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Abstract

In biology, body dynamics and elasticity in periodic motions most likely con-
tribute to efficiency, i.e., in mammalian locomotion. Likewise, elastic elements
can be added to robotic systems in an attempt to mimic this biological concept.
Compliant robots are less likely to get damaged after severe impacts and their
mechanical energy storage via springs could be exploited for fast and explosive
movements. In this thesis, we explore the question whether resonance excitation
that solely considers link-side dynamics or also takes into account the motor inertia,
can lead to an increase in performance in Series Elastic Actuator (SEA) driven
robotic systems. We propose three different control approaches and compare them
to compliant state-of-the-art control as baseline evaluation in simulation and hard-
ware experiments. Moreover, we extend the investigation of motor-side-excitation
with the aid of methods such as inertia shaping and simulative system variation.
Experiment results regarding a pick-and-place task with fixed amplitude reveal that
in the investigated test setup, it might not be beneficial to make dedicated use of
the motor inertia. Instead, an approach that exclusively excites link-side dynamics
appears, for this particular task and setup, to be advantageous. However, generally,
also making use of the motor dynamics bears potential for specific investigations as
it appears more flexible and the control behavior can be easily adapted. Thus, the
presented thesis provides first fundamental insights about novel control strategies
and lies the foundation for further systematic research with different actuation
types and varying task goals.

Index Terms: Compliant Robots; Resonance Excitation; Pick-and-Place; Compliant
Control Theory; Linear Modes; Inertia Shaping;

iii





Contents

1 Introduction 1

2 State of the Art 3
2.1 Elasticities in Robotic Systems . . . . . . . . . . . . . . . . . . . . 3
2.2 Control of Elastic Robots . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Introduction to Linear Mode Theory . . . . . . . . . . . . . . . . . 14
2.4 Inertia Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Control Theory Approaches 21
3.1 1M − T (racking): One-Dimensional Oscillatory Motion . . . . . . . 21
3.2 1M − E(Sπ) based Periodic Excitation . . . . . . . . . . . . . . . . 25
3.3 2M − V (elocity): Two-Dimensional Oscillatory Motion . . . . . . . 26

4 Validation 30
4.1 Elastic Robot Testbed SOFTY . . . . . . . . . . . . . . . . . . . . 30
4.2 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Influence of Motor Inertia 46
5.1 Control Behavior with Inertia Shaping . . . . . . . . . . . . . . . . 46
5.2 Control Behavior with Changed System Parameters . . . . . . . . . 48

6 Discussion and Outlook 50

7 Conclusion 55

References 56

v





List of Figures

1.1 Running movement depiction of a cheetah (left) with a flexible spine
illustration by actively bending and stretching for agile locomotion
and a biologically inspired Boston Dynamics’ Cheetah Robot (right),
adapted from [16] [17]. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Illustration of a compliant SEA hand-arm design and its abbreviated
concept of control, adapted from [23]. . . . . . . . . . . . . . . . . . 5

2.2 DLR Bert (top) with its compliant leg actuation (bottom), adapted
from [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 MIT Cheetah 3 jumping (≈ 75cm) on a desk, adapted from [22]. . . 6
2.4 Anthropomorphic robot (DAVID) with its respective joint motors

for compliant actuation in its VSAs, where variable stiffness of the
nonlinear elastic element is adjusted via the stiffness motors. . . . . 7

2.5 Schematic of a single SEA. . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Illustration of the PBC for motion tracking and damping assignment. 10
2.7 Illustration of the ESPi controller with link-side impedance, [12]

adapted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Depiction of the compliant robot design for a ball throwing experi-

ment as an explosive task (left), the robot possesses VSA joints and
releases the ball at peak acceleration (right) and the VSA design
with two servo drive units for concurrently changing stiffness and
equilibrium point of the spring (bottom), adapted from [26]. . . . . 13

2.9 Illustration of a linear system with two DoFs, adapted from [39]. . . 15
2.10 Illustration of a linear system with two degrees of freedom with a)

in-phase and b) anti-phase normal mode, adapted from [39]. . . . . 17

vii



2.11 Physical schematic of an SEA system for frequency analysis with
two outer masses JB and JM , connected by a spring with stiffness k. 17

2.12 Exemplary depiction of a PD-controlled SEA with spring torque
feedback τ for inertia shaping of the motor. . . . . . . . . . . . . . 19

3.1 Graphical representation of the desired motor-side behaviour of the
1M -T control design. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Graphical representation of the desired link-side behaviour of the
1M -T control design. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Graphical representation of the 1M -T control design with link-side
excitation and stiff actuated motor-side impedance. . . . . . . . . . 23

3.4 Graphical representation of the 1M − E(Sπ) control design with
link-side excitation, desired virtual motor coordinate and motor-side
behaviour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Graphical representation of the desired excitation control with coor-
dinate transformation for the 2M − V (elocity): a) showing the first
body problem with control of the combined mass JMB and b) the
second body problem with the proposed control of the reduced mass
Ψ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 SEA-based robot SOFTY with horizontal movement of the motor-
position θ and link-position q, the inertia of the motor- and link-side
are denoted JB and JM , respectively, and the connecting spring has
the stiffness K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Normal mode characterization of SOFTY: frequency sweep of sinu-
soidal motor position θ trajectory command (left) and the resulting
link position q (right) with highest output colored in turquoise. . . . 33

4.3 Normal mode characterization of SOFTY: calculation of system work
Wsys per period (left), phase difference ∆ϕang (middle) between θ

and q & motor energy Em per period (right). . . . . . . . . . . . . . 34
4.4 Signal flow diagram of the friction observer implementation in

Simulink, with the friction estimation Q̂a, the observer feedback
value L > 0 and the estimation error of the motor velocity ˙̃θ = ˙̂

θ − θ̇,
adapted from [44]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

viii



4.5 Measurement results of the three different control approaches for
resonance excitation, θ and q as motor position and link position,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Commanded torque ucontrol, the commanded torque with friction
observer ucmd (left) and system power Psys (right), with 20 periods
(grey) and their mean signals (colored) respectively. . . . . . . . . . 41

4.7 Energy difference between Wel and Wsys for the 2M − V , spring
torque τ , measured value by a sensor τmsr and ucontrol almost identical
for 1M -T , whereas in the 2M − V case not. . . . . . . . . . . . . . 42

4.8 Friction compensation estimation Q̂a for the 3 different control
approaches with mean values (colored) and 20 periods (grey). . . . . 43

4.9 ESPi control for the two eigenfrequencies ω1D = 3Hz, ω2D =
4.7Hz, introducing qd as the desired link position for tracking control,
the 0.3Hz measurement is skipped for brevity (→ classical tracking),
further information can be drawn from here [12]. . . . . . . . . . . . 44

5.1 Inertia shaping sweep of JB to JBnew on hardware with a fixed step
of 0.1 kg m2 from JBnew = 0.5 kg m2 (blue) to JBnew = 1 kg m2, plus
JBnew = 2 kg m2 (transistion to red), mean values of 20 periods in
grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Modification of motor inertia properties in simulation of the SOFTY
testbed, step size of sweep can be found in Table 5.2. . . . . . . . . 49

6.1 Spider plot for the key characteristics comparison of the proposed
controllers:

∫
Q̂aθ̇ → necessity for the level of friction compensation

(high values indicating low friction performance),
∫

ucontrol → pro-
duced torque of the controllers without friction compensation, Wel

→ physical work of electric consumption, Wsys → system energy
between spring and motor, ωq → link frequency of oscillation, all
energy measurements are analyzed per timestep ∆t of one mean
period T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

ix





List of Tables

4.1 Main parameters of SOFTY. . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Theoretical values of the eigenfrequency of two systems with their

corresponding control methods, ω1D representing a one-mass-spring
system connected to a wall and ω2D a two-mass-spring system as
depicted in Figure 2.11. . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Overview of experiment signals for analysis and comparison of the
control approaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Overview of parameter values for analysis and comparison of simula-
tion vs. hardware, as a first glimpse on the main behaviour of the
presented controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Overall performance of the three proposed control approaches with
various parameters: Wel/T as mean electric energy to the motor
per period, mean physical work of system Wsys per period (4.1),
peak values for the in-torques (ûcontrol) & (ûcmd), µobs =
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1 Introduction

Stiff actuated robots are commonly used throughout industry and research settings
with remarkable precision and rapid response time, thus making them indispensable
across a broad integration-spectrum [1] [2], starting from industrial automation
and micro/nano manipulation up to medical robots (e.g. surgical application,
rehabilitation in physical therapy) [3] [4] [5]. As undisputed as their advantages
may be, stiff robots are prone to damage when falls occur [6], especially in the
field of mobile robotics for rough-terrain exploration, where falling is a necessity
in the learning process of walking [7] [8] [9] [10] [11]. Inspired by nature, adding
flexibility to mechanical systems allows to store and reuse energy (Figure 1.1). Yet,
this new feature directly leads to more sophisticated systems with the necessity of
innovative control approaches [12]. One approach to stabilize and exploit elastic
systems is by applying controllers that support intrinsic motions of a system [13].
As the controller is in this case aiding the motion that the system is inherently
inclined to do, this approach is promising to develop strategies that are energy
efficient [14]. So far, such excitation strategies have mainly been investigated by
taking into account the link-side dynamics of robotic systems, yet ignoring the
motor-dynamics [15]. However, the motor-dynamics play a crucial role in regards
of the overall system dynamics and should be considered when dynamical control
approaches are explored. The presented master thesis aims to address this short-
coming and investigates whether compliant robots can benefit from exploiting both
the eigendynamics of the link-side and the motor dynamics in our control strategy.

The core of this thesis, is the investigation of three different control approaches
to perform a defined motion task on a single joint with an Series Elastic Actuator
(SEA). Two of the controllers only excite the link-side dynamics, while the third
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Figure 1.1: Running movement depiction of a cheetah (left) with a flexible spine illustra-
tion by actively bending and stretching for agile locomotion and a biologically
inspired Boston Dynamics’ Cheetah Robot (right), adapted from [16] [17].

one considers both the link-side and motor dynamics. The three controllers will be
compared with respect to their energy/ power consumption to excite the defined
motion. As baseline for the comparions, the Elastic Structure Preserving Impedance
Controller (ESPi) [12] method is additionally implemented.

