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ABSTRACT

Understanding the human-object interactions (HOIs) from a video is essential to fully comprehend
a visual scene. This line of research has been addressed by detecting HOIs from images and lately
from videos. However, the video-based HOI anticipation task in the third-person view remains un-
derstudied. In this paper, we design a framework to detect current HOIs and anticipate future HOIs
in videos. We propose to leverage human gaze information since people often fixate on an object
before interacting with it. These gaze features together with the scene contexts and the visual ap-
pearances of human-object pairs are fused through a spatio-temporal transformer. To evaluate the
model in the HOI anticipation task in a multi-person scenario, we propose a set of person-wise
multi-label metrics. Our model is trained and validated on the VidHOI dataset, which contains
videos capturing daily life and is currently the largest video HOI dataset. Experimental results in
the HOI detection task show that our approach improves the baseline by a great margin of 36.3%
relatively. Moreover, we conduct an extensive ablation study to demonstrate the effectiveness of our
modifications and extensions to the spatio-temporal transformer. Our code is publicly available on
https://github.com/nizhf/hoi-prediction-gaze-transformer.

© 2023 This manuscript version is made available under the CC-BY-NC-ND 4.0.

1. Introduction

Detecting human-object interactions (HOIs) is a fundamen-
tal step toward high-level comprehension of scenes. Compared
to instance-level visual recognition tasks such as object detec-
tion (Ren et al., 2015; Carion et al., 2020; Jocher et al., 2022)
and action recognition (Simonyan and Zisserman, 2014; Car-
reira and Zisserman, 2017), HOI detection can provide more
contextual and fine-grained cues for scene understanding. How-
ever, real-world applications, such as robotics, autonomous
driving, and surveillance system, usually need to reason about
a scene and generate a plausible HOI anticipation for the near
future. For instance, as shown in Fig. 1, the person on the right
is pushing a bicycle and walking towards a door. Based on this
observation, if an intelligent system could anticipate that the
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human will open the door, it could assist that person to perform
this interaction beforehand. Then the human could leave the
room without interruption. Thus, a framework that can forecast
future HOIs from a video is essential.

However, HOI detection and anticipation are still challeng-
ing as multiple humans and objects may appear in a scene
and a human may have multiple interactions with multiple ob-
jects. In addition, the dependencies between frames are cru-
cial to understand the temporal evolution of human interac-
tions. Due to these difficulties, most existing approaches are
only designed for HOI detection in static images. Conventional
methods (Gupta and Malik, 2015; Lu et al., 2016; Chao et al.,
2018; Gao et al., 2018; Gkioxari et al., 2018; Zellers et al.,
2018; Zhang et al., 2019; Xu et al., 2020; Lin et al., 2020)
often contain two stages. First, an object detector is applied
to locate humans and objects. Second, a multi-stream classi-
fier predicts the interactions for each human-object pair. To
increase the model efficiency, several one-stage or end-to-end
methods (Wang et al., 2020; Liao et al., 2020; Kim et al., 2021;
Tamura et al., 2021) are proposed to generate object detection
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T − 1 T T + 1

Observation
Detection at time T :

for human0
⟨human0, carry, backpack3⟩
⟨human0, push, bicycle2⟩
⟨human0, towards, door5⟩

Anticipation at time T + 1:
for human0

⟨human0, open, door5⟩
⟨human0, push, bicycle2⟩

Fig. 1: An example of HOI detection and anticipation tasks with gaze-following
method from a video. By observing a past sequence of RGB frames, the model
should detect current HOIs or forecast possible HOIs after one second. The
gaze cues provide information about human attention and are useful to deter-
mine which object is more likely to be interacted with in a complex scene.

and interaction classes in parallel.
While the image-based HOI detectors show great perfor-

mance on image datasets, they may perform poorly on video
datasets because they cannot exploit the temporal cues required
to distinguish between some continuous interactions, such as
open or close a door (Fouhey et al., 2018). Hence, a few
works (Qi et al., 2018; Chiou et al., 2021; Cong et al., 2021;
Ji et al., 2021; Wang et al., 2021; Tu et al., 2022b) are proposed
to leverage the temporal dependencies between frames and
demonstrate superior performance to the image-based methods.
However, these approaches do not consider the human gaze as
an additional feature while it often provides valuable informa-
tion about human intentions (Johansson et al., 2001; Land and
Hayhoe, 2001; Hayhoe et al., 2003; Baldauf and Deubel, 2010;
Belardinelli et al., 2016).

To enable an intelligent system to collaborate with humans
more effectively, only recognizing the current HOIs is not suf-
ficient. The ability to anticipate subsequent HOIs is beneficial
for task planning and danger avoidance. Nevertheless, there
are very few studies addressing the HOI anticipation task from
the third-person view (Jain et al., 2016; Jiyang Gao and Neva-
tia, 2017; Truong and Yoshitaka, 2017; Sunkesula et al., 2020).
However, these works are conducted on small-scale datasets
and cannot be generalized to real-world applications.

Thus, we propose a multimodal framework that leverages vi-
sual appearance features, semantic contexts, and human gaze
cues to tackle HOI detection and anticipation tasks in videos.
To our best knowledge, our work is the first one attempting to
utilize gaze features in video-based HOI anticipation, and the
first to anticipate HOIs in multi-person scenarios. Our frame-
work works in two-stage as follows: in the first stage, an object
module detects and tracks humans and objects across the video,
and a gaze module leverages human head features to identify
where the human is looking at every instant. In the second
stage, a spatio-temporal transformer aggregates all extracted
features from a sliding window of frames to infer the current
or future HOIs. Our spatio-temporal transformer is inspired by
the STTran model (Cong et al., 2021). However, we observe
several limitations in STTran architecture that diminish the per-

formance. First, we notice that using the spatial encoder to im-
plicitly extract intra-frame contexts yields a very small bene-
fit. Since the global scene context is useful for vision-related
tasks (Wang et al., 2019; Zhang et al., 2021; Ji et al., 2022),
we extend the spatial encoder to explicitly generate a global
feature vector for each frame. Inspired by Vision Transformer
(ViT) (Dosovitskiy et al., 2021), we prepend a learnable class
token to the spatial encoder input, which captures the global re-
lationship among all human-object pairs at a particular moment.
Moreover, we observe that the temporal encoder in STTran in-
fers temporal relations of all human-object pairs from a slid-
ing window of frames. Instead, we propose an instance-level
temporal encoder, which independently processes each unique
human-object pair. This allows our model to focus on the in-
dividual evolution of each human-object representation in time.
Finally, we apply a cross-attention layer to fuse the extracted
global features and the gaze information with the instance-level
human-object representations. Therefore, our architecture pro-
poses a big extension to STTran and clearly boosts its perfor-
mance in both HOI detection and anticipation tasks.

