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Abstract

Solar tower power plants rely on precise calibrations of their heliostats for efficient operation. Open-loop calibration
procedures are the most common type due to their cost-effectiveness. Two main approaches to these algorithms exist:
geometry-based robotic kinematics and neural network-based models. While the former is reliable and requires little data,
it only yields moderate accuracy. The latter, however, promises higher accuracies but is data-hungry and unreliable. In
this study, we propose a 2-layer coarse-to-fine hybrid model that combines the strengths of both approaches. Our model
uses a rigid-body model for prealignment, then phases in a neural network disturbance model through a regularization
sweep. This approach ensures that the prediction accuracy is, in the worst-case, equivalent to that of the rigid-body
model. Moreover, it helps to identify deficiencies that may have been overlooked by the physical approach. It especially
is capable to compute deviation from the geometry models averaged optimum. For testing, we used real measurement
data from daily heliostat calibration at the solar tower in Jülich. We also employed a training/validation data split
for evaluation, which allows for a conservative performance assumption over the entire year. Our results demonstrate
that the hybrid-model outperforms rigid-body models starting from the first measurement, achieving a top performance
below 0.7 milliradians. In conclusion, our proposed hybrid model provides a cost effective in-situ solution for heliostat
calibration with highest accuracies on low data in solar tower power plants for all open loop calibration methods.
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1. Introduction

The use of solar tower power plants has been gaining mo-
mentum as a promising source of clean and renewable en-
ergy as well as solar fuels. These plants use an array of
mirrors, known as heliostats, to reflect and concentrate
sunlight onto a central receiver, where the energy is then
converted into electricity. The sun tracking accuracy of
these heliostats is essential for maximizing the energy out-
put and overall efficiency of the power plant. For keep-
ing the accuracy high, the heliostats have to be calibrated
regularly. However, due to cost constraints affecting espe-
cially the material and component quality of the heliostats,
the required accuracy is difficult to achieve.
The Camera-Target Method (Stone, 1986) is the standard
method for heliostat calibration due to its high accuracy,
reliability and relatively low cost implementation. Dur-
ing calibration, each heliostat is moved individually from
the receiver to a white calibration target nearby the re-
ceiver. A camera is positioned to have a clear view of the
target and captures focal spot images from various sun
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positions throughout the days. These images are used to
determine the heliostats’ deviations in position and ori-
entation via a rigid-body regression model. Traditionally,
physical-mathematical models have been used to deter-
mine the optimal positioning.
New approaches are being developed to improve the track-
ing accuracy of heliostats through the use of neural net-
works. These approaches require large datasets for train-
ing but deliver far better accuracies compared to com-
mon physical models (Sarr et al. (2023); Pargmann et al.
(2021)). However, since the data set delivered by the
Camera-Target Method is rather small per heliostat, the
use of neural networks is very limited. Furthermore, even
if the data set is sufficient, they are not as reliable as their
physical counterpart.
We here present a 2-layer coarse-to-fine hybrid model, which
uses a proven to be reliable geometric model as a pre-
alignment and then phases in a neural network disturbance
model over a regularization sweep. This ensures, that the
model performs in the worst case as good as the geomet-
ric model, but can profit from small dynamic variations,
provided by the neural network. For testing we use real
measurement data from the daily heliostat calibration car-
ried out at the solar tower in Jülich. We use a k-Nearest
Neighbor (k-NN) training/validation data split to give a
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conservative performance estimation of our models over
the year.

2. Related Work

Figure 1: Rigid Body Alignment Model

Historically, the approach first suggested by Baheti and
Scott (1980) and visualized in Figure 1 is the most imple-
mented one (Stone, 1986; Chen et al., 2004, 2006; Chong
et al., 2009; Guo et al., 2010; Khalsa et al., 2010; Guo et al.,
2013; Smith and Ho, 2014; Freeman et al., 2017; Grigoriev
et al., 2020, 2021). The heliostat alignment model is de-
rived from an investigation of the heliostat’s kinematics
and actuator geometry. Baheti and Scott (1980) intro-
duced six deficiencies: three rotations around the east,
north and up axis, one gear ratio deficiency for each of
the two actuators and a bias due to measurement errors
of the elevation angle. Stone (1986) extended the number
of deficiency corrections to eight. Smith and Ho (2014)
described these eight parameters as ”pedestal tilt about
the east axis”, ”pedestal tilt about the north axis”, ”az-
imuthal reference bias”, ”elevation reference bias”, ”az-
imuth linear error”, ”elevation linear error”, ”drive-axis
non-orthogonality” and ”boresight error”. Freeman et al.
(2017) first applied Denavit-Hartenberg notation and thus
extended coordinates to alignment modelling. However,
in most cases the description of the heliostat is reduced
to static errors, because the underlying optimization algo-
rithm computes an average best fit over the entire behavior
range.