To provide a solid foundation, we first introduce relevant theory (Chapter 2),
which covers topics such as compliance in robotics, mathematical SEA design,
control, linear modes and the concept of inertia shaping. The theoretical ground-
work is followed by detailed derivation of the three investigated control concepts
(Chapter 3). All controllers are implemented in a hardware setup consisting of a
single SEA actuated link, on which first a characterization is carried out. Following
that, experiments with a defined control task for the three controllers and the ESPi
as baseline are carried out to compare the perfomance (Chapter 4). Triggered by
the findings of the initial experiment, we deepen the investigation of motor inertia
influence on the third control strategy (Chapter 5).

Finally, all results will be discussed (Chapter 6) and the main findings summarized
in a conclusion (Chapter 7).
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2 State of the Art

This chapter will introduce the current state of the art relevant for this thesis. This
includes an overview of why and how elasticities are added to robotic systems, as
well as strategies to control such systems. Additionally, a short introduction to
mode theory and the concept of inertia shaping is given.

2.1 Elasticities in Robotic Systems

Scientific robotics research strives to match biological behaviour in terms of motion,
efficiency, redundancy and automization techniques [16] [14] [18] [12] [19]. As
control techniques and hardware development continously improve, embedment of
elasticities is successively gaining attention through its potential to increase the
robustness of systems and store energy elastic elements. They allow robots to fall
down, by cushioning the system after severe impacts. Permitting them to do so
without being broken, enhances the progression of robotics development. Therefore,
implementation of physical compliance in robots can be advantageous, especially if
sensors or control fail at fast movements.

When talking about elasticities in robotic Electro-Magnetic Actuator (EMA) sys-
tems, we have to differentiate between various actuator concepts and design ap-
proaches to achieve this status.
We introduce three commonly known methods for elasticity in robots: 1) Series
Elastic Actuators (SEAs) where motor and link are physically decoupled by a
spring, 2) Variable Stiffness Actuators (VSAs) with variable stiffness in a spring-
decoupled system and 3) proprioceptive actuation, where internal sensors lead to
self-awareness of the robot when external forces are sensed with physical compliance

3



being integrated in mechanical mechanisms such as legs or arms.

In SEAs, the motor torque is directly passed onto the spring and then only
relayed to the link. This concept establishes mechanical buffers for motors and se-
vere impacts on the link, but requires complex control strategies and reliable sensors.

VSAs are often designed based on the concept of SEAs with adaptable stiffness as
the characterstic key element. Changing the stiffness during movement allows the
system to adapt to different tasks and conditions, thus mimicking the behaviour
of biological muscles. For this reason, this actuation concept is often used for
anthropomorphic robots.

For the proprioceptive actuation no physical compliance is added in the actu-
ator chain itself, but instead integrated in the system through a sensor-based
self-awareness [20]. Mechanical compliance is reached through implementation
of flexible components in its links and control is adjusted properly when exter-
nal forces are encountered. Hence, this enables the robot to mimick biological
behaviour. Proprioceptive actuation of the robot MIT Cheetah 3 [20] [21] for
example represents a counter part to SEA/ VSA driven systems, where flexibility
is positioned outside of the drivetrain and mainly realized through a combination
of flexible leg-elements. Cushioning of the motor unit, is achieved mainly through
control, sensors and its inherent body flexibility. Since the motor torque is not
transitioned to a spring, the force bandwidth of proprioceptive actuators can be
greater, compared to SEA driven systems [20] [22].

Figure 2.1 shows an illustration of a conceptual compliant hand-arm robot with its
SEA joint, where upper- and lower-arm are decoupled by a spring, which yields to
the depicted control schematic.

Figure 2.2 and 2.3 both show compliant quadruped robots with different
compliancy integration. First one depicts the DLR Bert [24] in rough terrain
with integrated SEAs and second one MIT Cheetah 3 [21], with flexible legs and
proprioceptive actuation, jumping on a desk.

Figure 2.4 shows an integration of VSAs in the humanoid robot David [25],
where mechanically adjustable springs are located in the drive train. The stiffness
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SEA System Design
Compliant Robot

Control Concept

Figure 2.1: Illustration of a compliant SEA hand-arm design and its abbreviated concept
of control, adapted from [23].

motor in the Floating Spring Joints (FSJ) [25] adjusts the stiffness of the nonlinear
elastic element according to its control-task.

SEAs and VSAs are able to provide physical motor cushioning, which especially is
advantageous in rough situations and difficult terrain, when e.g. sensors or control
systems fail, making them especially promising concepts for locomoting robots.
Moreover, due to the ability of storing energy in their springs (DLR Bert) or legs
(Cheetah 3) SEAs, VSAs [25] and proprioceptive actuators [22] are enhancing
robustness and enabling high-explosive movement tasks in robotic systems [26]
[12]. Although SEAs, VSAs and proprioceptive actuators offer a large spectrum
of benefits, they come with increased complexity, especially in control. This is
due to the reason that those systems come with mechanical complexity, where
both positions and forces have to be controlled properly (in a fast manner) and a
discrepancy between motor position and link position needs to be accounted for.
This opens up a large field of relevent topics for mastering this difficulty, such as:
nonlinear eigendynamics, stability analysis, sensor-integration, real-time-processing,
advanced control techniques by staying as close as possible to the natural behaviour
of the system, exploitation of eigendynamics in general. In this thesis, the focus will
lie on SEA-driven systems, with a particular focus to exploit the eigendynamics to
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Figure 2.2: DLR Bert (top) with its
compliant leg actuation
(bottom), adapted from
[24].

Figure 2.3: MIT Cheetah 3 jumping (≈
75cm) on a desk, adapted
from [22].

increase efficiency. The following sections will first introduce state-of-the-art control
strategies for a single joint SEA system, followed by an opening for fundamentals
of eigendynamics relevant for such a system.
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Variable Spring

Link

Stiffness Motor

Joint Motor

Figure 2.4: Anthropomorphic robot (DAVID) with its respective joint motors for compli-
ant actuation in its VSAs, where variable stiffness of the nonlinear elastic
element is adjusted via the stiffness motors.

2.2 Control of Elastic Robots

Although adding elasticity to a system through the integration of an SEA can
increase robustness, it directly leads to more complex control, as depicted in
Figure 2.5 where the link is physically decoupled from the motor. Thus, direct
actuation of the link is not possible and the introduced dynamics by the spring
require proper damping control. The focus of this thesis lies on investigating the
potential of SEA-driven systems. Following the SEA structure and the elastic
characteristics of a spring, this automatically introduces oscillatory dynamics in
the plant [12]. At the same time, motor and link are being decoupled from each
other, which directly results in an under-actuation of the link. Non-compliant
robots are usually fully-actuated, with transmission of the motor being directly
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Spring Link

JB

JM

Motor

Figure 2.5: Schematic of a single SEA.

tranferred to the link, causing no difficulties in this regard. However, for the control
of SEA systems, this has to be adapted properly in order to match this SEA based
under-actuation of the system.

In this section, we will first briefly introduce the mathematical representation
of an SEA link, followed by state-of-the-art approaches to control them by accom-
modating for the above mentioned challenged.

In the described SEA (Figure 2.5), JB and JM represent the motor- and link-
inertia respectively, with θ and q as their corresponding position variables, u as the
torque input to the motor and K as the spring stiffness. Thus, the spring exerts a
force τ according to

τ = K (θ − q) (2.1)

A model for the flexible joint can be derived by solving the Langrangian
Equations via the energies for the appropriate matrix properties, yielding to the
equations of motion for robots with multiple joints [27] [28]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + Lex , (2.2)
Bθ̈ + τ = τB . (2.3)

where M(q), C(q, q̇), B represent the link-side inertia, the coriolis and the
motor inertia matrix respectively. Gravity is denoted by the vector g(q) and the
external torques applied on the link are depicted as Lex. The applied forces on

8



the rotor of the motor result in the depicted motor torques τB. Since the testbed
possesses one joint, multi-Degree of Freedom (DoF) standard theory is not applied.
Besides, the robot is horizontally actuated with no manually external force Lex

being applied on the link. For this reason, coriolis-, centrifugal-, gravitational- and
external forces on the link can be ignored.

Let us propose an abbreviated version of the characteristic equations of motion in
(2.2) and (2.3), by postulating

JM q̈ = K (θ − q) , (2.4)
u = JB θ̈ + K (θ − q) . (2.5)

Here, these equations of motion are considerably shortened, according to the
characteristics of the investigated robot. Due to its implementation and environ-
mental contact in this thesis, some of the physical properties of the traditional
equations of motion (2.2) and (2.3) can be neglected. We will focus on the equations
(2.4) and (2.5) as a foundation of the controller design throughout this thesis.

One way to overcome the challenges introduced through spring decoupling in
an SEA and the under-actuation of the link, is a Passivity Based Control (PBC)
approach via motor-side control [29] [30] (Figure 2.6). The aim of this control
approach is to acquire link-side damping and tracking behaviour with minimal
influence on the plant dynamics.
This system requires a link-side tracking error

q̃ = q − qd(t) (2.6)

where the desired link position is regulated via a time dependent variable qd(t)
and the damping coefficient D suits its purpose with correspondence to the link-side
tracking error, in order to fulfill q̃ → 0 tracking. This design requires motor-side
impedance (Kpη & KDη̇) with the declaration of a new virtual motor coordinate η

in order to process the link-side damping and follow the desired trajectory. Details
about this feature will be explained in the following.
The PBC allows to establish impedance, but comes at cost of decreased elasticity,

9



Spring LinkMotor

JM
D ˙̃q

K

q̃η

KP η

KD η̇

K (η − q̃)

JB

Figure 2.6: Illustration of the PBC for motion tracking and damping assignment.

due to the original characteristics of the SEA plant being not preserved. The reason
behind this is that link-side damping is achieved through indirect damping control
via the motor-side and not directly via the link-side [12]. This performance issue
can be surpassed, by trying to adjust the control behaviour more to the original
behaviour of the SEA by preserving its plant. Therefore, recent innovative research
at Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Robotik und
Mechatronik (RMC) developed a new control approach preserving the elasticity
and keeping a dynamical behaviour of the link via the Elastic Structure Preserving
Impedance Controller (ESPi) [12].