Our model is trained and validated on VidHOI dataset (Chiou
et al., 2021), which is composed of daily-life videos and is
currently the largest video HOI dataset. We design a training
strategy to address the dataset imbalance issue. Moreover, in-
spired by the metrics for egocentric action anticipation tasks,
we propose a set of person-wise metrics to assess the model in
the HOI anticipation task on multi-person videos. These met-
rics compute the multi-label recall, precision, accuracy, and F1-
score (Zhang and Zhou, 2014) separately for each human using
the top-k predictions. We also conduct an extensive ablation
study to confirm the effectiveness of our modified and added
components.

The main contributions of our work are summarized as:

1. A deep multimodal spatio-temporal transformer network
is designed for anticipating HOIs in multi-person scenes.

2. The use of gaze-following methodology in the cross-
attention mechanism is explored as an additional novel
step towards HOI detection and anticipation in videos.

3. A person-wise multi-label criterion is proposed to evaluate
the HOI anticipation model in third-person videos.

2. Related Works

2.1. Gaze in HOI Detection

A Human’s gaze direction can indicate where the human is
paying attention to. Cognitive studies (Land and Hayhoe, 2001;
Hayhoe et al., 2003) show that human eyes often fixate on the
object when performing manual actions with it. Moreover, hu-
mans sometimes move their gaze to the next object before fin-
ishing the current interaction. Baldauf and Deubel (2010) fur-
ther suggest that humans may scan over all task-relevant objects
when planning a complex movement. Belardinelli et al. (2016)
then discover that the gaze point on an object is dependent on
the interaction type. The above-mentioned works demonstrate
that gaze cues can provide useful information for detecting and
anticipation HOIs.
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However, the use of gaze features in HOI detection is not
much investigated. For image-based HOI detection, Xu et al.
(2020) propose a human intention-driven HOI detection frame-
work, which utilizes human pose and gaze to assist HOI detec-
tion. Their ablation study shows that utilizing human gaze re-
gions can improve the model performance. Nevertheless, to the
best of our knowledge, there is no work leveraging the human
gaze in video-based HOI tasks. To bridge this gap, our frame-
work explores the effectiveness of gaze information in HOI de-
tection and HOI anticipation tasks.

2.2. Video-based HOI Detection

To properly detect interactions between a human and an ob-
ject from a video, understanding the evolution of the pair rela-
tionship over time is essential. For instance, Jain et al. (2016)
represent human-object relations as a spatio-temporal graph
and adopts a Structural Recurrent Neural Network (S-RNN) to
infer the interaction types. Truong and Yoshitaka (2017) refine
the S-RNN by additionally considering object-object relations.
Sunkesula et al. (2020) further improve the model performance
by applying learned visual features as the graph nodes. Instead
of RNNs, Qi et al. (2018) propose a Graph Parsing Network
(GPN) to parse the spatio-temporal graphs of human-object in-
teractions. Then, Wang et al. (2021) design a two-stream GPN
that also incorporates the semantic features. In contrast to the
graph-based methods, Sun et al. (2021) propose an instance-
based architecture to separately reason each human-object pair
instance. This model leverages human skeletons as an addi-
tional cue for HOIs. ST-HOI (Chiou et al., 2021) also utilizes
human pose features to detect HOIs. In addition, ST-HOI ap-
plies a 3D backbone to extract correctly-localized instance fea-
tures from a video. Moreover, the large-scale VidHOI dataset is
proposed to enable the development of large-size models. Re-
cently, motivated by the great success of the transformer model,
different instance-based spatio-temporal transformers (Ji et al.,
2021; Cong et al., 2021; Tu et al., 2022b) are designed and are
reviewed in the next section.

2.3. Transformer in HOI Detection

The transformer (Vaswani et al., 2017) is designed for natural
language processing (NLP) tasks. The key component in trans-
former is the attention mechanism, which copes with the gradi-
ent vanishing problem of recurrent neural networks (RNNs) in
long data sequences. In many NLP tasks, transformer models
outperform RNN-based models by a great margin.

Recent advances in transformer in computer vision tasks
have motivated researchers to apply it also in the HOI detection
task. Several approaches (Kim et al., 2021; Tamura et al., 2021;
Zhang et al., 2022; Park et al., 2022; Qu et al., 2022) attempt to
extend the Detection Transformer (DETR) (Carion et al., 2020)
from object detection to HOI detection in static images. These
approaches first use a convolutional neural network (CNN) to
extract visual features from the input image. Then, a trans-
former network aggregates image-wide contextual features and
returns the human bounding box, object bounding box, object
class, and interaction class in parallel. These models achieve
state-of-the-art performance in the image-based HOI detection

task. However, they may perform poorly when detecting HOIs
in a video as they cannot understand the temporal contexts be-
tween frames.

Recently, researchers (Ji et al., 2021; Cong et al., 2021; Tu
et al., 2022b) propose to detect HOIs from videos using spatio-
temporal transformers. Ji et al. (2021) design the Human-
Object Relationship Transformer (HORT), which leverages
both visual appearance and human pose features to facilitate
HOI detection. These features are fused by a transformer with
densely-connected parallel spatial and temporal encoders. In
contrast, Spatial-Temporal Transformer (STTran) (Cong et al.,
2021) consists of a sequential architecture of spatial and tem-
poral transformer encoders. The visual appearance feature of
each human-object instance is concatenated with the spatial re-
lation feature and the semantic feature. Most recently, inspired
by ViT (Dosovitskiy et al., 2021), Tu et al. (2022b) extract
patch tokens from frames by a spatial encoder and link them
to tubelet tokens across time. A transformer decoder similar
to DETR (Carion et al., 2020) reasons HOIs from the tubelet
tokens by using learned positional encodings.

Nevertheless, the above-mentioned spatio-temporal models
do not consider gaze cues, which could provide useful infor-
mation for HOI detection and anticipation. Thus, we introduce
gaze features as an additional modality to a spatial-temporal
transformer model. We choose STTran (Cong et al., 2021) as
our base model since it achieves remarkable performance on
the Action Genome (Ji et al., 2020) dataset and can be easily
extended with more features.

3. Our Method

We aim to solve both HOI detection and anticipation tasks
from videos with the same spatio-temporal transformer archi-
tecture. The proposed two-stage framework illustrated in Fig. 2
is composed of an object module, a gaze module, and a spatio-
temporal module. The object module and gaze module extract
features from RGB frames in parallel. The spatio-temporal
module based on STTran (Cong et al., 2021) exploits these fea-
tures to detect current HOIs or anticipate future HOIs.

