ RD be a 3D pose vector at time t, which
can be denoted with various representations such as axis-
angle, Euler-angle, or xyz-position. Here, D = 3n and n
denotes the number of joints. A task of 3D human motion
prediction can be defined as predicting future L poses,
Ppre = {pT+1, . . .pT+L} ∈ RL×D, when T poses, Pobs =
{p1, . . .pT } ∈ RT×D are observed.

We utilize CSDI [21] for obtaining Ppre from given Pobs.
Starting from P 0

pre = Ppre, our forward process can obtain
P kpre as below:

P kpre =
√
αkP

0
pre +

√
1− αkε, ε ∼ N (0, I) (11)

For a reverse process, we propose a denoiser network which
models εθ(x

k, k|xco) = εθ(P
k
pre, k|Pobs). This network is

trained by minimizing L(θ) = ‖ε− εθ(P
k
pre, k|Pobs)‖2.



Fig. 2. Two designs of our Transformer-based motion denoiser. Inspired by ST-TR [14], 2CH-TR [15] and CSDI [21], our motion denoiser processes both
spatial and temporal information in series (top) or in parallel (bottom). Here, d and t stand for the dimension of each pose-parameter and time, and TF
stands for Transformer [28]. Note that the positional encoding also involves adding a learnable vector that represents a diffusion step k as [21] suggests.

After training, we can sample P 0
pre by repeating below

reverse process for K times, starting from PKpre ∼ N (0, I):

P k−1pre = µθ(P
k
pre, k|Pobs) + σ(k)z, z ∼ N (0, I), (12)

where µθ(P
k
pre, k|Pobs) is defined with εθ(P

k
pre, k|Pobs) and

properly modified version of eq. (6). After finishing training,
if our denoiser network is used for deterministic prediction
in the test phase, we set PKpre and z as zero-vectors, such
that all randomness in eq. (12) can be ignored.

C. Transformer-based Motion Denoiser

Since P kpre and Pobs are time-series of human pose vec-
tors, one can model εθ(P

k
pre, k|Pobs) with neural network

architectures which can understand time-series data. For
example, network architectures such as RNNs [25], [26] or
Transformers [28] can be candidates. We empirically found
out that the denoisers based on the Transformers that process
both spatial and temporal information are most effective.

Figure 2 shows how we design our Transformer-based
denoisers in two ways. Inspired by [21], the first denoiser
shown on top of the figure processes both information in
series. After concatenating P kpre ∈ RL×D and Pobs ∈ RT×D
such that input can be P kinp ∈ R(T+L)×D, P kinp passes spatial
and temporal transformer layers in series, where each layer
applies self-attention to time and pose-parameter dimension.
Before passing each transformer layer, positional encoding
is added to the input as [28] suggests, with respect to pose-
parameter d ∈ [0, D] (spatial) or time t ∈ [0, T ] (temporal)
dimension. Also, the additional learnable positional encoding
that projects a diffusion step k into a vector space is added

to the input as [21] suggests. Let P kout ∈ R(T+L)×D denote
the output which can be obtained after P kinp passing two
layers. Then, the last L×D parts from P kout is obtained as
εθ(P

k
pre, k|Pobs), which would be used for denoising P kpre.

The second denoiser shown on the bottom of Figure 2, is
inspired by [14] and [15], and works in parallel to understand
spatio-temporal information. After P kinp passes both spatial
and temporal transformer layers in parallel, two matrices
with the same size as P kinp are obtained, and concatenated
into a 3rd-order tensor whose size is 2 × (T + L) × D.
After this tensor passes 2-dimensional convolutional layer
with (1 × 1)-sized kernel, the output P kout ∈ R(T+L)×D is
obtained. From P kout, εθ(P

k
pre, k|Pobs) is obtained as same

as in the first denoiser.
Note that we do not use encoder-decoder based structure,

which encode a set of feature vectors from Pobs and decode
εθ(P

k
pre, k|Pobs) from the encoded feature vectors and P kpre.

We tried various denoisers of Transformer- or RNN-based
encoder-decoder, but none of them turns out to be effective.

D. Implementation Details

Our transformer-based motion denoisers have a self-
attention module with 8 multi-heads and 512-dimensional
query, key, and value vectors. And each temporal or spatial
transformer layer shown in Figure 2 consists of a single-
layered transformer encoder. To train denoisers, we set batch
size as 512 and update parameters for 50,000 iterations with
Adam optimizer of learning rate 0.0001. The diffusion step
is set as k ∈ [0, 20], with linearly scheduled noise levels βk
that ranges between 0.001 (k ↓) and 0.333 (k ↑).