Figure 2.7 demonstrates the ESPi control with link-side impedance by obtaining
the structure of the plant-dynamics. The desired system requires an introduction of
a virtual motor coordinate η, yielding to a new expression of the spring deflection
K(η − q). In addition, viscous damping on motor-side with Dηη̇ is introduced,
which makes it possible to damp the plant proportionally to the motor velocity. A
new spring Kq and damper Dq are proposed to realize link-side impedance with
a desired link-position qd. Hence, the proportional and derivative control can be
expressed with Kq(q − qd) and Dq q̇.

Characterizing the link mass dynamics of the original system (Figure 2.5)
combined with the desired impedance control (Figure 2.7), according to Keppler
et al. (2018) [12], yields

K(θ − q)︸ ︷︷ ︸
original system

= JM q̈ = K(η − q) − Dq q̇ − Kq(q − qd)︸ ︷︷ ︸
desired system

(2.7)

By equating the original and desired link mass dynamics, a solution for the
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Spring Link
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JB

qη

K(η − q)
JM

Kq(q − qd)

Dq q̇

Dηη̇

Figure 2.7: Illustration of the ESPi controller with link-side impedance, [12] adapted.

desired motor coordinate with respect to the virtual motor coordinate η and desired
equilibrium point of the link qd can be found. Equation (2.7) now leads to the
transformation equation by solving for η

η = θ − K−1(−Dq q̇ − Kq(q − qd)) (2.8)

Including deliberately the earlier proposed viscous damper Dηη̇ into the desired
motor dynamics as control input, leads to the main equation of the original motor
dynamics (Figure 2.5) and desired one (Figure 2.7)

JB θ̈ + Kθ − u︸ ︷︷ ︸
original system

= Kq = JB η̈ + Kη − Dηη̇︸ ︷︷ ︸
desired system

(2.9)

By inserting (2.8) into (2.9) the ESPi control law can be computed as

u = BK−1(−Dq
...
q − Kq q̈) − Dq q̇ − Kq(q − qd) − Dηη̇ (2.10)

As defined by [12], let the resulting closed loop dynamics be defined as

JM q̈ = K(η − q) − Dq q̇ − Kq(q − qd) , (2.11)
JB η̈ + K(η − q) = uvisc−damp = −Dηη̇ . (2.12)

With respect to its preserved flexibility, the ESPi controller manages to damp
proportional to its velocity on the motor-side and acquires link-side impedance
behaviour. Thus, dominated Kq elasticity and Dq damping enables the system
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to perfectly compensate external forces in its environment, while preserving a
valuable degree of elasticity [12]. The efficiency of this control strategy in real
compliant robots has been successfully shown in multiple applications [31] [32] [33].

Another control approach of elastic actuators with underactuated characteris-
tics is proposed by [34], introducing a human based generation of cyclic motions
(Bang-Bang Control (BB)).
Consider the earlier defined spring torque of (2.1) and satisfying the torque state
evaluation discontinously [35] [34] with

u =


+θ̂ if τ > ϵ

0 if − ϵ ≤ τ ≤ ϵ

−θ̂ if τ < −ϵ

(2.13)

The spring torque τ is compared to a fixed threshold value ϵ and a new motor
step position θ̂ is commanded. Based on a state-evaluation of torque feedback,
the motor-position is switched accordingly in order to create intrinsic oscillatory
motions. As the link passes its equilibrium point in rotation, lost energy of one
cycle is fed back into the system. Note that this is a linearized assumption and for
nonlinear systems conditionally true. Nevertheless, it has proven as a reliable and
robust concept in various experiments from the past [35] [36].

One great advantage of compliant systems is harnessing stored energy in springs to
realise highly explosive movements (i.e. running, throwing and jumping). Braun
et al. (2011) investigated the coordination of motion for a ball-throwing task, by
exploiting a specific impedance profile for highly compliant systems with VSAs
[26]. Figure 2.8 shows the Compliant Robot Design, the VSA and the according
task for the robot. Each joint contains one VSA, which is capable of concurrently
changing the equilibrium position (SERVO 1 ) and linear stiffness (SERVO 2 ) of the
torsion spring. Braun et al. (2011) define the differential equations in state space
and depict an optimization criterion to find a suitable control law. For solving
the non-quadratic quality functional and including the nonlinear plant dynamics,
the iterative linear quadratic regulator (iLQR) method is used. The task figure
shows the movement of the robot arm. At the peak of its acceleration the ball is
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Variable Stiffness Actuator

Compliant Robot Design Task

Figure 2.8: Depiction of the compliant robot design for a ball throwing experiment as an
explosive task (left), the robot possesses VSA joints and releases the ball at
peak acceleration (right) and the VSA design with two servo drive units for
concurrently changing stiffness and equilibrium point of the spring (bottom),
adapted from [26].

detached for a throw. This optimization lead to an increase of a 2 meter distance
in ball throwing, by simultaneously optimizing torque and stiffness of the springs
during motion, compared to utilizing fixed stiffness only. This evidence directly
concludes better performance of compliant robots when control is matched with
the respective eigendynamics of motion.

These findings are in line with the stated goal of this thesis, to investigate the
efficiency of different control approaches that exploit these intrinsic dynamics in
compliant systems. However, especially for more complex systems, it is not trivial
to derive the eigendynamics and develope an appropriate control strategy. Recent
work at DLR has extended the theory about intrinsic motions (i.e. eigenmodes) to
be applicable for the nonlinear case, yet this topic in its entirely is very complex.
Therefore, the scope of this thesis is limiting the system to the linear case with one
SEA joint, to tackle the challenge of finding and understanding controllers that are
suited for excitation of oscillatory motions in compliant systems.
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2.3 Introduction to Linear Mode Theory

The following introduction is based on the classical dynamics in [37] [38] and
introduction to (nonlinear) modes in [39]. Linear modes and oscillations cover
a large application field i.e. molecular, solid-state physics and field theory [37].
Besides, one can find normal modes in a variety of different applications and
systems, especially in the engineering domain. We refer to normal modes, when
all components of a system are sinusoidally excited and reach the characterstic
eigenfrequency of the total system. Usually, this is something we want to prevent
in our designing process, e.g. bridges, machines, noise vibrations. However, in
compliant robotics, there might actually lie potential in exploiting the eigendynam-
ics of a system, i.e., by charging a spring element to jump higher or minimizing
control effort by using the intrinsic motion of the system. Thus, understanding and
shaping normal modes in robotic systems can inspire new control approaches and
potentially improve and extend the application field of compliant robots drastically.

To derive the linear normal modes of a mass-spring-system, we can regard the
involved energies. Consider the Euler-Langrangian L ≡ T − V equation with its
kinetic (T ) and potential (V ) part. Since stable equilibrium positions are the key
factor for linear oscillation systems, we refer to those positions in a dynamical
system as q0. Therefore, the overall link position can be defined with q = q0 + x,
where x represents a small displacement from q0. One can solve the oscillation
with the Taylor Linearization Method (V (q)) by finding the minimum at q0 of q,
with

V (q) = V (q0) + V ′(q0)x + 1
2V ′′(q0)x2 + ... (2.14)

Since q0 already represents the minimum of V , the first derivative part V ′(q0)x
can be removed. Following the same procedure for the kinetic energy with ζ(q) as
some function of q, under the consideration of q̇ = ẋ, the approximation of the
Langrangian expression becomes

L ≈ 1
2ζ(q)q̇ − 1

2V ′′(q0)x2 − V (q0) ≡ 1
2mẋ − 1

2kx2 − V (q0) (2.15)

By solving the derivatives of the Euler-Langrangian Method, we receive the
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Figure 2.9: Illustration of a linear system with two DoFs, adapted from [39].

second-order equation of motion, which also directly reveals us the circular frequency
fHz.

ẍ + km−1 = 0 −→ ẍ + (fHz)2x = 0 (2.16)

We introduce the normal modes with a state space example from [39].

In Figure 2.9, two masses are connected to a spring and the system has two
DoFs with parallel movement enabled. The masses m1 and m2 are connected to
each other through linear springs k1, k2, k3. Consider x1 and x2 as the positions of
the two masses, respectively. The linear mechanical system is defined with the time
evolutions x : R → Rn, where the potential field is quadratic and all functions
fulfill a set of ordinary differential equations [39].

The system dynamics of the 2-DoF spring-mass system can overall be defined as
Mẍ + Kx = 0, with M as the inertia matrix and K as the stiffness matrix. In this
case we extend the linear proposed system in (2.16) to a 2x2 system. By defining
the given parameters k1 = α(1 + δ), k2 = αk, k3 = k, m1 = (1 + δ)m, m2 = m with
δ > −1, α > 0, k > 0, m > 0, the differential dynamic equations of the presented
linear system can be described in state space as

m

1 + δ 0
0 1

 ẍ1

ẍ2

 + k

1 + α(δ + 1) −1
−1 1 + α

 x1

x2

 =
0
0

 (2.17)

A closer examination of the exemplary state space system points towards a linear
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superposition of motions, which can be scrutinized by calculating the normal modes
via the corresponding eigenspaces. To find those, one has to uncouple the oscillators
to find linear combinations of x. Let us change the earlier proposed equations
of motion in (2.16) and satisfy the 2x2 system with Λ ≡ M−1K. Since finding
the eigenvectors requires the diagonalization of Λ, when at the same time a M−1

solution exists, we can solve the characteristic eigenvalue equation with

Λ x = λ x (2.18)

in order to get

ẍ = −λ x ≡ −(fHz)2 x (2.19)

The normal frequencies represent the square roots of the eigenvalues (fHz =
√

λ)
[37]. Hence, the normal modes are described via the complex exponentials of the
respective eigenvalues. Solving the eigenvector problem gives us the solutions for
our two normal modes

x2 = x1 , (2.20)
x2 = −(1 + δ) x1 . (2.21)

In the first normal mode x1 equals x2, with both variables being positive,
resulting in an in-phase vibration of the masses, as depicted in Figure 2.10 a).
The second normal mode on the other hand shows 180◦ out of phase behaviour,
see Figure 2.10 b). In [39], the mass distribution between m1 and m2 is tweaked
to analyze two cases: (m1 = m2) & (m1 > m2). In the first case, phasic and
anti-phasic result in equal amplitudes for x1 and x2, but for the second case the
behaviour differs. The phasic trajectories are amplified only. The anti-phasic
ones are not only increased, yet also result in a higher x2 amplitude compared to
x1.