3.1. Problem Setup

Similar to the image-based HOI detection task (Gupta and
Malik, 2015; Gkioxari et al., 2018), a video-based HOI detec-
tion task is defined as to retrieve bounding boxes of human sub-
jects {bs

t,i} and objects {bt, j}, identify object classes {ct, j}, and
recognize their interaction predicates pt,⟨i, j⟩ in every frame It,
where It ∈ Rh×w×3 denotes an RGB frame at time t. The sub-
scripts i and j represent an arbitrary human and object. The de-
tected HOIs are expressed as a set of triplets {⟨bs

t,i,pt,⟨i, j⟩,bt, j⟩}.
For a video-based HOI anticipation task, we follow the

setup that the model detects humans {bs
t,i} and objects {bt, j},

{ct, j} from past observations [I1, . . . , It] and predicts HOIs
{⟨bs

t,i,pt+τa,⟨i, j⟩,bt, j⟩} in the future with a fixed time gap τa.

3.2. Object Module

The object module takes a sequence of T RGB frames as
input V = [I1, . . . , IT ]. In each frame It, the object module
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Input video frames:
V = [I1, . . . , IT ]
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Spatio-temporal Module

{[
xsp

t−L+1,⟨i, j⟩, . . . , x
sp
t,⟨i, j⟩

]}

{⟨bs
t,i,pt,⟨i, j⟩,bt, j⟩}

⟨human, watch, human⟩
⟨human, hold & wave, bat⟩
⟨human, watch, human⟩

{ct, j}

{bt, j}

{bs
t,i}

{bh
t,k}

{st, j}

{vt, j}

{vs
t,i}

{vt,⟨i, j⟩}

{mt,⟨i, j⟩}

{gt,i}

{Hi}, {O j}
{ct}

{g′t,i}

Xt Xsp
t

{xtmp
t,⟨i, j⟩} {zt,⟨i, j⟩}

Fig. 2: Overview of our video-based HOI detection and anticipation framework. The framework consists of three modules. The object module detects bounding
boxes of humans {bs

t,i} and objects {bt, j}, and recognizes object classes {ct, j}. An object tracker obtains human and object trajectories ({Hi} and {O j}) in the video.
Then, the human visual features {vs

t,i}, object visual features {vt, j}, visual relation features {vt,⟨i, j⟩}, and spatial relation features {mt,⟨i, j⟩} are extracted through a feature
backbone. In addition, a word embedding model (Pennington et al., 2014) is applied to generate semantic features {st, j} of the object class. Meanwhile, the gaze
module detects heads {bh

t,k} in RGB frames, assigns them to detected humans, and generates gaze feature maps for each human {gt,i} using a gaze-following model.
Next, all features in a frame are projected by an input embedding block. The human-object pair features are concatenated to a sequence of pair representations
Xt , which are refined to Xsp

t by a spatial encoder. The spatial encoder also extracts a global context feature ct from each frame. Then, the global features {ct}

and projected human gaze features {g′t,i} are concatenated to build the person-wise sliding windows of context features. Meanwhile, several instance-level sliding

windows are constructed, each only containing refined pair representations of one unique human-object pair across time
[
xsp

t−L+1,⟨i, j⟩, . . . , x
sp
t,⟨i, j⟩

]
. A temporal encoder

fuses context knowledge into the pair representations by the cross-attention mechanism. Finally, the prediction heads estimate the probability distribution zt,⟨i, j⟩ of
interactions for each human-object pair based on the last occurrence xtmp

t,⟨i, j⟩ in the temporal encoder output.

detects nt bounding boxes {bt, j}, as well as the corresponding
classes {ct, j}. Among the nt detections, ns

t are human bounding
boxes {bs

t,i}. An object tracker then associates current detec-
tions with past detections and obtains the trajectories of bound-
ing boxes of human {Hi} and objects {O j}. This object tracker
allows the model to analyze every unique human-object pair
separately in a complex scene. After locating humans and ob-
jects in a video, it is essential to exploit features from human-
object pairs to detect and anticipate the interactions. Inspired
by STTran (Cong et al., 2021), we use a ResNet feature extrac-
tor to generate visual features vt, j ∈ R2048 for each box bt, j.
The visual feature inside the subject bounding box bs

t,i is de-
noted as vs

t,i = vt,i. In addition, leveraging the spatial relation
between human and objects is crucial to recognize some ac-
tions, such as playing or not playing a guitar. Thus, the visual
relation features vt,⟨i, j⟩ ∈ R2048 and a two-channel spatial rela-
tion binary mask mt,⟨i, j⟩ ∈ R2×27×27 are also generated for each
human-object pair ⟨bs

t,i,bt, j⟩. Furthermore, possible types of in-
teractions depend on object classes. For example, humans are
more likely to ride or carry a bicycle than bite a bicycle. To re-
flect this characteristic of HOIs, our object module uses a word
embedding model (Pennington et al., 2014) to generate the ob-
ject semantic feature st, j ∈ R200 from the object category ct, j as
an additional modality.

3.3. Gaze Module

We adopt the gaze-following method proposed in (Chong
et al., 2020) to generate the gaze heatmap for each human. This

Fig. 3: When detecting heads directly from human bounding boxes, there might
be human-head mismatching in case when two human boxes are overlapped. In
these two examples, human B’s head might be mismatched to human A. Our
human-head association algorithm can overcome this problem.

method requires a head image as an input. Thus, we need a head
detector to identify human heads in the scene. We observe that
directly obtaining the head bounding box from the human box
might cause mismatches in some scenarios. As shown in both
images in Fig. 3, in human A’s bounding box, another person’s
head appears. Directly obtaining head detection from human
A’s box may cause human B’s head to be mismatched with hu-
man A. Therefore, our gaze module first retrieves nh

t heads {bh
t,i}

from the full RGB frame It. Then, all detected head bounding
boxes are matched to all human bounding boxes from the object
module. This process involves a linear assignment problem.
We first determine which detected heads are possible matches
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for each human. An intersection over head (IoH) ratio is com-
puted for every human bs

t,i and head bh
t,k according to Equa-

tion 1, where A(·) denotes the function for area calculation.
If the IoH ratio is larger than a threshold, this head detection
is considered as a shortlisted head for this human. We set the
threshold to 0.7, which allows this metric to be robust to slightly
inaccurate detections.

IoH(i, k) =
A(bh

t,k ∩ bs
t,i)

A(bh
t,k)

, (1)

We apply the Jonker-Volgenant algorithm (Jonker and Vol-
genant, 1987; Crouse, 2016) to find the best human-head asso-
ciation for each frame. This algorithm requires a cost matrix.
Intuitively, the human head is usually positioned at the limits
of the body. Thus, we compute a human-head distance ratio
dt,⟨i,k⟩ by dividing the distance between a human bounding box
and a head bounding box by the length of the shorter edge of
the human box. In addition, the confidence score of head de-
tection plays an important role in the human-head association.
Therefore, we use a weighted sum of the human-head distance
ratio dt,⟨i,k⟩ and the inverse of head confidence score as the cost
to assign head bh

t,k to human ht,i.
Finally, the gaze-following model proposed by Chong et al.