IV. EXPERIMENT

A. Dataset and Metric

Dataset. We conduct our experiment for both deterministic
and stochastic motion prediction tasks. For deterministic
experiments, we use the Human3.6M dataset [6] and measure
the Euler-angle mean square error (MSE) for evaluation as
other works [12]–[15] do. Here, with 25 fps, input observa-
tion has 50 frames, and output prediction has 25 frames. For
stochastic experiments, we preprocess Human3.6M [6] and
HumanEva-I [9] datasets into xyz-based representation as
[18], [19] do. Based on that, various metrics for evaluating
likelihood and diversity are measured. Here, with 50 fps, an
input observation has 25 frames, output prediction has 100
frames, and the number of prediction samples is 50.

Metrics. As mentioned above, we measure the performance
of our denoiser based on the Euler-angle MSE when it is
used for deterministic prediction. For stochastic prediction,
we use several metrics from what [18] suggests to evaluate
likelihood and diversity. But we propose more metrics such
as aDE, sDE, aFDE, and sFDE to measure how the samples
are distributed near the ground truth. Note that some of the
below sentences describing metrics are borrowed from [18].

(1) Average Pairwise Distance (APD): average L2
distance between pairs from N predictions x̂ ∈ RL×D,
which is computed as 1

N(N−1)
∑N
i=1

∑N
j 6=i ‖x̂i− x̂j‖2. This

measures the diversity within N predictions. (2) minimum
Displacement Error (mDE): the minimum L2 distance
between all N predictions x̂ and ground truth x, which
is computed as minx̂

1
L‖x̂ − x‖2. This metric was defined

as ADE in [18]. (3) average Displacement Error (aDE):
the average L2 distance between all N predictions x̂ and
ground truth x, which is computed as 1

NL

∑N
i=1 ‖x̂i − x‖2.

(4) standard deviation of Displacement Error (sDE): the
standard deviation of L2 distances between all N predictions
and ground truth. (5) minimum Final Displacement Error
(mFDE): the minimum L2 distance between final poses
of N predictions and ground truth, which is calculated as
minx̂ ‖x̂(L) − x(L)‖2. This metric was defined as FDE in
[18]. (6) average Final Displacement Error (aFDE): the
average L2 distance between final poses of N predictions
and ground truth, which is calculated as 1

N

∑N
i=1 ‖x̂i(L) −

x(L)‖2. (7) standard deviation of Final Displacement Er-
ror (sFDE): the standard deviation of L2 distances between
final poses of N predictions and ground truth.

B. Quantitative Results

Deterministic Prediction. Table I compares Euler-angle
MSEs when our diffusion model is used for deterministic
motion prediction. Here, bold fonts denote the best results
among all approaches, and underlines denote the best results
among our denoisers (series or parallel). It is shown that
the overall performance of DCT-GCN [13] is still the best.
Among our approaches, the denoiser which understands
spatial and temporal information in series is better than
the parallel denoiser. Although our models do not achieve
state-of-the-art results, it is shown that our approaches are

TABLE I
AVERAGE MSE ERRORS OF DETERMINISTIC MOTION PREDICTION

milisecond (ms) 80 160 320 400 560 1000
S-RNN [12] 0.933 1.166 1.397 1.526 1.711 2.139
DCT-GCN [13] 0.295 0.542 0.857 0.974 1.154 1.590
ST-TR [14] 0.303 0.550 0.901 1.021 1.229 1.722
2CH-TR [15] 0.293 0.555 0.893 1.016 1.245 1.744
Ours (Series) 0.325 0.615 0.990 1.128 1.309 1.721
Ours (Parallel) 0.350 0.646 1.007 1.148 1.317 1.688

better in long-term prediction (1000ms) when compared with
other transformer-based models [14], [15]. This is a notable
result, since (1) our models are originally generative ones,
and (2) our models do not require additional training for
deterministic prediction since ignoring all randomness in the
denoising process is all they need.
Stochastic Prediction Table II shows the comparison of
metrics for measuring the likelihood and diversity. Here, bold
fonts denote the best result and underlines denote the second
best result among all approaches. It is shown that previous
works [18], [19] focusing on sample diversity best perform
in APD. Also, it is shown that they are generally better in
terms of mDE and mFDE. We would like to argue here that
the high diversity in prediction increases the probability of
having one sample closest to the ground truth. Then, how
can we choose the most plausible result among predictions
that are sampled to be diverse?