Figure 2: Sketch of a neural network for alignment prediction.

The more general approach, visualized in Figure 2, is us-
ing a neural network to predict the alignment. This ap-
proach can learn modelling a heliostat’s complete align-
ment behavior, including dynamic impacts such as wind

Figure 3: Combination of Rigid-Body-Kinematics and Dynamic De-
viations

and thus promises high prediction accuracies. Further-
more, no prior analysis of the heliostat’s kinematics is re-
quired. Possible implementations were thus pursued by
Lee and Park (2010); Guangyu and Zhongkun (2017); AL-
Rousan et al. (2020). A major drawback to this approach
is the prediction’s complexity. This leads to high amounts
of required training data to successfully modify the net-
works parametrization. Nonetheless, advancements in tech-
niques such as transfer learning, data augmentation, and
active learning have enabled researchers to achieve impres-
sive results with smaller data sets. In a previous publica-
tion we (Pargmann et al. (2021)) suggested pre-training
the neural networks on simulated data, to pre-configure
the neurons’ linkage and thus reduce the amount of re-
quired training data. The method achieved very high accu-
racies but still needed 300 data points per training. Using
more modern neural network architectures, the amount of
needed data could already be reduced to 60 data points
(Sarr et al., 2023). Comparing the size of data sets and
achieved accuracy across various publications is challeng-
ing due to the significant influence of the data set on the re-
sults (Pargmann et al. (2023)). However, a trend towards
attaining higher accuracies with deep learning approaches
with less data is observed in recent developments.
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Figure 4: The layers of our propoased heliostat model. At the first
layer, the heliostat is decribed by an ideal rigid-body model. In the
second layer, the rigid-body model is trained using 28 optimizable
parameters. The trained parameters are then saved and used as
reference points for the the last layer, which adds dynamic calculated
perturbations

3. Theoretical Outline

3.1. Comprehensive Heliostat Model

For our results, we use a universal heliostat model (first
presented here Pargmann et al. (2023) ) as the basis. It is
a rigid-body kinematic system, designed along the lines of
robotic manipulators, with each joint serving as the origin
of a new coordinate system. These coordinate systems
can be rotated and translated along three axes but are
interdependent as part of a chain, resulting in six degrees of
freedom. Modifications to a coordinate system at a higher
level in the chain impact all of its child systems. This
methodology allows us to not only compute the alignment
of a heliostat in global coordinates based on its actuator
configuration but also derive the actuator configuration
from a given target alignment using the inverse principle
of coordinate systems. The model is able to describe every
bi-axial heliostat using a maximum of 28 (partly inter-
dependant) parameters. In the following it will be referred
to as the coarse-model, due to its limitations of computing
average optima over for the entire heliostat behavior.

The second layer, the fine-model, serves as a distur-
bance model that introduces dynamic deficiencies. A sche-
matic visualization is given in Figure 3. Each parameter
that can be optimized in the first layer is assigned an addi-
tional function in the fine-model. If the coarse-model pro-
vides constant values for these parameters, the fine-model
uses them as a reference point and only predicts deviations
from these values. However, if there are no constant values
given, the fine model predicts all optimizable parameters,
by learning the static average deviation as well as dynamic

Figure 5: schematic drawing of the used inputs for the neural net-
work. All inputs are encoded using fourier feature mapping.

local deviations. Technically any function e.g. polynomi-
als, differential equations, or neural networks can be used
for this purpose on any of the 28 free parameter. As long
as the chosen disturbance model is (partly) differentiable
these functions can be optimized as well. The method is
schematically drawn in Figure 4.