(2020) estimates human gaze heatmaps from video clips. This
approach combines the head information and the scene feature
map using an attention mechanism. Then, a convolutional Long
Short-Term Memory (Conv-LSTM) network is applied to en-
code the fused features and extract temporal dependencies to
estimate the gaze heatmap gt,i ∈ R64×64 for each human bs

t,i at
each time step.

3.4. Input Embedding

At each time step t, the object module generates a set of
features (vs

t,i, vt, j, vt,⟨i, j⟩,mt,⟨i, j⟩, st, j) for the human-object pair
⟨bs

t,i,bt, j⟩. Meanwhile, the gaze module outputs human gaze
heatmaps gt,i for each human. To reduce the dimensionality
and optimize the model efficiency, these features need to be en-
coded before being fed to the spatio-temporal transformer. In-
spired by STTran (Cong et al., 2021), we use linear projection
matrices Ws ∈ R2048×512 and Wo ∈ R2048×512 to compress the
dimensionality of human visual features vs

t,i and object visual
features vt, j from 2048-d to 512-d. The visual relation features
vt,⟨i, j⟩ are projected to 256-d with Wvr ∈ R2048×256. To extract
features from the two-channel spatial relation mask, a two-layer
CNN fmask(·) introduced in (Zellers et al., 2018) with an average
pooling layer at the end is applied to transform mt,⟨i, j⟩ to a 256-d
vector. The same CNN structure fgaze(·) is adopted to transform
the human gaze heatmap gt,i to a 512-d vector g′t,i. The semantic
feature vector st, j remains untouched. L2-normalization is ap-
plied to each feature vector to ensure that every feature vector
has a similar data distribution. Finally, all feature vectors for
the human-object pair ⟨bs

t,i,bt, j⟩ are concatenated to a relation
representation vector xt,⟨i, j⟩ ∈ R1736. Note that all projection
matrices and CNNs are jointly trained with the spatio-temporal
transformer.

Multi-Head
Self-Attention

Add & Norm

Feed
Forward

Add & Norm

Pair Representations*

Learned Global Token

Global
Feature ct

Refined Pair
Representations

Xsp
t

Nsp×

(a) Our spatial encoder with the
global token.

Multi-Head
Self-Attention

Add & Norm

Multi-Head
Cross-Attention

Add & Norm

Feed
Forward

Add & Norm

Conventional
Transformer

Encoder Layers

+

Concat

Human Gaze
Feature g′t,i

Global
Feature ct

+

∼

Positional
Encoding

1×

(Ntmp − 1)×

Q K V

(b) Our temporal encoder with cross-attention
layer.

Fig. 4: The architecture of our spatial and temporal encoders.

3.5. Spatio-Temporal Module

A spatio-temporal transformer inspired by STTran (Cong
et al., 2021) is applied to aggregate contexts from a sliding win-
dow of frames. The architecture is illustrated in Fig. 4. This
model is composed of a spatial encoder and a temporal encoder.

First, a spatial encoder exploits human-object relation repre-
sentations from one frame to understand the dependencies be-
tween the visual appearances, spatial relations, and semantic
features. It also extracts a global feature vector for each frame,
which is expected to represent the contexts between all human-
object pairs. The spatial encoder receives the human-object pair
relation representations Xt = [xt,⟨1,1⟩, . . . , xt,⟨i, j⟩, . . . , xt,⟨ns

t ,n
o
t ⟩

]
within one frame as the input. Inspired by the classification to-
ken proposed in ViT (Dosovitskiy et al., 2021), we prepend a
learnable global token to the spatial encoder input. After Nsp
stacked self-attention layers, the global token summarizes the
dependencies between human-object pairs to a global feature
vector ct, while the pair relation representations are refined to
Xsp

t = [xsp
t,⟨1,1⟩, . . . , x

sp
t,⟨i, j⟩, . . . , x

sp
t,⟨ns

t ,n
o
t ⟩

].
Then, the refined pair representations are concatenated to

several input sequences for the temporal encoder. The orig-
inal STTran (Cong et al., 2021) is designed for the Action
Genome dataset (Ji et al., 2020), where only one human is anno-
tated in each video. However, in real-world scenarios, multiple
people and objects may appear. The VidHOI dataset (Chiou
et al., 2021) also provides full annotations for multi-person
scenes. Thus, STTran may suffer from performance degrada-
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tion as it treats all relation representations jointly as one se-
quence. In contrast, we propose to model the temporal evolu-
tion of each unique human-object pair independently. For that,
we re-formulate the temporal encoder input such that each se-
quence only contains one particular human i and object j, i.e.,
[xsp

t−L+1,⟨i, j⟩, . . . , x
sp
t,⟨i, j⟩], where L denotes the length of a sliding

window.
Next, referring to Fig. 4b, the gaze feature g′t,i from each

unique human in a frame is concatenated with the global fea-
ture ct of that frame to ct,i = [ct, g′t,i]. The resulting vector
is filled into a person-wise sliding window of high-level con-
text features [ct−L+1,i, . . . , ct,i], which are fed to the temporal
encoder along with the pair-wise sliding windows. Since the
temporal encoder processes all entries in a sequence in paral-
lel, the temporal order of the entries is lost. Therefore, a po-
sitional encoding is added to all entries in both high-level con-
text sliding window and relation representation sliding window.
STTran (Cong et al., 2021) applies a learned positional encod-
ing, however, we observe that the sinusoidal encoding performs
better in our model.