The presented 2-DoF mass spring system served as an introduction of the theory.
However, it does not represent the SEA system considered in this thesis. Although
the motor mass of the SEA unit is usually small in comparison to the link-side and
thus neglected, we here focus on a scenario where the magnitude of motor and link
inertia is in a comparable range. In this case, we can compare the two presented
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a) b)

Figure 2.10: Illustration of a linear system with two degrees of freedom with a) in-phase
and b) anti-phase normal mode, adapted from [39].

JB JM

k

x1 x2

Figure 2.11: Physical schematic of an SEA system for frequency analysis with two outer
masses JB and JM , connected by a spring with stiffness k.

masses m1 and m2 with the motor inertia JB and the link inertia JM shown in
Figure 2.5, respectively. Similar to the linear mode example in Section 2.3, we
now consider a one-spring-two-mass system receiving the depicted schematic in
Figure 2.11.

The Langragian differential equations can be computed with

L = [T ] − [V ] =
[1
2JBẋ1

2 + 1
2JM ẋ2

2
]

−
[1
2k(x2 − x1)2

]
(2.22)

where the coordinates of the masses are denoted with x1 and x2 respectively.
Solving the Euler-Lagrange d

dt

(
∂L
∂ẋi

)
= ∂L

∂xi
, the definition of the differential equations

in state space yields
JB 0

0 JM


︸ ︷︷ ︸

M

ẍ1

ẍ2

 + k

 1 −1
−1 1


︸ ︷︷ ︸

Γ

x1

x2

 =
0
0

 (2.23)

where M and Γ represent the inertia- and stiffness property matrices, respec-
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tively. Note that this is a simplified model, friction, stiffness, damping, motor-side
impedance and various other influences are being neglected in order to get a first
glimpse on the harmonic oscillation of the system. The calculation of the eigenvec-
tor can be done via solving the characteristic equation (2.18) and therefore leading
to

Λ = k

 J−1
B −J−1

B

−J−1
M J−1

M

 → λ =
 0
k(JB + JM)(JBJM)−1

 (2.24)

Since the first eigenvalue is 0, the 2-DoF system can only oscillate with the
effective mass. The respective eigenfrequency is according to

ω2D =
√

λ2 = 1
2 π

√
k(JB + JM)

JBJM

(2.25)

The eigenfrequency of an SEA system, where the motor mass is also in motion,
would thus be expected to be ω2D. In addition to this, we also regard the case in
which the motor is held relatively static, mainly holding JB and only moving little,
as this is a widely spread strategy in actuation. To evaluate the resonance frequency,
when the motor position θ is fixed, the Langragian system can be reduced such
that JM is connected to a fixed wall, i.e., only 1-DoF remaining. The resulting
differential equation can be computed as JM ẍ + kx = 0. For this case, the 1-DoF
eigenfrequency becomes

ω1D = 1
2 π

√
k

JM

(2.26)

In summary, we derived two relevant eigenfrequencies (ω1D and ω2D) for the
investigated SEA system. The 1D principle considers the motor as mainly static,
only moving little to excite the link-side dynamics. As this is in contrast to the 2D
case, where a control approach with large motor mass movement is chosen in order
to achieve the link oscillation. We will revisit the eigenfrequencies in Chapter 3
and Chapter 4.

2.4 Inertia Shaping

In the previous section, we discussed normal modes of a linear system ∈ R2x2. As
seen from the analytical derivation, the trajectories and frequencies of these modes
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Spring LinkMotor

JMKKP

KD

τ = K (θ − q)

JB

τ

JB −→ JB′

qθ

Figure 2.12: Exemplary depiction of a PD-controlled SEA with spring torque feedback τ

for inertia shaping of the motor.

depend on the stiffnesses in the system and the ratio of the masses. Although it is
not possible to change these parameters physically on a hardware system, control
concepts can be used to virtually alter them. One such concept is through inertia
shaping [40] [41], where the behavior of the system can be shaped by adding a
feedback of the attached spring torque. The motor inertia remains in its physical
characteristics unchanged, but the motor torque tries to match a specific target
requirement in order to compensate its weight property.
This section will cover the control of SEAs in terms of shaping the motor inertia
based on the research from [40].

Consider the earlier proposed system with its generalized equations of motion
(2.2) and (2.3) and Figure 2.12 with an exemplary schematic of a PD-controlled
SEA. Let us assume a scenario where link-side force is externally aplicated and
the motor inertia JB is much higher compared to the link inertia JM . Hence, the
motor position θ would result in less movement. Inserting a negative feedback of
the joint torque τ enables to scale the motor inertia in such a way that the system
is able to follow a desired dynamical behaviour.

Under consideration of [40] and the earlier shown SEA dynamics in equation (2.5),
the feedback with insertion of a new motor inertia JB′ can be expressed as
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u = JB J−1
B′ u′ + (I − JB J−1

B′ ) τ (2.27)

where u′ serves as the new control input for the equations of motion.

This method allows us to successfully alter the inertia of systems in order to
achieve certain behaviours in terms of dynamics or trajectory planning. Thus
resulting in advantages such as high accracy, exceptional tracking performance and
larger design freedom, e.g., regarding pole placement, controller design [41]. We
will exploit the benefits of this control approach in Chapter 5, where a specific
hardware experiment is conducted in order to investigate characteristics regarding
the 2D control. The analyzed results will provide an overview in comparison to
different physical motor inertia properties in simulation.
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3 Control Theory Approaches

The objective of the following chapter is the introduction of the controllers applied
in this thesis. As initially stated, the goal is to derive and implement control
methods that excite and stabilize intrinsic oscillations in a robotic system with
one SEA-joint. For this purpose, three control approaches have been investigated,
either solely exciting the link-side dynamics or exciting the link-side in a 2-DoF
spring-mass manner, by adding the motor-side motion. Specifically inspired by the
mode theory, the question arose whether benefits can be gained from exploiting
the motor inertia, instead of link inertia only, which intuitively seems useful for
systems where the motor mass is higher than the link mass. The tested control
approaches were compared to the state-of-art ESPi control, introduced in the
previous Chapter 2. Each of the investigated control strategies and its derivation
are presented in the following.

3.1 1M −T (racking): One-Dimensional Oscillatory
Motion

The first approach considers the excitation of the link-side dynamics only, by
applying classical link-side resonance excitation of 1D SEA systems and following a
tracking control design (1 Mass-Tracking (1M -T )). The goal of 1M -T is to achieve
oscillatory movement of the link by regarding the motor-side as an (almost) static
wall and achieve this behaviour by means of a tracking controller. As this requires
declaration of a motor position control error θ̃ = θ − θd, which will be introduced
later, see Figure 3.1.
Since the motor-side desired behaviour is now defined, we can start implementing
the link-side concept. Figure 3.2 shows the desired control for the link behaviour.
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Motor

JB

θ̃ → 0

Figure 3.1: Graphical representation of the desired motor-side behaviour of the 1M -T
control design.

Link

JM

fq

(θ − θd) −→ 0

Figure 3.2: Graphical representation of the desired link-side behaviour of the 1M -T
control design.

The introduction of a new control symbol, located below the spring, depicts the
desired excitation. We propose excitation of the link by regulating the energy to the
system with γ(q, q̇). Here, γ serves as a state dependent variable of link-position
and -velocity, which is realized over a real-time energy feedback. Via this approach,
we can prevent infinite excitation and ensure stability. The state dependency and
its energy feedback will be explained shortly hereafter. For now, we present the
link excitation with the expression

fq = γ(q, q̇) q̇ (3.1)

Consider Figure 3.3, where the 1M -T control design is depicted. The derivative
part KD θ̇ is damping proportionally to motor velocity and KP θ̃ is constraining
the motor movement via the control error θ̃, see (3.4). We can define the desired
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Spring Link

JB

Motor

JMK

qθ

KP θ̃

KD
˙̃θ

K(θ − q)

θd = q0 + K−1fq︸ ︷︷ ︸

Figure 3.3: Graphical representation of the 1M -T control design with link-side excitation
and stiff actuated motor-side impedance.

link dynamic behaviour in (3.2), which directly corresponds to the mass dynamics
law with the relation of the original- and desired-system. Notice that, q0 represents
the equilibrium position variable of the desired link motion, q and θ the link- and
motor-position variables, respectively. For simplicity the energy input along the
link velocity (γ(q, q̇) q̇) will be replaced with fq in the following.

JM q̈ = K (q0 − q) + fq (3.2)

By equating the original system (2.4) with the desired one (3.2), we solve for
θ and receive the desired motor position θd for the proposed control method of
link-side excitation. Thus, being provided with a transformation equation for the
computation of a valid control law

θ = θd = q0 + K−1 fq (3.3)

It is essential to point out that the excitation in this approach is mainly achieved
through stiff actuation of the motor, with the introduction of the following motor
position control error

θ̃ = θ − θd (3.4)

Moreover, a definition of the desired motor-side behaviour is necessary to
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assure stiff impedance and little motor movement with the following desired motor-
dynamics law

JB
¨̃θ + KD

˙̃θ + KP θ̃ = 0︸ ︷︷ ︸
desired behaviour

(3.5)

We choose θ̃ to maintain θ̃ → 0 for t → ∞ and equate the dynamics to 0.
By fulfilling the proposal from equation (3.5) with correspondence to the original
motor dynamics (JB θ̈ + K(θ − q) = u), from the earlier presented SEA-system in
Section 2.2, we can derive the final control law

u = JB θ̈d + K (θ − q) − KD
˙̃θ − KP θ̃ (3.6)

The proof of concept is followed by equating the original system properties
(2.5) with the final control law (3.6), thus receiving the desired behaviour in (3.5).

As already indicated, taking a closer look at term (3.1) reveals instability through
constantly adding energy with the state dependent factor γ. To overcome this
difficulty, we present an excitation control method, by calculating the energy in the
system in order to limitate the enery delivery. Hence, the one dimensional energy
of the link is calculated via

Emsr−1D = 1
2 K (θ − q)2 + 1

2 JM q̇2 (3.7)

This can now be compared to the desired energy, what directly yields to a new
calculation of the excitation

fq−1D = (Ed − Emsr−1D)︸ ︷︷ ︸
γ(q, q̇)

q̇ (3.8)

where Ed represents a constant and Emsr−1D the energy feedback calculation.
Consider the earlier desired link behaviour (3.2), where γ(q, q̇) promptly reveals
two dimensional state dependency for our desired eigenmode. As q and q̇ pass the
equilibrium, the state of energy input switches accordingly in order to excite the
link into both directions of movement.

