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Abstract— It lies in human nature to properly adjust the
muscle force to perform a given task successfully. While
transferring this control ability to robots has been a big
concern among researchers, there is no attempt to make a
robot learn how to control the impedance solely based on visual
observations. Rather, the research on tele-impedance usually
relies on special devices such as EMG sensors, which have
less accessibility as well as less generalization ability compared
to simple RGB webcams. In this paper, we propose a system
for a vision-based tele-impedance control of robots, based on
the approximately estimated muscle activation patterns. These
patterns are obtained from the proposed deep learning-based
model, which uses RGB images from an affordable commercial
webcam as inputs. It is remarkable that our model does not
require humans to apply any visible markers to their muscles.
Experimental results show that our model enables a robot to
mimic how humans adjust their muscle force to perform a given
task successfully. Although our experiments are focused on
tele-impedance control, our system can also provide a baseline
for improvement of vision-based learning from demonstration,
which would also incorporate the information of variable
stiffness control for successful task execution.

I. INTRODUCTION

Imagine that you teach a robot how to open a jar -
which requires you to apply the force to the jar properly,
synchronized with your hand motion. You fully demonstrate
to the robot how to move its end-effector to perform a task,
based on the motion capture device. In this scenario, the
robot would fail this task if it only adjusts its end-effector
trajectory. To achieve the goal, it also needs to learn when
and how to adapt its end-point stiffness. In this regard, it is
possible for robots to understand how humans adjust their
end-point stiffness, by using various auxiliary sensors such
as a grip-force sensor [1], a joystick-like device [2], or EMG
sensor [3], [4]. However, relying on a special device could be
a bottleneck, since it diminishes the accessibility as well as
the generalization ability. Therefore, we believe that it would
be beneficial to employ other affordable and general sensors
- like RGB webcams.
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In this paper, we propose a framework for vision-based and
tele-impedance control, which relies only on RGB images
without visible markers. We show that recent improvement in
visual perception based on deep neural networks [5]–[7] can
be a highly appealing solution, for building an easy-to-use,
accessible, and generalizable tele-impedance control system.
Experimental results show that our framework enables a
robot to mimic how a human adjusts his/her end-point
stiffness to successfully perform a task, based on image
inputs obtained from an affordable RGB webcam.

Our vision-based tele-impedance system employs the ap-
proximate estimation of discretized muscle activation pat-
terns for adjusting the robot’s end-point stiffness parameters
to successfully perform a task. To obtain this estimation, we
propose a deep neural network-based model, which can infer
the discretized muscle activation pattern from a short video
observation of the human limb. The model output includes
(1) whether the muscle is activated or not, and (2) whether
the muscle activation is increasing, stable, or decreasing.
Although this would not provide detailed information such
as the magnitude or orientation of the end-point stiffness, our
model is able to obtain some general information of human
muscle activation during the task.

The advantages of our system are as below:
• Unobtrusive: It does not require humans to put any

markers on their body parts.
• High accessibility: It can be applied with any type of

affordable RGB webcam.
• High generalization ability: It can be also successfully

applied to human users who did not participate in the
training data collection process.

These advantages are shown through our experiments,
which include the real-world robot demonstration of tele-
impedance control. We believe that our work would be
a baseline study for future researchers of vision-based
impedance understanding and control, such as vision-based
learning from demonstration which incorporates the infor-
mation of the end-effector’s position as well as stiffness.

II. RELATED WORKS

Humans are characterized by their unique skill to perform
delicate physical interactions, thanks to their ability to adapt
their end-point force and impedance. Inspired by that, several
works have aimed at transferring such human interaction
capabilities to robots, encouraged by the emergence of a
new generation of compliant, torque-controlled robots. For
example, [8] proposed an adaptive control framework based
on human-motor control theory. Their framework can adapt
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the robot’s feed-forward force, impedance, and reference
trajectory to reach the optimal interactive behavior while
maintaining a compromise between stability and efficiency.
This controller was later extended in [9] to perform contact
tasks such as cutting and haptic exploration. There also
exist works that focused on developing interfaces to transfer
human’s variable impedance control skills to robots during
teleoperated task execution. This was done using a grip-force
sensor in [1], and a joystick-like device in [2] to capture in
real-time information about the human end-point stiffness,
or by learning a model for stiffness adaptation from human
demonstrations [10], with the purpose of commanding the
robot’s reference stiffness profiles during tele-operation.