3.2. kNN Training-Evalutation Splitting

In a previous publication (Pargmann et al. (2023)), we
employed a Training/ Evaluation/ Test split for heliostat
calibration datasets based on the distance between a mea-
surement point and its k Nearest Neighbors (kNN with
k = 1, 2, 3) with respect to the sun position in Euler an-
gles (Azimuth, Elevation). To create these splits, the full
dataset was sorted by the kNN distance. The test set was
populated with 30 data points, using measurements with
the greatest distance to their neighbors. The validation
dataset used further 20 data points, still sorted by the
kNN distance. All remaining data was used for training.
If the dataset size was restricted, measurements with the
smallest kNN were excluded from training. All accuracies
presented later refer to the test dataset and are strictly
correlated with their kNN distance to the training dataset.
This type of Training-Test Splitting removes valuable in-
formation from training. Training with a different split,
such as a randomly ordered split, will likely result in sig-
nificantly better accuracies, due to the smaller distance to
the validation and test data set. However, as noted in our
earlier publication, this accuracy can be considered a con-
servative performance assumption, and it is not expected
to fall short in daily operation.

3.3. Neural Network Architecture

Our Fine Model is represented by a simple multi-layer per-
ceptron (MLP). The general architecture corresponds to a
self normalizing neural network (SNN). The basic princi-
ple behind SNNs is that the prediction by construction of
the network, strives for a prediction mean value around
zero with a standard distribution value of one. While it is
possible for a SNN to learn to exceed this prediction range,
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all exceeding values experience a pull towards the targeted
range of prediction. Thus, predictions can be bounded to
a certain range without loosing the gradients. They can
also be much deeper and thus solve more complex tasks
than simple MLPs.

A neural network configuration of 14 hidden layers with
two neurons per layer was found to yield good results.
However, we did not employ any parameter exploration
or optimization techniques; instead, we utilized the initial
architecture that proved to be effective.
As (normalized) inputs we use the heliostat’s orientation,
as well as the month and time of the measurement. Inputs
like environmental conditions are not further discussed as
no data was available. Due to the periodic behavior of time
and date, it holds two different types of information. The
first type is its normalized duration ∆tn from a given date
t0, which can indicate the amount of wear on a system.
The normalized duration can be derived by interpolating
the current date t between an earliest date t0 and latest
date t1 (ref. Equation 1). Then the normalized duration
is encoded into a sine and cosine function.

∆tn(t) =
t− t0
t1 − t0

(1)

The second type of information is the season, which can
be shown as normalized month mn that is constructed by
dividing a data points’ month m by twelve. This input
can indicate seasonal biases. This could be corrections to
the solar algorithm or environmental impacts, whereby the
latter should be used as individual inputs (e.g. tempera-
ture) if available. Daily cycles are already encoded within
the solar position and thus given through the heliostat’s
orientation.

The heliostat orientation can be extracted from the he-
liostat’s actuator configuration. Therefore, a data point’s
actuator steps ai are normalize to ai,n by dividing ai by
its maximum allowed value ai,max for each actuator i.

In addition the heliostat orientation is extended via
Fourier feature mapping (Tancik et al., 2020). This ap-
proach was found to significantly improve a neural net-
work’s performance for low-dimensional regression tasks,
where high-frequency features within the input data were
not noticed by the network until explicitly been introduced
as additional inputs. These additional inputs are obtained
by splitting each input parameter’s value into multiple in-
puts, one each for a different frequency band.
Lastly we use weight decay to regularize the neural net-
work. Weight decay is a regularization technique that is
used to prevent overfitting of the model during the train-
ing process. It involves adding a penalty term to the loss
function that is proportional to the squared sum of the
neural networks weights. The penalty term is multiplied
by a hyperparameter, known as the weight decay coeffi-
cient, which controls the amount of regularization applied.
Higher weight decay coefficient renders the neural network
parameter space less complex.

4. Method

Our approach comprises a two-step process that uti-
lizes a combination of a coarse and fine model. During
the first step, the coarse model is solely pre-trained using
the sun position, heliostat position, aimpoint, and mea-
sured position of the focal spot. This pre-training step is
important as it establishes a firm starting point for the
subsequent fine-tuning step. During the fine-tuning step,
the fine-model is trained using additional inputs, such as
the date of measurement.

After the training step, the fine model is trained and
its outputs are added to the static parameters of the first
layer, which is then used to predict accurate alignment.
Similar to weight decay, pre-training helps to reduce the
complexity of the parameter space. Moreover, due to pre-
training, the weight decay now pulls the network’s out-
put towards well-working parameters instead of zero, thus
binding the network to previously obtained knowledge.

The fine-model training is performed iteratively, begin-
ning with high regularization to force the network to find
solutions close to the coarse model. We can now gradu-
ally decrease the weight decay until it reaches zero and
compare the test results to the coarse model results using
the same test data. As we will see later, regularization
is only required very infrequently as the two-layer system
performs significantly better in most cases, even without
regularization.

