

Solar Facilities for the European Research Area

"Towards a fully automated flux density prediction using data driven models" *Max Pargmann, German Aerospace Center (DLR)*

NETWORKING

Summer School: "Smart CSP: How Smart Tools, Devices, and Software can help improve the Design and Operation of Concentrating Solar Power Technologies" - WP1 Capacity building and training activities - Cologne, Germany, September 14th-15th 2023

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 823802

- Motivation
- Methods: Differentiable Raytracing
- Three Foundations of Automation
 - Diagnosis
 - Control
 - Predition
- Discussion

Motivation

Max Pargmann

Max Pargmann

Max Pargmann

Difficulties:

- Unique Pointing Command
- Quality of Calibration
- Command Delay
- No Sensors
- No Measurement

Max Pargmann

Difficulties:

- Open Loop Control
- Measurements for
 - Calibration are slow
 - Mirror deformations are unreliable and cost intensive
 - Flux measurements are experimental[1] or cost intensive

Solution:

- Closed Loop Control
- Install More Sensors

[1] Offergeld, Matthias, et al. "Flux density measurement for industrial-scale solar power towers using the reflection off the absorber." *AIP Conference Proceedings*. Vol. 2126. No. 1. AIP Publishing, 2019.

Max Pargmann

Difficulties:

- Open Loop Control
- Measurements for
 - Calibration are slow
 - Mirror deformations are unreliable and cost intensive
 - Flux measurements are experimental[1] or cost intensive

Solution:

- Closed Loop Control
- Install More Sensors
- Use Modern Algorithms

[1] Offergeld, Matthias, et al. "Flux density measurement for industrial-scale solar power towers using the reflection off the absorber." *AIP Conference Proceedings*. Vol. 2126. No. 1. AIP Publishing, 2019.

Max Pargmann

Methods

Heliostat Calibration / Surface Information

Max Pargmann

Max Pargmann

Max Pargmann

Max Pargmann

Max Pargmann

GANCSTR | ARTIST How much information about each How much information can be deduced heliostat can be deduced from field data? with as few data as possible? **Model Error** Cost Available Calibration Data Data Linear Regression Random Forest Deep Learning **Polynomal Regression**

Max Pargmann

Max Pargmann

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Max Pargmann

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Methods: Differentiable Raytracing

Max Pargmann

can help improve the Design and Operation of Concentrating Solar Power Technologies"

Max Pargmann

Max Pargmann

Diagnosis: Detect Mirror Deformations

____/mm

Ca. 25k points per facet
→ 64 points per facet with over 98% overlap

3e+00

4e+00

2e+00

/mm

5e+00

 $\vartheta_{\text{meas}} = f(\text{heliostat position, sun position, aimpoint} \alpha, \beta, \gamma, \mathbf{v}_{12}, ...) \rightarrow 20$ independent parameters

Max Pargmann

Max Pargmann

 α (alignment, temp., time, wind, rigidity) = ???

Max Pargmann

 $\pmb{\alpha}_{\text{complete}}$ = α_{const} + $\Delta\alpha_{\text{dynamic}}$ with $\Delta\alpha<<\alpha$

49

Max Pargmann

 The models are evaluated on the basis of a special data set training/test split, which provides information about the worst-case performance. Details in [1]

 The combination of rigid body and neural network model prediction is always best

[1] Pargmann and Leibauer et al. It is Not About Time - A New Standard for Open-Loop Heliostat Calibration Methods

Max Pargmann

SFERA-III Summer School "Smart CSP: How Smart Tools, Devices, and Software

Prediction: Single Heliostat Flux Density

•

K

How to apply Deep Learning on small data sets at solar towers?

How to apply Deep Learning on small data sets at solar towers?

- Data is scarce, but physical Information isn't!
- Ways to reduce the data usage at the solar tower:
 - Use Physical Information for Initialization (eg. Heliostat Alignment)
 - Use Simulation/Augmentation data to pretrain Networks
 - Use a physics informed Loss function to smooth your optimization function
- Use images instead of tabular data

When to choose AI models over physic at solar towers (at small data sets)?

- Most processes at the solar tower are very good approximated by physical simulations
- AI can be used to close this gap when the error source is unknown
- Estimate unknown error:
 - Example Heliostat Alignment Model:
 - Potential optimal accuracy approx. 0.03mrad
 - Heliostatfield accuracy approx. 2.1mrad
 - Measurement and Hardware errors approx. 1mrad
 - Example Heliostat Surface Model
 - NURBS can fit Mirror to 100% (even with broken edges)

Continous NURBS heliostat surface

Al supported heliostat alignment model

AI can reduce model error by half the absolute error

Physical model's parameter space is sufficient

Conclusion