Along the same lines, the use of EMG also received
significant attention in variable impedance transfer from
humans to robots. This was motivated by a seminal concept
of tele-impedance [11], which was proposed as a possible
alternative to the standard bilateral tele-operation. A human
operator commands a remote impedance-controlled robot
with real-time motion commands captured via optical track-
ing, and stiffness profiles estimated from muscle activation
measured with EMG. Similarly, Yang et. al [3] used EMG
to compute stiffness profiles for commanding the remote
robot in standard bilateral tele-operation, where the operator
received haptic feedback from the environment. Peternel et.
al. [4] proposed a framework that used EMG together with
force sensing and a motion capture system to derive suit-
able hybrid force-impedance control strategies from human
demonstrations for various contact tasks.

However, these approaches have less accessibility as well
as less generalization ability since they require costly sensors.
Applying affordable vision-based systems to transfer human
impedance control skills to robots would be a big game
changer in this research field. Unfortunately, as mentioned
before, there have been no attempts to address vision-based
robot impedance control. Instead, there exist similar works
called optical myography, which objective is to estimate
finger movement by tracking positional information of mul-
tiple visual markers attached to the forearm [12], [13]. This
study was also extended to finger movement estimation with
a single undifferentiated marker (i.e., plain sticker) [14],
as well as to the human hand gesture recognition with
multiple orientation-free markers on the front and back of
the human arm [15]. The advantage of optical myography
is the use of inexpensive camera sensors only, which makes
the experiment process easier than other works with force
or position sensors. However, existing optical myography
studies require human subjects to attach visible markers, and
to fix the position of the forearm.

We admit that there could be infeasibility when relying
only on images to obtain detailed and exact information
on how humans control their impedance. However, just as
we know whether an object is heavy or not by observing
someone’s arm lifting the object, humans are able to estimate
approximate information of muscle activation by recognizing
the visual pattern of muscles [16]. Even if it would be chal-
lenging to measure the exact value of human arm stiffness

Fig. 1. An overview of how the proposed vision-based tele-impedance
system works. It first estimates a human pose to obtain the image patch
of the target limb (i.e., forearm). Then, the image patches are given to
the proposed Muscle Activation Pattern Estimator (MAPE), resulting in a
static state (activated, inactivated) and temporal state (increasing, stable,
decreasing). Based on this, a proper end-point stiffness profile is obtained
and the robot controls its end-point stiffness to perform a given task, by
following how the human adapted one’s stiffness to complete the task.

based on images, it would be possible for us to infer with
images whether the human is stiffening up his/her arm or not.
This approximate estimation of muscle activation patterns
can be beneficial for a robot to control its end-point stiffness
to perform a given task properly.

III. METHODOLOGY

A. Overall Structure

Figure 1 shows how the proposed system works. On the
left side, it shows how our system obtains the visual input for
muscle activation pattern recognition. From the RGB image,
our system first obtains the human pose information based
on the estimator from [17]. Based on that, a square image
patch is cropped near the region where the target limb is. We
choose the forearm as the target since the visual appearance
of its muscles would represent the wrist stiffness, which has
consequently an effect on human’s hand end-point stiffness
[18]. After collecting a set of image patches for a short
time duration, it is used as an input for the proposed muscle
activation pattern estimator (MAPE). As shown in Figure 1,
MAPE results in two muscle activation states, which are
static state and temporal state. The static state represents
whether the muscle is activated or not, and the temporal
state represents whether the degree of muscle activation is
increasing, stable, or decreasing. Both states are necessary
for a robot to adapt its end-point stiffness to conduct the
task. A robot can decide whether to stay inactivated (low
stiffness) or activated (high stiffness) using the static state,
and whether to prepare the transition from the inactivated
state to the activated state using the temporal state. Note
that MAPE is trained in a supervised way, based on the
RGB images from an affordable webcam, and static/temporal
states are annotated from an EMG sensor.

For enhancing the performance of MAPE, we propose an
additional approach such as ‘visual data augmentation’ in
the training process. Its goal is to randomly apply several
transformation techniques to the given muscle image patches,
such as rotation, translation, flipping, color adjustment, and
background change. By doing so, it is possible for MAPE to



Fig. 2. Illustration of how our dataset is collected from human subjects.
While a sequence of images of the forearm is collected by an affordable
RGB webcam (red box), an EMG signal is also collected from the bracelet-
shaped sensor (light blue box). After finishing this process, the collected
raw data is properly preprocessed such that a set of triplets of images,
static states, and temporal states can be obtained.

learn how to be robust for different image conditions such
as light, human pose, and background.