24



Spring Link

JB

Motor

JMK

qη

KP η̃

KD η̇

K (η − q)

fq = γ q̇

fqηd

Figure 3.4: Graphical representation of the 1M − E(Sπ) control design with link-side
excitation, desired virtual motor coordinate and motor-side behaviour.

By computation of the required derivatives of equation (3.7) for control, 1M -
T successfully achieves intrinsic oscillatory frequency movement of the link via
motor-side tracking control.

3.2 1M − E(Sπ) based Periodic Excitation
Another approach to exploit the dynamics in our presented SEA-system, is based
on the earlier presented ESPi controller of Section 2.2. Instead of locking the motor
position via tracking control of (1M -T ), the goal of 1 Mass ESπ-based Periodic
Excitation (1M − E) is to guarantee desired behaviour of motor dynamics with
the introduction of a desired virtual motor coordinate ηd. Moreover, ηd enables
the user to control the equilibrium coordinate of the oscillatory motion on the
motor-side, see Figure 3.4.

Consider the presented system from Figure 3.4, we can start deducing the desired
mass dynamics for the link and motor with respect to η̃ = η − ηd, yielding
therefore

JM q̈ = K (η − q) + fq , (3.9)
0 = JB η̈ + K(η − q) + KDη̇ + KP (η − ηd) . (3.10)

η represents the virtual motor coordinate of the desired control, KDη̇ and
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KP (η − ηd) the motor-side impedance, respectively. Equation (3.9) directly leads to
the characteristic link mass equation of the original and desired link-side behaviour
with

K(θ − q)︸ ︷︷ ︸
original

= K(η − q) + fq︸ ︷︷ ︸
desired

(3.11)

and solving this for η in order to get the tranformation equation

η = θ − K−1 fq (3.12)

In addition, we can equate the motor-mass dynamics (see (3.10) and (2.5)) by
solving

JB θ̈ + Kθ − u = JB η̈ + Kη + KDη̇ + KP (η − ηd) (3.13)

Finding the derivatives of the transformation equation and inserting them into
(3.13), a solution for the required control law is found

u = K−1 JB f̈q + fq + KP (K−1fq − θ + ηd) + KD (K−1ḟq − θ̇) (3.14)

1M − E enables us to choose a desired motor position, also letting us control
motor-side impedance directly via proportional and derivative parameters. Similar
to the ESPi, the 1M − E preserves the elastic structure of the plant. As this is a
vital point for reaching intrinsic oscillatory frequency of the link. The excitation is
solved via a one dimensional energy solution with two dimensional state dependency
γ(q, q̇), as presented in Section 3.1 for the 1M -T .

3.3 2M − V (elocity): Two-Dimensional Oscillatory
Motion

The previous presented control approaches are based on the principle of considering
the resonance frequency of the link mass only. However, based on the idea that
it might be beneficial to exploit the dynamics of the motor inertia in some cases,
another control approach is investigated. In this approach, the SEA is regarded as
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a two mass system, similar to the depicted figure in Section 2.3 (Figure 2.9). The
goal is to derive a strategy such that the inertia of both motor and link can be
exploited, which is suspected to be especially useful when the motor inertia JB is
(much) bigger than the link-side inertia. This design preference will be referred to
as the 2 Mass-Velocity Excitation (2M − V ), based on [42].

Instead of demanding stiff motor-side actuation for the excitation, we rather
seek to expand the movement of the motor mass in order to evaluate the efficiency
regarding a potential exploitation of the motor inertia. The implementation of an
accelerator fq is realized via an excitation of the system along the link velocity q̇.

Derived from the presented SEA in Figure 2.5, we can compute a valid control
law

u = fq = γ(q, q̇, θ, θ̇) q̇ (3.15)

Similar to the energy management of the 1M -T and 1M − E, we focus on
the computation of the total energy of the system for the 2M − V , instead of
focusing on the link inertia only, since both motor- and link-inertia are being excited.

Thereby, letting us calculate the energy of the system

Emsr−2D = Etot = 1
2 K (θ − q)2︸ ︷︷ ︸

potential part

+ 1
2 JM q̇2 + 1

2 JB θ̇2︸ ︷︷ ︸
kinetic part

(3.16)

which at the same time represents the total energy Etot of the given SEA system.

Note that here, state dependency for excitation is four dimensional γ(q, q̇, θ, θ̇)1.
Likewise in the previous control concepts, we compute an energy error for reaching
a desired level with

Ẽ = Edes − Emsr−2D (3.17)

where Edes is representing the desired energy for control.

1see Section 3.1 for further information
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By calculating fq, under the assumption of Ẽ → γ(q, q̇, θ, θ̇), we can successfully
prevent infinite oscillation of the link.

As one may intervene regarding the stability of the presented desired dynam-
ics, we must adjust the proposed control law in order to prevent the system from
position drift.
Therefore, we tend to realize control via decoupling the nature of the given SEA into
two one-body problems for equations of motion in new coordinates. We introduce
the calculation of the spring equilibrium point via

ϕ = θ − q (3.18)

and the Center Of Mass (COM) position as a generalized coordinate of the
system with total inertia JMB ( = JM + JB).

ξcom = JM q + JB θ

JMB

(3.19)

The kinetic energy of the excitation (of both motor- and link-inertia) [42] is
given by the new coordinates with

Ekin = 1
2 JMB ξ2

com + 1
2 (Ψ ϕ̇2 + K ϕ2) (3.20)

where the combined inertia JMB swings with the velocity of the COM position
and Ψ suits as the reduced mass with relative position movement, fulfilling

Ψ ≡ JM JB

JMB

< min(JM , JB) (3.21)

This derivation enables us rewriting the equations of motion for this ap-
proach

JMB ξ̈com = u , (3.22)

Ψ ϕ̇ + K ϕ = JM

JMB

u . (3.23)

For control of the presented ξcom signal, we consider Proportional Integral
Derivative Control (PID) with respect to the equilibrium position q0 of the system,
resulting in the control error ξ̃com = q0 − ξcom. Figure 3.5 depicts the desired
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JM
JB

−γϕ̇Ẽ

ξcom

PID

a)

b)

Ψ

ϕ

PID

(JM/JMB) u

−γξ̇comẼ

−γϕ̇Ẽ

Figure 3.5: Graphical representation of the desired excitation control with coordinate
transformation for the 2M − V (elocity): a) showing the first body problem
with control of the combined mass JMB and b) the second body problem
with the proposed control of the reduced mass Ψ.

behaviour for the 2M − V approach. The SEA is transformed into a two-body
problem, according to the previous denoted equations of motion (3.22) and (3.23).
Goal is to excite the total mass JMB in Figure 3.5 a), while bottom figure b) shows
the control of the reduced mass Ψ oscillating about a fixed center. Here, the velocity
is based on the relative position. We can introduce the required control law with a
stable equilibrium point and oscillatory movement with

u = ξ̃com − γ(q, q̇, θ, θ̇) ϕ̇ Ẽ (3.24)

The 2M − V successfully manages to excite both motor- and link-mass, thus
reaching the combined intrinsic oscillatory frequency (2.25) of the system. This
directly leads to an increase of the motor velocity θ̇ and therefore opens a path for
potential inertia exploitation. Based on this novelty, we want to examine the field
of efficiency increase in the following.
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4 Validation

In order to validate the presented controllers and investigate the benefits of each,
simulation and hardware experiments were carried out, which are presented in the
following. For these experiments a single joint SEA based robot (SOFTY [43]) is
used, on which the three different control approaches introduced in the previous
chapter are implemented. We first give an overview of the system and carried out
experiments to characterize the dynamics behavior of the hardware. Characteristics
regarding eigendynamics are analyzed and following we compare the investigated
control approaches, in simulation and in actual hardware experiments.

4.1 Elastic Robot Testbed SOFTY

The elastic robot testbed SEA-based robot with one link (SOFTY) (Figure 4.1) is
used in this thesis to compare the derived control approaches. The link is attached
to a belt drive, which incorporates two parallel springs to realize the elasiticity of
the system, amounting to a linear stiffness value of 362 N/m. The inertia of the
motor mass is 0.598 kg m2, while the center of mass of the link is manipulated such
that the link’s intertia is 1 kg m2. The controller sample time equals 0.000333 s.
All relevant parameter values are summarized in Table 4.1.

As stated in Chapter 2, no gravitational effects need to be reconsidered due
to horizontal movements only. The used actuator is a single joint of a DLR Light
Weight Robot (DLR-LWR), where a Brushless DC Motor (BLDC) motor is coupled
to a harmonic drive gear, mentioned in the following as Electro-Magnetic Actuator
(EMA). Motor positions and velocities are recorded through the internal sensors of
the EMA system, and an additional sensor on the link-side allows the tracking of
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q
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Figure 4.1: SEA-based robot SOFTY with horizontal movement of the motor-position θ

and link-position q, the inertia of the motor- and link-side are denoted JB

and JM , respectively, and the connecting spring has the stiffness K.

Table 4.1: Main parameters of SOFTY.

Parameters Values Unit

Motor Inertia (JB) 0.598 kg m2

Stiffness of Mechanical Spring (K) 362 N/m
Link Inertia (JM) 1 kg m2

Physical Damping (D) 1.7209 N s/m
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Table 4.2: Theoretical values of the eigenfrequency of two systems with their correspond-
ing control methods, ω1D representing a one-mass-spring system connected to
a wall and ω2D a two-mass-spring system as depicted in Figure 2.11.

Theoretical Resonance Frequency Values Unit

ω1D of Link (1M -T & 1M − E) 3.028 Hz
ω2D of Link and Motor (2M − V ) 4.950 Hz

the respective link measurements. Thus, the spring torque τ according to (2.1) can
be calculated in the control loop. To additionally measure the motor current as a
parameter to quantify the expended physical work, a EL3681 EtherCAT sensor
was added. The current to the motor is measured at 50 Hz sampling frequency.
Since the testbed is running on 3 kHz the behaviour of the current signal is not
analyzed in detail, instead the mean value over the complete measurement is ana-
lyzed for each control approach. The robot-communication is based on real-time
computing over the MATLAB® Simulink Coder™. Therefore, following simulations
and hardware implementations are realized via Simulink.