The temporal encoder fuses the high-level context features
and the refined pair representations by cross-attention layers
and captures the evolution of their dependencies in time, which
is essential to detect and anticipate temporal-related HOIs such
as push and pull, for instance. In the first temporal encoder layer
as shown in Fig. 4b, a multi-head self-attention layer first cap-
tures temporal dependencies between high-level context fea-
tures. A cross-attention layer then fuses the human-object pair
representations with the high-level contexts. Same as in the
vanilla transformer (Vaswani et al., 2017), the cross-attention is
computed as:

Attention(Q,K,V) = softmax
(

QKT

√
dk

)
V . (2)

Where Q, K, and V denote queries, keys, and values. dk is the
dimensionality of the keys. In our case, the queries are the pair
representations and the keys and values are the high-level con-
texts features. The outputs of the first temporal encoder layer
are fed to Ntmp − 1 stacked conventional self-attention layers to
aggregate deeper temporal dependencies between the fused fea-
tures. To ensure causality, the last temporal encoder layer only
outputs the representation vectors for the last frame in each slid-
ing window, i.e., xtmp

t,⟨i, j⟩.
Finally, a set of prediction heads generate the probability dis-

tributions for different interaction categories. Each prediction
head is a one-layer feed-forward network followed by a Soft-
max or Sigmoid function depending on whether the classifica-
tion is single-label or multi-label. The outputs of all predic-
tion heads are concatenated to the final model output zt,⟨i, j⟩. On
the VidHOI dataset (Chiou et al., 2021), we have a spatial re-
lation head and an action head, each with Sigmoid function.
On the Action Genome (Ji et al., 2020) dataset, there are three
prediction heads: attention head, spatial relation head, and ac-
tion head. The attention head determines whether the human is
watching an object, thus is with Softmax function. The other
two heads are with Sigmoid function.

3.6. Loss Function

Since a human-object pair in the VidHOI dataset (Chiou
et al., 2021) may be labeled by multiple interactions at the same
time, such as ⟨human, next to & watch & hold, cup⟩, HOI detec-
tion and anticipation on VidHOI dataset leads to a multi-class
multi-label classification problem. Binary cross-entropy (BCE)
loss is usually applied in such tasks, which computes the loss
for each interaction class independently to other classes. How-
ever, VidHOI dataset is an unbalanced dataset with long-tailed
interaction distribution. To address the imbalance issue and
avoid over-emphasizing the importance of the most frequent
classes in the dataset, we adopt the class-balanced (CB) Focal
loss (Cui et al., 2019) as follows:

CBfocal(pi, yi) = −
1 − β

1 − βni
(1 − pyi )

γ log(pyi ),

with pyi =

pi if yi = 1
1 − pi otherwise.

(3)

The term −(1 − pyi )
γ log(pyi ) refers to the Focal loss proposed

in (Lin et al., 2017), where pi denotes the estimated probability
for the i-th class and yi ∈ {0, 1} is the ground-truth label. The
variable ni denotes the number of samples in the ground truth of
the i-th class and β ∈ [0, 1) is a tunable parameter. The mean of
losses in all classes is considered as the loss for one prediction.

4. Experiments

4.1. Dataset and Baselines

4.1.1. VidHOI dataset
We validate our framework on VidHOI dataset (Chiou et al.,

2021) as this is currently the largest video dataset with com-
plete HOI annotations. The VidHOI dataset contains videos re-
trieved from social media where humans are performing daily
activities without pre-defined scripts in highly unstructured and
noisy environments. Thus, these videos represent real-world
scenes. The VidHOI dataset applies keyframe-based annota-
tions, where the keyframes are sampled in 1 frame per second
(FPS). There are 78 object categories and 50 predicate classes.
Among the predicate classes, we define 8 predicates as spatial
relations (away, towards, above, next to, behind, in front of,
inside, beneath), while the rest 42 predicates are actions (e.g.,
hold, push, . . . ).

The ST-HOI baseline (Chiou et al., 2021) is adopted as
the baseline for HOI detection task on VidHOI dataset. This
method extracts visual features from object trajectories by a
SlowFast (Feichtenhofer et al., 2019) backbone and generates
pose features using a spatio-temporal pose module. These fea-
tures are concatenated and fed to a two-layer prediction head.
In addition, we use the original STTran (Cong et al., 2021) as
another baseline model. This model is trained with the same
learning rate scheduler as our model but only for 10 epochs as
suggested in their source code. The TUTOR model (Tu et al.,
2022b) is also validated on VidHOI dataset. We use their pro-
vided results for comparison.
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4.1.2. Action Genome dataset
Action Genome (Ji et al., 2020) is another large-scale video

dataset containing 35 object categories and 25 interaction
classes. Nevertheless, only HOIs for a single person are an-
notated in each video even if more people show up. Moreover,
the videos are generated by volunteers performing pre-defined
tasks. Thus, models designed on the Action Genome dataset
may be less useful in the real world. We only conduct an exper-
iment on this dataset in the HOI detection task to demonstrate
the robustness of our framework.

We apply the original STTran (Cong et al., 2021) as the base-
line model on the Action Genome dataset. In addition, several
image-based HOI detection models (Lu et al., 2016; Li et al.,
2017; Tang et al., 2019; Zhang et al., 2019; Lin et al., 2020) are
chosen for further comparison. The results of these works are
provided by (Cong et al., 2021).

4.2. Evaluation Metrics

Following the standard procedure in HOI detection, mean av-
erage precision (mAP) is adopted as one of our evaluation met-
rics. The mAP is a summary of precision-recall curves for all
interaction classes. A predicted HOI triplet is assigned true pos-
itive if: (1) both detected human and object bounding boxes are
overlapped with the ground truth with intersection over union
(IoU) > 0.5, (2) the predicted object class is correct, and (3) the
predicted interaction is correct. The metric mAP is reported on
the VidHOI dataset over three different HOI category sets: (1)
Full: all 557 HOI triplet categories, (2) Rare: 315 categories
with < 25 instances in the validation set, and (3) Non-rare: 242
categories with ≥ 25 instances in the validation set. We apply
the mAP computation method from QPIC (Tamura et al., 2021).

For the HOI anticipation task, the mAP does not well repre-
sent the model performance as it is evaluated on all predicted
HOIs in a frame. Applications of HOI anticipation usually con-
sider the top predictions for each human separately. For exam-
ple, a robot may decide how to assist a human based on the
most likely HOI forecasted. On the egocentric action anticipa-
tion benchmarks (Damen et al., 2022, 2018; Li et al., 2018),
top-5 recall or top-5 accuracy are often employed to address
such application scenarios. The egocentric videos only contain
one person as the subject, and only one action is performed in
each frame. Thus, evaluating the top-k predictions in one frame
is equivalent to evaluating the top-k predictions for one human.
Inspired by this idea, we propose a set of person-wise multi-
label top-k metrics as additional evaluation metrics. For each
frame, we first assign the detected human-object pairs to the
ground-truth pairs. Then, the top-k triplets of each human are
used to compute the metrics for this human. We follow (Zhang
and Zhou, 2014) to calculate the multi-label recall, precision,
accuracy, and F1-score. On the VidHOI dataset, we report the
person-wise multi-label top-k metrics with k = 5 and confi-
dence threshold = 0.3. The final results are averaged over all
humans in the dataset, without frame-wise or video-wise mean
computation. On the Action Genome dataset, most baselines
only consider the Recall@k metric, which is identical to person-
wise top-k recall since Action Genome only consists of single-
person scenes. The final results are averaged frame-wise.