In addition, we also apply ‘visual calibration’ in the
training process. It generalizes the performance of MAPE for
various human subjects, by reducing the effect of individual
muscle’s visual traits. To do this, it collects the muscle image
patches from a human subject when one releases or applies
force to the muscle. Afterward, when new image patches
are given as inputs from the human subject, it generates the
calibrated image features by considering the activated and
inactivated muscle images of that target human subject.

B. Dataset

1) Collection: To train the muscle activation pattern es-
timator (MAPE), we build a dataset consisting of images
observing a human’s target limb (forearm) as well as corre-
sponding discrete state labels of muscle activation patterns.
The labels include the static and temporal states, where the
static states denote whether the muscle is activated or not,
and temporal states denote whether the degree of muscle
activation is increasing, stable, or decreasing.

To collect the dataset, we prepare an environment as
shown in Figure 2. It shows a webcam (Logitech C920)
and a bracelet sensor named Myo from Thalmic Labs, which
arranges 8 EMG sensors around the forearm. We ask subjects
to wear it on their forearm near their elbow (see the cyan box
in Figure 2). The camera observes the subject with 10 fps and
a resolution of 1920 × 1080. Images are collected within a
black background, to simplify the data augmentation process
(i.e., random background). After setting up the camera, we
instruct the subject to apply the force to the gripper by
applying a tight grasp, synchronized with the visual stimulus
shown on the screen. Here, the visual stimulus is a periodic
square wave signal with a length of 120 seconds and a time
period of 4 seconds. We ask the subjects to apply the grasp
force of approximately 80% of their maximum voluntary
contraction [19] when the stimulus value is high, otherwise
release the grip force. According to [18], this instruction
would also affect the human end-point stiffness.

Fig. 3. Illustration of various conditions when our dataset is collected from
human subjects. Conditions such as distance, light, and arm pose are varied
in two ways such that the data collection process can be conducted at least
eight times for each subject.

Let us denote s(t) ∈ R8 as an EMG signal consisting
of eight channel values, which are the measurements from
eight EMG sensors of our bracelet sensor Myo. Then, its
amplitude is calculated as a(t) = ∥s(t)∥2. The rightmost
graph in Figure 2 shows an exemplary EMG signal amplitude
a(t) obtained from the human subject when one controls the
grip force while following the visual stimulus.

To increase the generalization ability of our model, we
collect the dataset from six human subjects (3 males, 3
females / 3 Caucasians, 3 Colored / All in normal physiques).
In addition, as shown in Figure 3, the data collection
processes based on the visual stimulus are performed 8
times by combining the following settings. We captured two
different distances between the camera and the human, in
particular 1m and 1.5m. Also, we consider two different light
conditions based on the intensity of the light source. Finally,
two different arm poses were considered.

2) Annotation: For collected images, we crop the area of
the forearm according to the estimated wrist and elbow poses
from [17], as the red box shown in Figure 2. Since our goal
is to estimate muscle activation based on observed visual
patterns of the muscle, we exclude the visual information of
hands. When training a model, an image patch inside this red
box is randomly rotated or translated for data augmentation.

For each cropped image showing the bare forearm, we
need labels of whether the muscle is activated or not,
and whether the muscle activation is increasing, stable, or
decreasing. To annotate these discrete labels, we employ the
collected EMG signals. We first resample EMG signals to 30
fps, and apply zero-phase digital filtering to the signal [20].

To annotate a static state at time t, we define a threshold
for the amplitude of the preprocessed EMG signal and label
the state as ‘activated’ if the amplitude at time t is larger than
the given threshold. The threshold is defined based on the
normalized EMG signal amplitude n(t), which is obtained by
considering the minimum and maximum amplitude, such as
n(t) = (a(t)−min a(t))/(max a(t)−min a(t)), where a(t)
denotes the original EMG signal amplitude at time t. Then,
the static state is defined as ‘activated’ if the normalized
amplitude n(t) is larger than δact, and vice versa. Here, δact
is empirically chosen uniquely for each human subject, by



Fig. 4. Structure of the muscle activation pattern estimator (MAPE).

considering how the individual’s muscle shape changes with
respect to n(t). If one’s muscle looks activated after n(t) is
larger than a certain value, that value is chosen as δact.