The main objective of this thesis is to investigate different control strategies
that make use of the intrinsic dynamics of a system and compare whether or not it
has an advantage to also make use of the motor dynamics. In order to validate
whether the intrinsic dynamics of the hardware are supported, the SOFTY system
is first characterized and the normal modes analytically derived. When assuming
the motor mass to act as a wall, such that only the link dynamics are excited, the
eigenfrequency is defined by (2.26) (with k = K). This results in an eigenfrequency
of 3.028 Hz. When also trying to exploit the motor mass, the system becomes a
2-DoF sping system (explained in Chapter 2) and the eigenfrequency is defined
by (2.25). The eigenfrequency of the 2D system results in 4.950 Hz. Both values
with the respective relevance for the investigated controller are summarized in
Table 4.2. While it is expected that the 1M -T and 1M − E approch will excite
the 1D-eigenfrequency of the system, the 2M − V controller should result in an
oscillation close to the 2D-eigenfrequency.
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Figure 4.2: Normal mode characterization of SOFTY: frequency sweep of sinusoidal
motor position θ trajectory command (left) and the resulting link position q

(right) with highest output colored in turquoise.

For validation of those results, a frequency sweep was applied on the SOFTY
hardware in motor position control mode. A sinusoidal trajectory for θ was com-
manded with a fixed amplitude of 0.01 rad with continuously increased frequencies
from 2 Hz to 4.2 Hz in 0.1 Hz steps. The 2D harmonic frequency (of 4.7 Hz)
could not be tested via this approach, due to physical property restrictions of the
possible angles of q.
Figure 4.2 depicts the commanded motor position θ (left) and the resulting link
position q (right). The peak amplitude is marked in turquoise, indeed arising at
the expected eigenfrequency of 3 Hz for the case of neglectably little movement of
the motor mass.

Figure 4.3 shows the visualization of a number of interesting values. In the
following context, we will refer to W variables as physical work of transferred
energy from one system to another and to E ( = energy) as the ability of a system
to perform work. The most outer left panel depicts the system energy Wsys per
period over the corresponding frequency value of θ. The system energy is defined
to be the energy between the motor and spring of the SEA via

Wsys =
∫

Psys =
∫

θ̇ τ (4.1)

As seen in Figure 4.3, the energy delivered to the spring peaks in the SOFTY
testbed at the expected eigenfrequency of 3 Hz, since the link mass is only excited
little in comparison to the link. For the phase lag ∆ϕang between the motor and
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Figure 4.3: Normal mode characterization of SOFTY: calculation of system work Wsys

per period (left), phase difference ∆ϕang (middle) between θ and q & motor
energy Em per period (right).

the link position, a flip can be observed when the eigenmode is hit. Initially
moving in phase, the motor link starts to move increasingly in anti-phase above
the eigenfrequency.

The kinematic motor energy (Figure 4.3 right) defined by

Em = 1
2 JB θ̇2 (4.2)

shows a minimum at the eigenfrequency resulting from the minimal movement
of the motor for this value. Note that the total energy of the system is defined
by the potential and kinetic energy parts of the SEA, denoted in (3.16), which we
rename for analysis purpose in the following as Etot = Emsr−2D.

Table 4.3 gives an overview of the measured and calculated values, which will
be utilized throughout the analysis and for comparison of the various control
approaches. We evaluate the measured current reaching the motor imsr via electric
power and energy consumption. Velocity and acceleration are being numerically
differentiated. The commanded torque ucontrol represents the torque commanded by
the controller and is directly forwarded to the friction observer. The implemented
friction observer [44] is based on joint torque measurement and depicted in Figure 4.4
as signal flow diagram. The general observer dynamics are defined by
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ucmd = ucontrol + Q̂a
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Figure 4.4: Signal flow diagram of the friction observer implementation in Simulink,
with the friction estimation Q̂a, the observer feedback value L > 0 and the
estimation error of the motor velocity ˙̃θ = ˙̂

θ − θ̇, adapted from [44].

ucmd = ¨̂
θJB + τ + L JB ( ˙̂

θ − θ̇)︸ ︷︷ ︸
Q̂a

(4.3)

where the estimation error of the motor velocity is ˙̃θ = ˙̃θ − θ̇ and Q̂a the friction
estimation.

Note that the final processed signal to the actuator ucmd has friction compensation
included, whereas the generated torque of the controller ucontrol does not, since
ucmd = ucontrol + Q̂a. This will be revisited as part of the following analysis about
the controller comparison.
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Table 4.3: Overview of experiment signals for analysis and comparison of the control
approaches.

Type Symbol Formula * Unit

Measured Current imsr [mA]
Electric Power Pel Pel = imsr 48V [W]
Work of Motor Wel

∫
Pel [Ws]

Power of System Psys θ̇ τ [W]
Work of System Wsys

∫
Psys [Ws]

Commanded Torque ucontrol [Nm]
Commanded Torque Peak ûcontrol [Nm]
Friction Observer Commanded Torque ucmd [Nm]
Fr. Obs. Commanded Torque Peak ûcmd [Nm]
Amplitude of Motor/ Link θ̂/q̂ [rad]
Amplitude Difference ∆â q̂ − θ̂ [rad]
Rotor Velocity θ̇ [rad/s]
Rotor Acceleration θ̈ [rad/s2]
Link Velocity q̇ [rad/s]
Link Acceleration q̈ [rad/s2]
Frequency of Link ωq 1/T [Hz]
Phase Difference ∆Φang [π]
Friction Evaluation µobs

∫
Q̂a θ̇ [Ws]

Desired Link Position for ESPi qd [rad]
Number of Periods in Measurement np

* measured and numerically calculated signals are left out
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4.2 Experimental Procedure

In order to investigate the behavior and resulting performance of the system for the
different derived control strategies introduced in Chapter 3, they were implemented
in the SOFTY hardware testbed within the existing Simulink control architecture.
Since we expect the different controllers to excite different frequencies, we had to
define a specific control goal for comparison, which, for the time being, was not
dependent on the frequency. This goal was inspired by a “pick-and-place task”,
as could be needed in an industrial setting. Thus, we defined a motion range of
q̂ = 0.05 rad for the link-side trajectory with a control goal of ≈ 5% ˜̂q deviation
and tuned the control parameters for each strategy accordingly. As mentioned,
for this initial investigation of the controller perfomance in context of this thesis,
we regard the resulting frequency of the system of neglectable importance, but
are aware that it needs to be considered for a real application. Additionally the
amount of physical work per timestep or per period of a mean steady state period
is calculated for the friction estimation torque (

∫
Q̂aθ̇)/∆t, in order to quantify the

inbound friction.

In order to not only compare the introduced control strategies with each other,
but also quantify them with regard to existing state-of-the-art methods to carry
out oscillatory motions with a compliant system, additionally ESPi controllers
(explained in Chapter 2) were implemented in the SOFTY testbed. The ESPi,
control parameters were tuned such that the same amplitude was reached as defined
for the control goal. The frequency was varied to be 0.3, 3 and 4.7 Hz to draw a
comparison in control, for which the ESPi was developed, as well as an approach
where the identified eigenfrequencies of the 1D- and 2D-system were hit. Here, we
require qd, as the desired link position of the ESPi control for sinusoidal trajectory
input (see Chapter 3).
To record the data analyzed for the comparison of the controllers, the system was
initialized with each controller tuned to achieve the given amplitude task. The
transient time was not included in the investigation and comparison. Once the
system had reached a stable amplitude, the system measurements were recorded.
From these recordings, we averaged 25 periods and calculated the metrics presented
in Table 4.3.
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The same procedure was applied for simulation experiments of the system to
take into consideration the system under ideal conditions with no apparent fric-
tion.

4.3 Experimental Results
In the following, the results of the simulation and hardware experiments to compare
the applied control approaches will be presented. Table 4.4 gives an overview of
characteristic values in order to identify the control behaviour with the desired
pick-and-place amplitude. Figure 4.5 shows the measurement results of motor
position signals θ and link position q. The transient time is not specifically analyzed
in the scope of this thesis, it is shown for the simulation to provide quantitative
additional information, which could be analyzed in further studies.

As expected, Figure 4.5 shows that for the 1M controllers, the motor only moved
marginally leading to a high amplitude difference ∆â between the motor position
and the link position. In line with the theory, the 2M − V approach additionally
excited the mass of the motor and showed anti-phasic movement. Comparing the
simulation and the hardware results for the 1M -T controller (Figure 4.5, top),
indicated that the motor amplitude is slightly higher in the hardware than computed
in the simulation, which is caused by the required friction compensation. This
also corresponds to the desired behaviour where stiff control of the motor JB with
relatively high KD and KP was chosen. A similar pattern can be observed with
1M − E (Figure 4.5, middle), where the amplitude of θ is slightly larger than for
the 1M -T , but still comparatively small with respect to the link-side motion. The
reason behind this is that impedance of 1M − E is chosen to be less stiff and the
control approach preserves the elasticity of the plant (see Chapter 3).

The previous theoretical calculation of the 1D oscillation frequency ω1D of 3 Hz

corresponds well to the simulated- and hardware-tested values ωq.
For the 2M − V the observed oscillation frequency of the hardware is with

ωq ≈ 4.7 Hz slightly lower than compared to the theoretical (ω2D ≈ 4.950 Hz)
and simulated (ωq ≈ 4.946 Hz) values. The reason for this reduced eigenfrequency
most likely arises from losses and imperfections, causing more damping with higher
velocities in the system.
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Figure 4.5: Measurement results of the three different control approaches for resonance
excitation, θ and q as motor position and link position, respectively.

The descriptive values established that the controllers work as expected and excite
the systems along the intended resonance frequencies. Since neither the oscillation
frequency nor the specific motor amplitudes or torques were deemed as limiting
factor. In the following the perfomance of the controllers will be compared with
regards to the carried out physical work. This will only regard the needed control
input to drive the already excited system oscillation and neglect the transient time
period.

Figure 4.6 shows on the left hand side the commanded torques (ucontrol) to the
hardware of the different controllers, as well as the friction compensated torques
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Table 4.4: Overview of parameter values for analysis and comparison of simulation vs.
hardware, as a first glimpse on the main behaviour of the presented controllers.