All models are trained with ground-truth object trajectories.
We follow the two evaluation modes defined in ST-HOI base-
line (Chiou et al., 2021): models in Oracle mode are evalu-
ated with ground-truth object bounding boxes, while models
in Detection mode are evaluated with object detector. During
the evaluation in Detection mode, the ST-HOI baseline (Chiou
et al., 2021) removes the frames without any object detected.
This trick could increase the recall as some not detected ground-
truth HOIs are filtered out. We use their reported mAP value for
comparison, but we evaluate our model without excluding any
frames. In the frames with no valid object detection, all ground-
truth HOIs are regarded as false negatives.

By observing a sequence of past T frames, the model is ex-
pected to detect HOIs in the last observed frame (detection task)
or forecast HOIs in the τa-th future frame (anticipation task).
For the anticipation task, we train and validate our models with
τa ∈ {1, 3, 5, 7}, where for example, τa = 5 means 5 seconds
in the future in VidHOI dataset. The anticipation times are in-
tuitively selected to show the performance of HOI anticipation
in the near future. The evaluations for the anticipation task are
only conducted on those videos that are enough long for τa = 7.
A potential issue in HOI anticipation task in third-person videos
is that the humans and objects in the current frame may disap-
pear in the future due to the movement of humans or the cam-
era. Thus, for mAP computation, we ignore the anticipations
that are matched to a ground-truth human-object pair which is
not available in the future. For our proposed person-wise top-k
metrics, the persons out of frame in the future are excluded.

4.3. Implementation Details

For our object module, we employ YOLOv5 model (Jocher
et al., 2022) as the object detector. The weights are pre-trained
on COCO dataset (Lin et al., 2014) and finetuned for the Vid-
HOI dataset. We apply the pre-trained DeepSORT model (Wo-
jke et al., 2017) as the human tracker, ResNet-101 (He et al.,
2016) as feature backbone, and GloVe model (Pennington et al.,
2014) for word embedding.

In the gaze module, we also apply YOLOv5 to detect heads
from RGB frames. The model is pre-trained on the Crowdhu-
man dataset (Shao et al., 2018). The gaze-following method
introduced in (Chong et al., 2020) and pre-trained on the
VideoAttentionTarget dataset (Chong et al., 2020) is adopted
to generate gaze features. All weights in the object module
and gaze module are frozen during the training of the spatio-
temporal transformer.

The training procedure from STTran (Cong et al., 2021) has
a limitation that it collapses to overfitting quickly as it samples
a batch of windows from the same video at each training step.
To tackle this issue, we design a new data sampling strategy
to sample a batch of windows from different videos, and each
video is only visited once in an epoch. In addition, we introduce
random horizontal flipping as data augmentation. The hyperpa-
rameters of our model are finetuned on the VidHOI dataset. For
the experiment on the Action Genome dataset, we simply reuse
the same setup as on the VidHOI dataset.

Following the original STTran (Cong et al., 2021), our
spatio-temporal transformer model has 2048-d FFN layers and
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Method
mAP

Full Non-rare Rare

GPNN (Qi et al., 2018) 18.47 24.50 16.41
STIGPN (Wang et al., 2021) 19.39 28.13 18.22
ST-HOI (Chiou et al., 2021) 17.60 27.20 17.30

HOTR (Kim et al., 2021) 21.14 30.75 19.83
QPIC (Tamura et al., 2021) 21.40 32.90 20.56
TUTOR (Tu et al., 2022b) 26.92 37.12 23.49
STTran (Cong et al., 2021) 28.32 42.08 17.74

Ours 38.61 52.44 27.99

(a) HOI detection in Oracle mode on VidHOI validation set.

Method
Object mAP

Detector Full Non-rare Rare

ST-HOI Detectron2 3.10 5.90 2.10
STTran YOLOv5 7.61 13.18 3.33

Ours Detectron2 8.83 14.47 4.50
Ours YOLOv5 10.40 16.83 5.46

(b) HOI detection in Detection mode on VidHOI validation set.

Table 1: Experimental results in HOI detection task on VidHOI dataset (Chiou
et al., 2021). The bold numbers indicate the best scores. The mAP is reported
in Full, None-rare, and Rare splits. For Oracle mode, the results of all base-
lines except STTran (Cong et al., 2021) are cited from (Tu et al., 2022b). For
Detection mode, only the evaluation result from ST-HOI baseline is available.

Method Rec@10 Rec@20 Rec@50

VRD (Lu et al., 2016) 55.5 64.9 65.2
MSDN (Li et al., 2017) 69.6 78.9 79.9

VCTREE (Tang et al., 2019) 70.1 78.2 79.6
ReIDN (Zhang et al., 2019) 70.7 78.8 80.3
GPS-Net (Lin et al., 2020) 71.3 81.2 82.0
STTran (Cong et al., 2021) 73.2 83.1 84.0

Ours 75.4 83.7 84.3

Table 2: Experimental results in HOI detection task on the Action Genome
dataset (Ji et al., 2020). The models are evaluated in Oracle (also called Pred-
CLS) mode and Semi Constraint setup. The scores of other models are cited
from (Cong et al., 2021).

8 heads in multi-head attention layers. The spatial encoder con-
sists of 1 layer while the temporal encoder contains 3 layers.
The sliding window length is set to 6 according to the ablation
study. We adopt CB Focal loss with γ = 0.5 and β = 0.9999
which are recommended for large-scale and extremely imbal-
anced datasets in (Cui et al., 2019). Mini-batch learning is used
to accelerate the training. We train the model using AdamW
optimizer (Loshchilov and Hutter, 2019) with 3 warming-up
epochs with an initial learning rate of 1 × 10−8, a peak learn-
ing rate of 1 × 10−4, and an exponential decay with factor 0.1.
The weight decay factor is set to 1 × 10−2 and the dropout rate
is 0.1. All trainings are run for 25 epochs. For reproducibility,
we set a fixed random seed for all training. The experiments are
performed on a single NVIDIA RTX 4090 GPU.

4.4. Quantitative Results

Table 1 shows the experimental results of baselines and our
framework in the HOI detection task on the VidHOI dataset.
In Oracle mode, our model consistently outperforms all re-
cent baselines. Moreover, our extensions to the STTran (Cong

Method τa
mAP Person-wise top-5
Full Rec Prec Acc F1

STTran

1 29.09 74.76 41.36 36.61 50.48
3 27.59 74.79 40.86 36.42 50.16
5 27.32 75.65 41.18 36.92 50.66
7 26.26 75.69 40.42 36.27 50.08

Ours

1 37.59 72.17 59.98 51.65 62.78
3 33.14 71.88 60.44 52.08 62.87
5 32.75 71.25 59.09 51.14 61.92
7 31.70 70.48 58.80 50.56 61.36

(a) HOI anticipation in Oracle mode on VidHOI validation set.