To annotate the temporal state, we measure the ampli-
tude’s slope s(t) by fitting a linear regression model to
the n(t) in the time window t − d ∼ t + d. If s(t) >
δinc, the temporal state is defined as ‘increasing’. And
it is defined as ‘decreasing’ if s(t) < δdec, and ‘stable’
if δdec < s(t) < δinc. Thresholds δinc, δdec are em-
pirically chosen for each subject. Finally, the number of
obtained (Images,StaticState,TemporalState)
was 6,764.

C. Muscle Activation Pattern Estimator (MAPE)

The goal of our muscle activation pattern estimator
(MAPE) is to recognize the approximate label of muscle
activation patterns at each time stamp t = 1 . . . T based on
the visual information. However, the temporal state label of
whether the muscle activation is increasing or not would not
be captured from a single image. Therefore, MAPE gets an
input of Vt ∈ RN×3×H×W , where a short video clip consists
of N frames {It−N+1 . . . It}. Here, It ∈ R3×W×H is an
RGB image observing the bare forearm at timestamp t.

MAPE generates two score vectors St and Tt based on Vt,
such that: [St;Tt] = MAPE(Vt), where St ∈ R2, Tt ∈ R3.
Here, St denotes an estimation score for the static state label
at the time stamp t. It would be recognized that the muscle is
activated if St[1] < St[2], where St[i] is the i-th element of
St. Similarly, Tt denotes an estimation score for the temporal
state label at the time stamp t. If argmaxi Tt[i] = 1, it
would be recognized that the muscle activation is decreasing.
Otherwise, it would be recognized that the trend of muscle
activation is stable or increasing if argmaxi Tt[i] is 2 or 3.

Figure 4 visualizes the structure of the proposed neural
network-based MAPE. In this figure, it is assumed that
the input consists of 4 images. MAPE first extracts a set

Fig. 5. Data augmentation process for improving the generalization
performance of MAPE. After randomly rotating or translating the image
patch cropped near the target region (i.e., forearm), it is randomly flipped
in the horizontal or vertical direction. Then, the brightness, contrast, and
saturation of the image are randomly adjusted. Finally, the background is
replaced with various random images from https://picsum.photos/.

of image features from Vt, based on the ResNet [5]. Let
hk ∈ RD denote a feature extracted from the k-th image Ik
consisting Vt. After extracting Ht ∈ RN×D which consists
of {ht−N+1 . . . ht}, Ht is fed to recurrent neural networks
(RNNs) [21]. After Ht passes the RNNs, the resulting vector
vt ∈ RD is mapped to St and Tt with two separate fully
connected layers.

D. Visual Data Augmentation

To train MAPE, it is crucial to collect a sufficient dataset
containing triplets of D = {Vt, St, Tt}t=1...T . To do this, as
we mentioned above, we recruited six human subjects and
collected a dataset from a different light, camera distance,
and human pose conditions. However, even if we considered
various conditions in the data collection process, we still
cannot guarantee that the collected dataset is perfect since it
is quite challenging to satisfy diversity among all possible
different conditions.

Therefore, to increase the generalization performance of
the model, we augment our input data Vt based on the below
process shown in Figure 5.

1. Obtain the image patch of the forearm near the wrist
(see red box in Figure 2).

2. Crop the image inside the red box, and randomly rotate
and translate that cropped image.

3. Flip the cropped image horizontally or vertically with a
probability of 0.5.

4. Randomly adjust the brightness, contrast, and saturation
of the cropped image.

5. Replace the black background with various random
images from https://picsum.photos/.

The second and third procedures are to compensate for
the disadvantage of our data that is only collected from two
types of human postures. The fourth and fifth procedures are
to increase the generalization performance of the model with
various brightness conditions and backgrounds. The entire
data augmentation process is performed per each training
iteration, such that more randomly augmented data can be
used for training as the number of iterations increases.



Fig. 6. Comparison between subjects with different muscle shapes and
deformation patterns. Compared to Subject 6, Subject 1 has a smaller muscle
size and the variation of its deformation pattern is also less than Subject 6.
In addition, it is shown that the activated muscle image of Subject 1 looks
similar to the inactivated muscle image of Subject 6.