This is the same question that [24] also pointed out.
So in [24], metrics for measuring the quality and context
are proposed. For measuring the quality, [24] used a pre-
trained binary classifier which can discriminate the ground
truths (real) from predictions (fake). If this classifier fails to
discriminate the predicted motions as fake, a higher quality
score is obtained. For measuring the context, [24] used a
pre-trained model which classifies action from motion. If it
estimates that the action label of prediction is as same as the
observed motion, a higher context score is obtained.

However, we were not able to use the same metric as
[24] since its pre-trained classifiers were not openly released.
Therefore, we instead propose metrics such as aDE, sDE,
aFDE, and sFDE, to measure how closely the samples are
distributed near the ground truth. Results show that our
approaches generally perform better in terms of these new
metrics, and the parallel denoiser performs better than the
series one. We also present the result from VAEs [29]
that were implemented by [18], to check how other non-
diffusion generative models work. It is shown that the overall
performances of our series/parallel denoiser in diversity and
likelihood are generally better than the VAEs, especially in
the HumanEva-I dataset.

C. Qualitative Results

Figure 3 shows two example results from our transformer-
based motion denoiser. Predictions on the left of the dotted
line are obtained from the motion observation labeled as
‘smoking’. It is shown that the deterministic prediction is
similar to the ground truth, while the stochastic predictions
show the diversity between samples. But note that still



TABLE II
DIVERSITY AND LIKELIHOOD METRICS OF STOCHASTIC MOTION PREDICTION

Human 3.6M [6] HumanEva-I [9]
metrics APD↑ mDE↓ aDE↓ sDE↓ mFDE↓ aFDE↓ sFDE↓ APD↑ mDE↓ aDE↓ sDE↓ mFDE↓ aFDE↓ sFDE↓
DLow [18] 11.741 0.425 0.968 0.355 0.518 1.387 0.541 4.855 0.251 0.585 0.208 0.268 0.710 0.255
VAEs [18], [29] 6.852 0.460 0.720 0.139 0.557 1.025 0.243 2.299 0.265 0.426 0.083 0.299 0.562 0.137
GSPS [19] 14.757 0.389 1.206 0.623 0.496 1.554 0.729 5.825 0.233 0.655 0.206 0.244 0.763 0.268
Ours (Series) 7.587 0.527 0.764 0.132 0.669 1.093 0.228 2.746 0.257 0.383 0.065 0.260 0.490 0.130
Ours (Parallel) 6.445 0.477 0.719 0.139 0.584 1.018 0.234 1.508 0.242 0.312 0.037 0.238 0.385 0.078

Fig. 3. Deterministic (Deter.) and stochastic (Sto.) predictions from our transformer-based motion denoiser. Note that two results are given and divided
based on the vertical dotted line. Predictions are obtained from observed motions labeled as ‘smoking’ (left) and ‘walking’ (right).

the context of ‘smoking’ looks remained in all samples.
This phenomenon is also observed from the predictions on
the right, which are obtained from the motion observation
of ‘walking’. While its deterministic prediction resembles
the ground truth, the stochastic predictions are diverse and
contain the context of ‘walking’. For better visualization,
please refer to our supplementary video.

V. CONCLUSION

In this work, we study the potential of diffusion proba-
bilistic models for 3D human motion prediction tasks. We
propose two types of diffusion models based on the trans-
formers, which understand the motion’s spatial and temporal
information in series or parallel. Since the diffusion model
is originally a generative model, its main usage would be for
the stochastic motion prediction task. But once it is trained,
we show that it can also be used in deterministic prediction
if all randomness in its denoising process is ignored.

To show the effectiveness of diffusion models in both
deterministic and stochastic motion prediction tasks, we
conduct experiments based on various metrics. Results from
deterministic prediction show that the diffusion model is not
superior to the state-of-the-art. But it is shown that our long-
term (1000ms) prediction performance is better than other
transformer-based approaches. When it comes to evaluating
stochastic predictions, it is conventional to suggest metrics
measuring both likelihood and diversity. However, we claim
that the conventional metrics for measuring the likelihood

do not represent how much the samples are distributed
near the plausible motion, since they measure the minimum
distance between samples and ground truth. Therefore, we
suggest additional metrics to measure the mean and standard
deviation of that distances, and the results show that our
diffusion models can properly balance the trade-off between
diversity and likelihood.

Although our results would provide nice answers to our
first question – can we use diffusion probabilistic models for
3D motion prediction? – the most concerning disadvantage
of a diffusion model is its sampling frequency. Since our
diffusion model requires a K = 20 number of denoising
processes to obtain prediction samples, this might occur a
bit high latency. To overcome this issue, one might consider
recent works for efficient sampling [37], which would be our
future work, such that efficient 3D human motion prediction
can be made for various real-time applications.
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