Controller Parameter Simulation Hardware Unit

1M -T ωq 3.029 3.014 Hz
q̂ 0.049 0.053 rad
∆â 0.049 0.050 rad
∆Φang N/A 0.325 π

θ̇ peaks +0.007/-0.007 +0.084/-0.101 rad/s

1M − E ωq 2.960 2.938 Hz
q̂ 0.050 0.049 rad
∆â 0.048 0.043 rad
∆Φang -0.024 0.237 π

θ̇ peaks +0.041/-0.041 +0.148/-0.138 rad/s

2M − V ωq 4.946 4.697 Hz
q̂ 0.053 0.052 rad
∆â -0.034 -0.022 rad
∆Φang 0.995 0.977 π

θ̇ peaks +2.539/-2.565 +2.201/-2.191 rad/s

(ucmd). On the right hand side, the system power is calculated, based on (4.1).
Table 4.5 gives a brief overview of all metrics calculated for performance compari-
son. The comparison of these metrics reveals that the mean electric energy of the
motor Wel per period has the highest value for the 2M − V controller. We can
also tell from Table 4.5 that more energy is in the system when commanded by
the 2M − V controller compared to the 1M-approaches, as indicated by the Wsys

values. This is because 2M − V induces far more energy into the spring. Hence, by
storing it, the required torque (for keeping the swing “alive”) is drastically reduced
(Figure 4.7).

Consider Figure 4.7, where 20 periods of the ucontrol signal are depicted (in black)
and τmsr of a sensor is depicted over 20 periods in grey.

Taking a closer look at the torque measurements of the motions excited through
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Figure 4.6: Commanded torque ucontrol, the commanded torque with friction observer
ucmd (left) and system power Psys (right), with 20 periods (grey) and their
mean signals (colored) respectively.

the different controllers shows an interesting observation. While for the 1M -T and
1M − E controller the commanded torque ucmd matches the torque that is arising
in the system on the spring side, the same is not true for the 2M − V controlled
system. Here, the system torque τ clearly deviates from the commanded torques.
The reason is that for this particular static motor case of the 1M approaches, the
motor inertia has no considerable effect on the system. This however, changes for
the 2M − V approach where the motor greatly moves. For brevity, the dedicated
plot of the 1M −E is not depicted, since it shows the same characteristics as 1M -T .

Next, we will take a closer look at the amount of friction estimation per pe-
riod, which is depicted in Figure 4.8. For a better evaluation, we choose to calculate
µobs =

∫
Q̂a θ̇. Although the general amount of friction that needs to be com-
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Table 4.5: Overall performance of the three proposed control approaches with various
parameters: Wel/T as mean electric energy to the motor per period, mean
physical work of system Wsys per period (4.1), peak values for the in-torques
(ûcontrol) & (ûcmd), µobs =

∫
Q̂a θ̇ as the amount of friction compensation

energy per period and mean current to the motor ∅ imsr.

Controller Wel/
T

Wsys/
T

ûcontrol

ûcm
d

µobs ∅ imsr

ωq

Unit Ws Ws Nm Nm Ws mA Hz
1M -T 2.009 0.166 20.4 40.3 0.21 126 3.0
1M − E 2.096 0.279 22.3 41.4 0.36 128 2.9
2M − V 5.448 6.417 13.5 33.5 5.19 533 4.7
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2M − V ucmd ττmsrucontrol

Figure 4.7: Energy difference between Wel and Wsys for the 2M − V , spring torque
τ , measured value by a sensor τmsr and ucontrol almost identical for 1M -T ,
whereas in the 2M − V case not.
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Figure 4.8: Friction compensation estimation Q̂a for the 3 different control approaches
with mean values (colored) and 20 periods (grey).

Table 4.6: Hardware measurements depicted per time-step ∆t, data is calculated as mean
values of 25 periods and divided by the length of the time-steps.

Controller Wel/
∆t

Wsys/
∆t

(
∫ Q̂a

θ̇)/∆t

ωq

Unit Ws Ws Hz
1M -T 0.0020 0.0002 0.0002 3.0
1M − E 0.0020 0.0003 0.0003 2.9
2M − V 0.0080 0.0100 0.0080 4.7

pensated in one point is obviously identical for the same system (ucmd − ucontrol),
friction proportionally risis with velocity, which is why the 2M − V system shows
higher physical friction work necessity µobs, due to higher velocities inbound. Here,
it is important to take the calculation of µobs with a grain of salt, since the motor
inertia influence is being neglected (Figure 4.4).

As already stated, the difference in frequency and speed of our pre-defined pick-and-
place task can cause variations in results with respect to the length of the measured
periods and their corresponding amount of time-steps ∆t. To account for this time
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Figure 4.9: ESPi control for the two eigenfrequencies ω1D = 3Hz, ω2D = 4.7Hz,
introducing qd as the desired link position for tracking control, the 0.3Hz

measurement is skipped for brevity (→ classical tracking), further information
can be drawn from here [12].

Table 4.7: Overall performance of the proposed ESPi experiments on hardware analyzed
per period.

Controller Wel/
T

Wsys/
T

ûcontrol

ûcm
d

µobs ∅ imsr

ωq

Unit Ws Ws Nm Nm Ws mA Hz
ESPi 12.7 0.061 2.9 14.1 1.42 79.3 0.3
ESPi 2.0 0.163 20.8 37.6 0.21 121.8 3.0
ESPi 5.2 6.345 18.2 38.2 4.90 512.7 4.7

variation and compare the energy/ work that is added to the system in a fixed
time, Table 4.6 shows relevant metrics normed per time-step of the respective period.
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To compare the perfomance of the suggested control approaches with state-of-the-
art controllers, the above presented values were calculated for the ESPi controlled
motions. We start with the presentation of the ESPi measurements in Figure 4.9,
where two of the mentioned frequency cases are presented. Table 4.7 gives an
overview of the investigated perfomance metrics from before. The tracking mode
of the ESPi with lowest frequencies shows high physical work consumption Wel per
period, yet the observed precision of trajectory following is much higher (→ tracking
control). Also, with this approach little energy is added to the system boundary
Wsys and yields only average performance concerning friction µobs. Nevertheless,
this approach consumes by far less current than the other approaches. For the
other two frequencies (3 Hz and 4.7 Hz), we see that the system is following the
same behaviour.
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5 Influence of Motor Inertia

This chapter seeks out to expand the presented control-ideas, regarding the influence
of the motor mass in an single joint SEA system. Precisely, we want to investigate
the 2M − V control approach in more detail, since here the mass of the motor is
moving and bears the potential to shape the behavior of the controller. Therefore,
we will alter the motor mass JB through the principle of inertia shaping (Section 2.4)
on hardware and simulation. To estimate how-far the inertia shaping reflects the
behavior of a system with different parameters, we will change the physical mass
properties in simulation.

5.1 Control Behavior with Inertia Shaping

Through implementation of the inertia shaping theory, we sweep the motor inertia
from JBnew = 0.25 kg m2 to JBnew = 2 kg m2 with a fixed control of Etot ≈ 1 Ws

(3.16) total energy. To maintain stability and facilitate analysis at the very low
and high ends of the inertia shaping sweep, slight adjustments are made to the
energy levels.
Figure 5.1 shows the investigated inertia shaping sweep. As apparent from the
plots, the simulation and hardware results correspond well. Thus, in the following,
we will only refer to the hardware results. As expected, for values close to the true
value of the motor inertia JBnew = 0.598 kg m2, the motor behaves as seen in the
previous controller coparison with the motor mass oscillating in anti-phase with
the link mass. As the motor inertia is further increased, the deflection of the motor
decreases, since the motor is more inert/ slow. Thus, the behavior becomes more
similar to the behavior seen in the 1M-controllers, where the motor was set to
remain in a fixed position. Table 5.1 shows the overall performance comparison of
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Figure 5.1: Inertia shaping sweep of JB to JBnew on hardware with a fixed step of
0.1 kg m2 from JBnew = 0.5 kg m2 (blue) to JBnew = 1 kg m2, plus JBnew =
2 kg m2 (transistion to red), mean values of 20 periods in grey.

the inertia sweep on the hardware. Since higher motor inertia is causing the motor
to move less, the necessity for friction compensation is continously reduced, as well
as the current consumption and the energy at system boundary. Moreover, we can
see that the friction compensated torque amount (peak-to-peak) roughly stays the
same. Also, note that the measurement plots are depicting anti-phasic (∆Φang ≈ π)
behaviour for all inertia shaped values. These observations point out the potential
benefit of the 2M control approach to seemlessly shift between different control
behaviors, which could be an advantage for some applications.

The highest inertia shaping value of JBnew = 2 kg m2 is purposely set to reach the
0.05 rad amplitude goal of the pick-and-place task, in order to enable comparison
between the other 1M control approaches. Here, the link frequency ωq is with 0.6 Hz

slightly higher, yet the electric energy consumption per period is only 0.3 Ws higher
and the system energy Wsys almost four times greater than compared to the 1M -T
and 1M − E approaches in Table 4.5. Clearly, the values in energy consumption
do not differ much, yet enabling higher energies in the system.
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Table 5.1: Inertia shaping sweep results on hardware for the 2M − V controller with Etot

as total energy of the system (→ (3.16)), control goal: 1 Ws for JBnew from
0.6 kg m2 until 1 kg m2 and 0.05 rad amplitude for 2 kg m2, see Section 4.1
and Section 4.2 for variable clarification.

JBnew E to
t

ω q q̂ ∆â
W el

/T

W sy
s
/T

û co
ntr

ol

û cm
d

µ ob
s

kg m2 Ws Hz rad rad Ws Ws Nm Nm

hardware
0.25 1.4 5.0 0.032 -0.023 3.7 3.4 14.2 34.2 3.2
0.5 1.4 5.0 0.032 -0.023 3.7 3.5 14.0 34.0 3.2
0.6 1.1 4.8 0.034 -0.016 3.4 2.9 10.4 30.4 2.9
0.7 1.1 4.6 0.035 -0.010 3.2 2.5 8.2 28.2 2.6
0.8 1.1 4.4 0.040 -0.003 3.1 2.6 8.8 25.6 2.5
0.9 1.1 4.3 0.041 0.001 3.0 2.4 10.9 25.4 2.3
1.0 1.0 4.1 0.044 0.007 2.9 2.1 12.3 27.6 2.1
2.0 0.7 3.6 0.047 0.030 2.3 0.8 16.7 36.2 1.0

5.2 Control Behavior with Changed System Pa-
rameters

In order to investigate how well the inertia shaping alters the motor dynamics, in
comparison to a system where the actual inertia differs, we seek out to get a glimpse
of the 2M −V control approach regarding different testbed setups, where the motor
inertia value JB is changed through simulation. The following property sweep
starts at very low inertia and ends up at 18 times the original inertia of 0.598 kg m2.