E. Visual Calibration

However, even if we train MAPE with the augmented
dataset, we find out that the vanilla MAPE sometimes fails
to obtain the generalized result. Figure 6 shows one of the
examples that provokes the cases of failure in generalization.
It shows that the visual pattern change between inactivated
and activated muscles of Subject 1 is less distinguishable
compared to Subject 6. Also, the image of the activated
muscle of Subject 1 looks similar to the inactivated muscle
of Subject 6, rather than the activated muscle of Subject 6.
In this case, if the proposed vanilla MAPE is trained with
images from Subject 1, the ‘inactivated’ muscle image of
Subject 6 can be recognized as ‘activated’ due to this visual
similarity. On the contrary, if MAPE is trained only based
on the images of Subject 6, it would be challenging for the
model to discriminate the muscle activation status of Subject
1 since his/her muscle activation change is less visible.

Based on this observation, we conclude that an additional
approach that can reduce the impact of an individual muscle’s
visual characteristics is necessary. Therefore, we introduce
the approach named ‘Visual Calibration’, which can gener-
alize the performance of MAPE for various human subjects.
To do this, it first requires human subjects to release or apply
the gripping force and collects images from inactivated and
activated muscles. Let Iinact and Iact denote the collected
images of inactivated and activated muscles from this pro-
cess. Then, MAPE with Visual Calibration extracts image
features from Iinact and Iact based on ResNet. Let hinact

and hact denote the obtained image features. Then, the set
of image features Ht = {ht−N+1 . . . ht} which was obtained
from the original input Vt is calibrated based on hinact and
hact, such that Hc

t = [hk − hinact;hk − hact]k=t−N+1,...,t

can be obtained. Finally, the calibrated features Hc
t are given

as an input to the LSTM-RNNs, and final results (St, Tt)
are obtained. Figure 7 summarizes how MAPE with Visual
Calibration works. Note that the same ResNet is used to
extract features from Vt, Iinact and Iact, so that the efficiency
can be improved in terms of the number of parameters.

F. Implementation Details

When training MAPE, we use Vt ∈ R4×3×112×112, where
four images It−3, It−2, It−1, It of size 3×112×112 are used
to construct Vt. In experiments, our video clip is 10 fps, such
that the video clip Vt contains information during 0.4 second.
After extracting a set of image features Ht ∈ R4×2048

Fig. 7. The network architecture of the proposed machine activation pattern
estimator (MAPE) when visual calibration is applied.

from Vt based on ResNet-50, it is normalized based on
its L2-norm magnitude and is fed to LSTM-based RNNs
which dimension of the hidden state is 2048. When Visual
Calibration is added to MAPE, input for the LSTM-RNNs
is Hc

t = [ht − hinact;ht − hact], where ht, hinact, and
hact are image features after L2-norm based normalization.
After LSTM-RNNs process the input Ht, its last hidden state
vector becomes vt ∈ R2048, and it is mapped into St and
Tt based on two separate fully connected layers. To train
vanilla MAPE or MAPE with Visual Calibration, a cross-
entropy loss function is used for each St and Tt, and Adam
optimizer [22] with a learning rate of 0.0001 is employed.
At each iteration, a batch size of 64 is sampled from the
training dataset after the data augmentation.

IV. EXPERIMENTS

A. Qualitative Results

Our dataset for training MAPE consists of RGB images
as well as static/temporal state annotations collected from
six different human subjects. After training MAPE with a
dataset from five human subjects, we obtain its qualitative
results as shown in Figure 8 by giving data from the unseen
human subject as inputs. Compared to the ground truth of
static/temporal state labels, the estimation result shows that
the proposed system combining visual calibration as well
as data augmentation to MAPE generates the most reliable
result (see the orange block in Figure 8). In addition, it is
shown that the proposed system without visual calibration
or data augmentation generates less reliable results (see
gray blocks in Figure 8). Note that relevant quantitative
results will be also shown in the next paragraph. Based
on this, we argue that the proposed visual calibration as
well as data augmentation are crucial for enabling MAPE
to understand the changes in muscle deformation patterns of
the unseen human subject. Therefore, it can be concluded
that the proposed two auxiliary processes are also important
for increasing the generalization ability of our vision-based
tele-impedance control system.



Fig. 8. A qualitative result from MAPE when it is tested to the dataset of the human subject which is unseen during the training phase. Note that input
images are modified for better visualization. The result shows that the proposed system with visual calibration as well as data augmentation results in the
most reliable estimation compared to other cases.