Method τa
mAP Person-wise top-5
Full Rec Prec Acc F1

STTran

1 8.80 53.31 27.62 18.85 27.15
3 8.32 52.58 26.99 18.41 26.48
5 8.67 52.96 26.97 18.48 26.54
7 8.75 52.18 26.35 18.01 25.90

Ours

1 11.30 52.53 43.61 28.81 35.86
3 10.65 51.63 43.60 28.66 35.37
5 10.19 51.69 42.49 28.22 34.88
7 10.14 50.72 42.10 27.60 34.14

(b) HOI anticipation with YOLOv5 on VidHOI validation set.

Table 3: Experimental results in HOI anticipation task on the VidHOI
dataset (Chiou et al., 2021). Only the mAP Full is shown as the HOI cate-
gory split varies for different τa.

et al., 2021) lead to a significant performance boost. In De-
tection mode, we additionally validate our model with the ob-
ject traces generated by ST-HOI baseline using Detectron2 (Wu
et al., 2019). The results imply that the quality of the object de-
tector plays an important role in two-stage HOI detectors and
our adopted YOLOv5 model is superior to Detectron2 in this
case. However, the critical performance gap between the Ora-
cle mode and Detection mode indicates that the object detector
still has a large space for improvement.

The experimental results in the HOI detection task on the
Action Genome dataset are listed in Table 2. We only evalu-
ate our model in Oracle mode (or also called PredCLS in the
baseline approaches) and Semi Constraint setup, where Semi
Constraint means all HOI predictions with a confidence score
higher than a threshold are regarded as positives. Even with-
out a specific hyperparameter finetuning, our model still out-
performs all baselines in all Recall@k metrics. These results
indicate the robustness of our model.

The quantitative results in the HOI anticipation task are re-
ported in Table 3. The non-rare and rare splits for mAP are not
applicable as some ground-truth triplets are not available for
anticipation due to too short videos or invisible future human-
object pairs. Our model outperforms the STTran (Cong et al.,
2021) by a great margin in all metrics except the person-wise
top-5 recall. The reason for this phenomenon is that the recall
value highly depends on the confidence threshold. We addition-
ally plot the person-wise top-5 score-threshold curves in Fig-
ure 5. According to these curves, we set 0.3 as the threshold for
our model, which corresponds to the peak of accuracy and F1-
score. With this threshold, our model achieves a slightly lower
recall than the STTran baseline but much higher precision, ac-
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curacy, and F1-score. If a higher recall is preferred, we can shift
the threshold to 0.2, where our model beats the baseline in all
metrics, but the average gain drops.

In addition, we test the average inference time of each mod-
ule in our framework. The object module with YOLOv5 ob-
ject detector and DeepSORT tracker can operate at 61.3 FPS,
while the gaze module with YOLOv5 head detector and the
gaze following model Chong et al. (Chong et al., 2020) runs at
48.1 FPS. Our proposed spatio-temporal transformer consists
of 147.7M parameters and can process 9.7 sliding windows per
second, which is real-time capable for the VidHOI dataset with
a sample rate of 1 FPS. In comparison, the original transformer
in STTran (Cong et al., 2021) contains 124.8M parameters and
achieves 25.1 windows per second inference speed. The main
reason for this speed difference lies in that the sliding window
length L in STTran is 2, whereas our model has L = 6. If we
also set the sliding window length to 2, we can achieve 23.8
windows per second inference speed. In this setup, our model
performs slightly worse with the mAP Full of 37.50, which is
still much higher than STTran. Moreover, for real applications,
our model’s inference time can be reduced by using a buffer to
store the spatial encoder output for consecutive windows.

4.5. Qualitative Results

To further investigate the performance of our model, we show
the qualitative results for the HOI anticipation task in Oracle
mode in Figure 6a. For simplification, we show only the top-5
results for one human in each scene. In the upper scene, our
model forecasts that the human0 will wave the bat1 at any time
in the future, which is logical. In the bottom scene, the gaze
cues can probably help the model to understand that the baby is
focusing on the toy1 and will not play with another toy in the
near future.

Figure 6b shows two more HOI anticipation results on the
VidHOI dataset (Chiou et al., 2021) in Detection mode. In the
first scene, our model predicts that the child is going to kick the
ball. However, in fact, the child is playing the ball with a racket.
Our object detector fails to recognize that racket, thus, our
spatio-temporal transformer is unable to fully understand the
scene. When we provide the model with the ground-truth ob-
ject annotations, it does not produce the triplet ⟨human0, kick,
ball1⟩. In the second video clip, our framework successfully
detects the necessary objects to understand the scene. Never-
theless, it still cannot forecast that the adult will lift the child
and the child will lift the ball. This is also hard to predict for
us humans since the interactions between two humans are more
uncertain in the future. In addition, the bench detected in the
background is irrelevant to the two humans. However, the gaze
direction of the child estimated by the gaze-following model
is roughly in the direction of the bench. The transformer may
capture misleading contexts that could affect the model perfor-
mance. Thus, overall, the gaze cue is a useful feature, but there
is room to improve its usage.

4.6. Ablation Study

We conduct an extensive ablation study to investigate the
effectiveness of gaze features and our improvements to the

Setting L Gaze
mAP

Full Non-rare Rare

STTran 2 Concat 28.58 42.00 18.28
+MLM→ CB = = 34.20 46.92 24.43
+WS = = 34.97 47.85 25.08
+ HF = = 35.22 48.01 25.40
+ PW = = 35.39 48.82 25.07
= 4 = 35.20 48.84 24.73
= 6 = 36.29 49.43 26.19
= 8 = 35.88 49.29 25.58
= 6 Cross 36.78 50.48 26.25

+ PW→ IW = = 37.85 51.09 27.68
+ G = = 38.35 52.30 27.63

+ Learned→ Sine = = 38.49 52.17 27.98
+WD = = 38.61 52.44 27.99

(a) Ablation study for our improvements to STTran (Cong et al., 2021)