To evaluate the performance of the motor inertia adjustment, we choose to set a
fixed goal of 0.05 rad link-side amplitude, matching the original controller compari-
son experiment. The measurement results are depicted in Figure 5.2 and Table 5.2.
As the mass is increased, the frequency, system-energy and commanded torque is
decreased. Similar to the previous inertia shaping sweep, the motor position is
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Figure 5.2: Modification of motor inertia properties in simulation of the SOFTY testbed,
step size of sweep can be found in Table 5.2.

Table 5.2: Analysis of motor inertia property adjustment with a link-amplitude goal of
q̂ = 0.05 rad.

JB ω q q̂ ∆â
W sy

s
/T

û co
ntr

ol

kg m2 Hz rad rad Ws Nm

0.2 7.4 0.051 -0.200 54.4 3.8
1.0 4.5 0.051 -0.012 5.0 0.9
3.0 3.5 0.050 0.035 0.9 0.8
5.0 3.3 0.050 0.041 0.5 1.0
7.0 3.2 0.049 0.043 0.3 1.1
9.0 3.2 0.049 0.045 0.2 1.4
11.0 3.2 0.050 0.047 0.2 1.6

reduced with higher motor inertia, causing the system to excite the link-side only
and therefore reaching the characteristic 1D resonance frequency (ω1D) of 3 Hz.
In comparison to the altered motor mass through inertia shaping, quantitatively
the same behavior can be observed. However, Table 5.2 reveals that changing the
mass heavier than 3 kg m2 does not lead to an increase in overall performance,
since the motor inertia seems to saturate such that the behavior does not change
further.
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6 Discussion and Outlook

In the presented thesis we analyzed the behaviour of three different control ap-
proaches regarding two main concepts. The first concept was to excite a robotic
system with one SEA-driven link in such a way that the motor is held stiff, whereas
the link is excited to swing in its resonance frequency (1M -T and 1M − E). The
second concept was to not only excite the link-dynamics, but also exploit the inertia
of the motor, in order to drive the SEA to swing in a combined frequency of both
link- and motor-inertia (2M − V ). To compare these controllers with different
frequencies, a pick-and-place task was chosen with a fixed amplitude.

Consider Figure 6.1 for a final overview of the different controllers tested throughout
this thesis. The initial case of 1D excitation approach (1M -T , 1M − E, ESPi
@3Hz) reveals to be more efficient for the considered pick-and-place task. Here,
the spring is exploited via the link inertia solely and the link-side excitation is
achieved through stiff motor-side actuation with normal mode movement of the
link. Implementing 2D excitation on the robotic SOFTY testbed shows that for
the given scenario a lot of friction arises

∫
Q̂aθ̇, which needs to be compensated

adequately. Thus, for the given task and system the 1D-approach seems to be
the better option, due to less friction, less current consumption Wel and effective
energy exploitation with considerably fast link-side movement ωq. This is due to
the fact that friction rises proportionally to its velocity, hence the 1M-approaches
causes less friction, since the motor is held almost static in this approach. As the
necessity for friction compensation is reduced, the current consumption decreases
respectively. Note that the 1M -T and ESPi @3Hz slightly outperform the 1M − E

approach, due to a smoother signal regarding torque control and less stiff motor-side
impedance. This particular observation can be traced back to the feedback term
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of the virtual motor coordinate η of the 1M − E, causing the system to behave
in this manner. ESPi @0.3Hz, which applied a slow, yet almost ideal tracking of
link- and motor position, produces slightly more friction than the 1D controlled
systems, but nevertheless consumes less current than all the other controllers.
Since the ESPi is applying tracking control, the motor is constantly moving to
match the link position and hence producing more friction than when held stiff
with the 1D approach. Nevertheless, the consumed current is lowest, since the
motor is moving very slowly with little torque while the load with all other control
approaches is much higher. Although the low current consumption of the ESPi
@0.3Hz could be initially seen as good performace, yet it needs to be considered
that the system moves very slow and the elasticity of the system is not used at all.
This also becomes apparent when regarding the performance metrics Wel and Wsys,
which show little energy transfer to and in the system. Setting the ESPi frequency
trajectory to the expected eigenfrequencies of the 1D and 2D system, i.e., 3 Hz
and 4.7 Hz, the ESPi leads to similar control behavior, as seen for the investigated
1M- and 2M-controllers. Thus, it seems to be a valid approach to apply a control
strategy that fits the intrinsic eigenfrequency of the system. However, it needs
to be considered that, in more realistic scenarios with more complex systems the
eigendynamics are most likely not known in advance.

The three controllers proposed in this thesis (1M -T , 1M − E & 2M − V ) au-
tomatically match the inherent dynamics and thus excite the system along its
eigenfrequency without having to characterize the given system. Yet in order to ap-
ply the state-of-the-art ESPi, the eigenfrequency needs to be known in advance, to
reach the identical beneficial control behaviors, which is unlikely for more complex
systems. Thus, the proposed control approaches could, not only be used to drive
the system, but also to characterize the system properties regarding the inherent
dynamics.

It is important to note that for the 1M-controlled systems (1M -T , 1M − E and
ESPi @3Hz), strong motor torques for fixing the motor position are neccessary, to
counteract the forces of the fully swinging link. This implies, that the motor needs
to be strong enough for the 1M-control approach to be applicable. Furthermore,
the frequency of the task cannot be changed, as it solely depends on the link-side
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ESPi 0.3Hz
ESPi 4.7Hz
2M − V

ωq

Wel/∆ t(
∫

Q̂aθ̇)

(
∫

ucontrol)/∆ t

Wsys/∆ t

ESPi 3Hz
1M − E
1M -T

Figure 6.1: Spider plot for the key characteristics comparison of the proposed controllers:∫
Q̂aθ̇ → necessity for the level of friction compensation (high values indicating

low friction performance),
∫

ucontrol → produced torque of the controllers
without friction compensation, Wel → physical work of electric consumption,
Wsys → system energy between spring and motor, ωq → link frequency of
oscillation, all energy measurements are analyzed per timestep ∆t of one
mean period T .

dynamics, but can suit various other taks, e.g. assembly lines, where everything is
synced and should not change in its pattern.

The 2M − V approach seems to be able to add much more energy to the sys-
tem than the 1M-controllers. This appears disadvantageous for the chosen task of
reaching a fixed amplitude in a pick-and-place scenario, as much of the energy is not
put to use and unnecessarily added. Nevertheless, the ability to add more energy
in a system, by additionally deflecting the motor, could be beneficial for other
applications, e.g. mobile robots with high explosive movement. As the second ex-
periment indicated (Chapter 5), inertia shaping can be used to change the behavior
of the controller and add flexibility to the control strategy. The 2D-behaviour can
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be shifted towards 1D, when the virtual motor inertia is increased, showing similar
characteristics and results as the 1M-approaches. The frequency and amplitude can
be adjusted to suit a task-specific purpose. This could be useful in work stations
of small- and medium-sized enterprises, where one assembly setup might be used
for different tasks, such that a more adaptable and flexible controller might be
beneficial to avoid hardware adjustments.

Additionally, the limitations of the carried out study need to be acknowledged. Only
one specific system, i.e. a single one-link SEA testbed driven through an actuator
with a harmonic drive, was investigated. Note that only steady-state behavior was
analyzed and the rise time was not considered, although it could be important
depending on the desired task. Also, no forces have been exerted on the link with
no object transport per se. This should be additionally investigated when regarding
the herein presented results. In future studies and research the controllers could be
applied to a variety of actuator concepts with different motors and gears, in order
to gain an insight on more generic system behavior and application. Also, planetary
gears with potential recuperation represent a valid investigation, since the reversible
energy of the motor swing could be exploited in beneficial ways. Furthermore, there
are various tasks and scenarios that could be investigated, e.g. different trajectories
with multiple forces acting on the system (coriolis-, gravity-forces, etc.). As the
main three controllers from this thesis follow eigendynamics excitation, extending
the controllers to a multi-joint system is another big challenge that needs to be
addressed in future research. More realistic, less perfect non-lab scenarios should
be investigated, to unveil the true potential of the tested control approaches.

Although this thesis only was a first step to investigate control strategies that
exploit the intrinsic dynamics of a system, by additionally taking into account
the motor dynamics, the results reveal potential for further and more extensive
investigations. It is imaginable that a combination of the investigated control
strategies shifting between the utilization of complete system dynamics, compared
to link-side dynamics solely, could extend capabilities in control of various system
applications. It could be advantageous to combine different approaches for robotic
locomotion [45] [46]. Notably, the 2D approach can be uniquely beneficial, as it
seems capable to inject a lot of energy, which could be channeled into explosive
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movements in SEAs and VSAs. Paired with artificial intelligence and reinforcement
learning techniques the investigated control ideas could improve locomotion or
system identification, specifically when coupled with harmonic oscillatory excitation
are required for a task. This way, control of different inertia shaped properties for
the 2D-approach could be further optimized with direct task dependency, optimally
exploiting the eigendynamics of a system and automatically choosing the best
suited control during motion.
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7 Conclusion

The presented research study investigated the potential of eigendynamics exploita-
tion in SEA driven robots with one link, introducing the novelty of including the
motor-inertia as part of the control concept to excite an oscillation for a pick-and-
place-task. It was found that although the inclusion of the motor inertia bears the
potential to add more energy to the system, the increased velocity of the motor
also leads to a proportional increase in friction that needs to be compensated. Ad-
ditionally applying inertia shaping, showed that the behavior of the 2M-controller
could be easily adapted. In this way, the system could be shaped such that the
motor either behaved more statically, i.e., causing less friction and efficiently using
the spring, or more dynamically, where more energy could be added to the system.
These findings form first important insights to the potential of exploiting motor
inertia in control strategies. This could eventually aid to develop a flexible control
approach for compliant robots that can be energy-efficient while at the same time
being able to carry out explosive movements when needed.
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