Fig. 9. Confusion matrices obtained from the quantitative ablation study.
On matrices for the static state, - denotes inactivated, and + denotes activated
state. On matrices for the temporal state, ↓ denotes decreasing, — denotes
stable, and ↑ denotes increasing state. The result shows that the proposed
system with visual calibration and data augmentation is the best when
considering both static and temporal state estimation.

B. Quantitative Results

To measure the performance of MAPE, we perform 6-
fold cross-validation, by dividing the dataset with respect to
the human subject identity. Figure 9 presents the confusion
matrices from the proposed system with and without visual
calibration or data augmentation. As expected from the
qualitative results, it is shown that the system with both
visual calibration and data augmentation produces the best
result in both static and temporal state estimation.

Compared to the high performance of static state estima-
tion, the accuracy of temporal state estimation is not as high.
However, we want to emphasize that the most threatening
error occurs if MAPE confuses ‘increasing’ with ‘decreas-

ing’. And note that this does not happen in all cases of this
ablation study using MAPE. When the ground truth label is
‘increasing’ or ‘decreasing’, only the confusion with ‘stable’
occurs, which can be easily corrected by post-processing
techniques such as filtering or Finite State Machine (FSM).
To check how we used FSM for post-processing, please
check our supplementary material.

To summarize the performance in a better way, we present
the precision, recall, and F1 score of state estimation as
shown in Tables 1 and 2. Even the systems without visual
calibration or data augmentation sometimes perform better
than the proposed system in terms of precision or recall, it
is shown that the F1 score of the proposed system is higher
in all cases. Based on this, we claim auxiliary approaches
such as visual calibration and data augmentation are crucial
for improving the generalization ability of the MAPE.

C. Real-World Demonstrations

We also validate the scalability of our system by applying
the MAPE to the tele-impedance control of a real robot. Our
task is to enable a robot to push the emergency button that
needs high enough stiffness to be successfully pushed. To this
end, our robot uses variable stiffness based on our vision-
based tele-impedance framework. Its end-point stiffness will
follow the human strategy, which increases the stiffness only
when necessary, and otherwise being compliant during a free
motion to reduce the metabolic cost [23]. Figure 10 shows
how our system works with a real robot. We move the robot’s
end-effector to be located around 20cm above the button. In
the meantime, the human subject makes a fist with one hand
and locates it to be around 20cm above another button. Then,
we instruct the subject to successfully push the button by



TABLE I
SCORES OF STATIC STATE ESTIMATION WITH AND WITHOUT DATA AUGMENTATION (DA) AND VISUAL CALIBRATION (VC). - DENOTES INACTIVATED,

AND + DENOTES ACTIVATED. THE BOLD FONTS DENOTE THE HIGHEST SCORE WHEN COMPARING PROPOSED, W/O DA, W/O VC, W/O DA&VC.

Proposed w/o DA w/o VC w/o DA&VC
- + - + - + - +

Precision 0.937 0.844 0.872 0.882 0.878 0.849 0.817 0.790
Recall 0.886 0.912 0.905 0.842 0.883 0.843 0.835 0.769
F1 Score 0.911 0.877 0.888 0.861 0.881 0.846 0.826 0.779

TABLE II
SCORES OF TEMPORAL STATE ESTIMATION WITH AND WITHOUT DATA

AUGMENTATION(DA) AND VISUAL CALIBRATION(VC). ↓ DENOTES

DECREASING, — DENOTES STABLE, AND ↑ DENOTES INCREASING. THE

BOLD FONTS DENOTE THE HIGHEST SCORE WHEN COMPARING

PROPOSED, W/O DA, W/O VC, W/O DA&VC.

Proposed w/o DA
↓ — ↑ ↓ — ↑

Precision 0.448 0.974 0.563 0.379 0.956 0.416
Recall 0.753 0.921 0.770 0.542 0.905 0.680
F1 Score 0.561 0.947 0.650 0.446 0.930 0.516

w/o VC w/o DA&VC
↓ — ↑ ↓ — ↑

Precision 0.425 0.979 0.508 0.262 0.952 0.404
Recall 0.729 0.916 0.867 0.459 0.895 0.604
F1 Score 0.535 0.947 0.641 0.334 0.923 0.484

vertically moving down one’s hand toward the button. As we
focus on the muscle activation estimation part, we simplified
the experimental setup by commanding the robot end-effector
with a pre-programmed vertical downwards motion towards
the button, with a velocity of 5cm/sec. The subject synchro-
nizes one’s motion by following the robot’s motion, so that
the human can press the button at the same time as the robot
does. In addition, it is required for the subject to increase
one’s grip force properly when the robot’s end-effector is
about to push the button.