τa Gaze
mAP Person-wise top-5
Full Rec Prec Acc F1

0
w/o 37.27 69.48 60.75 51.68 62.24

Cross 38.61 70.91 59.84 51.29 62.24

1
w/o 36.14 70.92 59.93 51.37 62.28

Cross 37.59 72.17 59.98 51.65 62.78

3
w/o 32.55 70.37 59.67 51.09 61.90

Cross 33.14 71.88 60.44 52.08 62.87

5
w/o 32.05 69.03 59.38 50.72 61.24

Cross 32.75 71.25 59.09 51.14 61.92

7
w/o 31.32 69.18 59.50 50.67 61.24

Cross 31.70 70.48 58.80 50.56 61.36

(b) Ablation study for our model with or without (w/o) gaze

Table 4: Ablation study on our framework. All experiments are conducted
in Oracle mode. The underlined setting is adopted for comparison with the
baselines. “=” represents the same option as in the previous row. MLM: multi-
label margin loss. CB: class-balanced focal loss. WS: sampling batch of win-
dows from different videos. HF: random horizontal flipping as data augmenta-
tion. PW: person-wise sliding window in the temporal encoder. IW: pair-wise
(instance-wise) sliding window. G: using the global token in the spatial encoder.
Learned: learned positional encoding. Sine: sinusoidal positional encoding.
WD: applying weight decay in AdamW optimizer. L: length of the sliding win-
dow. Concat: Concatenating human gaze features with pair representations, no
cross-attention in the temporal encoder. Cross: Using human gaze features as
keys and values in the cross-attention mechanism.
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(a) Person-wise top-5 Recall (b) Person-wise top-5 Precision (c) Person-wise top-5 Accuracy (d) Person-wise top-5 F1-score

Fig. 5: Person-wise top-5 metrics-threshold curves for HOI detection task in Oracle mode.

Anticipation τa = 1:
⟨human0, next to & hold & wave, bat1⟩

⟨human0, behind, human2⟩

Anticipation τa = 3:
⟨human0, next to & hold & wave, bat1⟩
⟨human0, in front of & watch, human2⟩

Anticipation τa = 5:
⟨human0, next to & hold & wave, bat1⟩
⟨human0, in front of , human2⟩

Anticipation τa = 1:
⟨human0, next to & hold & watch, toy1⟩

⟨human0, next to, toy2⟩

Anticipation τa = 3:
⟨human0, next to & hold & watch, toy1⟩

⟨human0, next to, toy2⟩

Anticipation τa = 5:
⟨human0, next to & hold & watch, toy1⟩

⟨human0, next to, toy2⟩

(a) Qualitative results in Oracle mode.

Anticipation τa = 1:
⟨human0, next to & watch, ball1⟩
⟨human0, towards, ball1⟩

⟨human0, next to & hold, racket⟩

Anticipation τa = 3:
⟨human0, next to & watch, ball1⟩
⟨human0, towards & kick, ball1⟩

Anticipation τa = 5:
⟨human0, next to & watch, ball1⟩
⟨human0, towards & kick, ball1⟩
⟨human0, next to & hold, racket⟩

Anticipation τa = 1:
⟨human0, in front of & watch, human1⟩
⟨human0, behind & hold & lift, human1⟩

⟨human0, next to, ball2⟩
⟨human1, in front of , human0⟩
⟨human1, next to, & hold, ball2⟩
⟨human1, towards, bench3⟩

Anticipation τa = 3:
⟨human0, next to & watch, human1⟩
⟨human0, behind & hold & lift, human1⟩

⟨human0, next to, ball2⟩
⟨human1, in front of , human0⟩

⟨human1, next to, & hold & lift, ball2⟩
⟨human1, towards, bench3⟩

Anticipation τa = 5:
⟨human0, next to & watch, human1⟩
⟨human0, behind & hold, human1⟩

⟨human0, next to, ball2⟩
⟨human1, in front of & away, human0⟩
⟨human1, next to, & hold & watch, ball2⟩

⟨human1, away, bench3⟩

(b) Qualitative results in Detection mode.

Fig. 6: Qualitative results of HOI anticipation task on the VidHOI dataset (Chiou et al., 2021). Our model observes six past frames (three are shown in the figure)
and produces HOI anticipations for anticipation time gap τa = {1, 3, 5} seconds. Green: true positives. Red: false positives. Gray: false negatives.
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STTran model (Cong et al., 2021). The experiments for dif-
ferent tricks and components are performed on the HOI detec-
tion task. The best setup is applied to anticipation tasks with
all anticipation times. We first examine the usage of gaze cues
as an additional component in the human-object relation rep-
resentations, i.e., we concatenate the gaze feature with the vi-
sual appearance, spatial relation, and semantic feature in the
input embedding block. The temporal encoder only contains
stacked self-attention layers. The dependencies between the hu-
man gaze and other features are then extracted solely through
the self-attention mechanism. We apply the setting with the
highest mAP Full as the base setting for further experiments
using gaze features in cross-attention layers.

Table 4a shows that all of our modified or added components
are able to increase the mAP Full. Changing the loss function
from multi-label margin (MLM) loss to CB Focal loss improves
our model performance the most. The rare mAP is increased by
33.6%. This observation meets our aim of applying CB Focal
loss, which should address the challenge of extreme dataset im-
balance. By increasing window length to 6, the model achieves
overall the best performance in gaze concatenation mode. How-
ever, further raising the window length to 8 instead reduces the
mAP. This performance drop might be caused by the fact that a
longer window of frames may capture more temporal informa-
tion which is no more related to the current interactions. After
changing the gaze usage from concatenation to cross-attention,
our model gains further performance boost. More experiments
also confirm that the pair-wise sliding window and the explicit
global context are beneficial for HOI detection from videos.

Finally, in Table 4b, we show that the gaze features are ben-
eficial for both HOI detection and anticipation tasks. However,
the performance improvement is not as significant as we ex-
pect. The main reason could be that the spatio-temporal trans-
former is trained with noisy gaze cues as the VidHOI dataset
lacks ground-truth gaze annotations. The performance of the
adopted gaze following model (Chong et al., 2020) might be a
limitation of our framework, but could be improved by leverag-
ing more recent works in that field, such as (Tu et al., 2022a;
Fang et al., 2021). In addition, even though the gaze does not
result in big improvement, other extensions we proposed in the
spatio-temporal transformer still boost the model performance
and allow us to achieve state-of-the-art in HOI detection and
anticipation in videos.

5. Conclusion

In this work, we propose a multimodal framework to detect
and anticipate HOIs from a third-person video by additionally
leveraging gaze cues in the cross-attention mechanism. We
utilize an object tracker to enable the temporal encoder to fo-
cus on the temporal evolution of each human-object pair sepa-
rately. Addressing the extreme dataset imbalance issue in Vid-
HOI dataset (Chiou et al., 2021), we adopt the class-balanced
Focal loss. Furthermore, we propose a person-wise multi-label
criterion to evaluate the models in HOI anticipation tasks in
multi-person scenarios. Experimental results demonstrate that
our framework outperforms the current state-of-the-art for HOI

detection and anticipation tasks on the VidHOI dataset and the
gaze features are beneficial to both tasks. For future works,
adding more modalities such as depth information or human
pose features could be advantageous. Furthermore, based on
the HOI anticipation results, policies could be developed for
human-assistive robots.
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