The estimated static/temporal state information is trans-
ferred to the robot control loop whenever the MAPE outputs
a prediction. To command the robot’s stiffness, we devise
a Finite State Machine (FSM) that acts on the incom-
ing static/temporal state estimation while also filtering out
possible noisy states predicted by MAPE. Based on the
internal state of FSM, the cartesian robot stiffness in the
direction of motion (z axis relative to the robot base frame)
is set. For instance, in Figure 10, when MAPE estimates
the static/temporal states as ‘activated’ and ‘increasing’, our
FSM transits to the ‘increasing’ state, and the robot starts
smoothly increasing its stiffness profile from a low value to
a high value. When the stiffness reaches its maximum, the
FSM transitions to and stays in the ‘high’ state while the
static state is ‘activated’ and the temporal state is ‘stable’.
Thereby, the robot adapts its end-point stiffness to mimic the
same human behavior, allowing it to complete the task, by
applying the necessary force needed to push the button.

Our supplementary video shows more examples of real-
world demonstrations with various subjects, including ones
who did not participate in the data collection process. Our
system can be applied to various humans, thereby we claim
the generalization ability of our system and the feasibility to
be deployed in a real-world scenario is demonstrated.

V. CONCLUSION

In this paper, our goal is to transfer the human ability
of end-point stiffness adaptation to the robot solely based
on RGB images. To do this, we introduce a model named
muscle activation pattern estimator (MAPE). Based on the
given image frames, MAPE can infer (1) whether the muscle
is activated or inactivated (static states), as well as (2)
whether the degree of muscle activation is increasing, stable,
or decreasing (temporal states). To train MAPE, we collect
triplets of images, static states, and temporal states, from six
human subjects in various conditions.

However, since the collected dataset can be biased, we
also suggest visual data augmentation as well as visual
calibration. Visual data augmentation is to randomly apply
various image transform techniques to the input image, so
that MAPE can adapt to images with various conditions.
The visual calibration is to reduce the effect of personal
factors such as the size or visibility of individual muscles
on the forearm. Our experiment results show how MAPE
works, and how much the visual data augmentation and
visual calibration processes can enhance the performance of
MAPE in a qualitative and quantitative way. Finally, we show
a real-world demonstration that solves the push-button task,
by applying the estimated muscle activation patterns to adapt
the robot’s end-point stiffness.

Our current system has several open challenges to address.
First, it is not able to obtain an exact measure of human
stiffness. But especially for tele-impedance applications, this
might not be of major importance as long the robot is
commanded with adequate impedance. This is the case for
instance in EMG-based tele-impedance where scaling factors
are commonly used to map the human arm stiffness to
the cartesian robot stiffness [11]. In addition to that, our
estimation is limited to only a one-dimensional stiffness
estimation. For our simplified experiment scenarios, this was
sufficient. However, more complex tasks such as screwing
would require more complex stiffness settings where the
magnitude and orientation of the stiffness ellipsoid are spec-
ified. We believe such drawback would be supplemented by
our future work, and would like to highlight more on that
we validate the feasibility of vision-based muscle activation
pattern estimation, as well as the possibility of using the
estimation results for successful tele-impedance control.

Also, our system has the potential to aid existing vision-
based learning from demonstration (LfD) or imitation learn-
ing studies, which only considered the end-effector trajectory
in their learning process. It would be possible for our
system to also extract the end-point stiffness information



Fig. 10. Our real demonstration for the task of push-button. While a human subject is lowering one’s arm by synchronizing to a pre-defined robot’s vertical
downwards motion, our system captures the forearm region of the subject and estimates its static/temporal states. The estimation result is transferred to
the robot, and the robot generates a proper stiffness profile. Based on this, the robot successfully executes the task by adapting its end-point stiffness as a
human does to complete the task.

from the demonstration videos of human, so that advanced
LfD methods can be realized. We believe that our study
would be a baseline for improved research on vision-based
skill transfer to robots, which can also consider how humans
adapt the stiffness when executing a task.
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