5. Datasets

In total, we gatherd 4 Datasets from 4 different He-
liostats at the solar tower in Jülich in the time between Mai
2021 and October 2022. The Datasets contain between 191
and 477 Datapoints. The datasets where collected in daily
operation. So no extra measurement campaign has taken
place for this work has taken place. We cannot exclude
that points were recorded outside the automated calibra-
tion routine. Especially for AJ23 this is very likely.

Table 1: Characterizing properties of the heliostat data sets.

Name Position
(East/North)

Time Range Datapoints

AJ23 -54m/66m 6/21-10/22 477
AM35 -4m/80m 5/21-10/22 191
AM42 26m/80m 5/21-10/22 216
AM43 31m/80m 8/21-10/22 198

6. Proof of Concept at the Solar Tower in Jülich

First we want to evaluate the performance of our Hybrid-
Model, by varying the amounts of applied training data.
Our findings are presented in Fig. 6. The upper graph
of the figure shows the accuracy of three different coarse
models (Static 6, 14, and 20), as it is typical in the state
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Figure 6: Comparison of different coarse models (Static 6,14,20 ), the
fine model (neural network) and the hybrid model (pre-alignment)
using the fine model together with the coarse model as a pre-
alignment

of the art. It also shows the accuracy of the fine model
(neural network) and the hybrid model (prealigned).
All models exhibit similar behavior, with prediction er-
rors decreasing rapidly up to approximately 100 measure-
ments, after which it either plateaus or worsens as more
data is added. This behavior is closely related to the dis-
tance between the test and training sets, as demonstrated
in the lower graph of Fig. 6. Using more than 100 train-
ing data points disrupts the balance of the training set,
ultimately leading to worse results. We have previously
discussed this behavior in more detail in a separate publi-
cation (Pargmann et al. (2023)).
The Hybrid-Model achieves the highest accuracies regard-
less of the size of the data set, and is able to maintain
accuracy even in the presence of imbalanced data.
Since the achieved accuracy is highly dependent on the
data sets’ size, the training/validation/test split and the
resulting distribution, we want to present the best achieved
results in a transparent representation. This is shown in
Figure 7. We chose a representation over the sun angles, as
it was found to be the determining factor. The size of the
circle in our testing set represents the prediction error and,
whereby the circle’s radius is adapted linearly, relative to
a reference of 1mrad. To make the plot more readable, a
grey circle indicates a prediction error of 1mrad. The re-
sults demonstrate that all data points within the training
distribution are accurately predicted, including those at
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Figure 7: illustration of AJ23 Dataset using 60 Datapoints for train-
ing. As it can be seen by the size of the circles, the prediction error
inside the distribution in especially small. Only at the edges the
accuracy drops slightly.

the distribution’s edges. Notably, predictions below an el-
evation of 20◦ exhibit stable accuracies despite significant
extrapolation of over 20◦ in azimuth and elevation.
For a small statistical assessment, we tested our method-
ology also with the other data sets. From Fig. 8 it can be
concluded that the Hybrid model outperforms the Coarse
model, starting from the first measurement except for the
AM35 heliostat, which exhibits similar accuracies. How-
ever, it should be noted that these results were obtained
using an unregularized model, and incorporating weight
decay could further enhance the model’s performance, which
will be investigated in the following.

In order to improve the prediction accuracy of the Hybrid
model, we conducted a regularization sweep by gradually
reducing the weight decay from Fig. 9a. At a weight de-
cay of 1, the training process will eventually converge to
the exact prediction of the coarse model, but better results
may be achieved during the convergence process. This ex-
plains, why the pretrained fine model’s prediction on the
validation data still outperforms the coarse model.
When analyzing the test dataset, the model’s accuracy
remained at the same level as a coarse model (dark and
light blue line). This is likely due to the limited size and
skewed distribution of our dataset, which results in the
model overfitting to the available information and strug-
gling to generalize at the edges of the distribution. The
test data set is particularly challenging due to its large dis-
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Figure 8: Comparision of our Model to the coarse model with 20 free
parameters on different data sets

tance from the training dataset. This can be seen in more
detail in Fig. 9b.

As expected, errors tend to be higher at the edges of the
data distribution. This is seen in both the validation and
test dataset where all data points within the data points’
distribution’s center are predicted better than those at the
dataset’s edges. Therefore, the average error calculated
over the year will likely be smaller than the reported av-
erage performance.

Additionally, Fig. 9b demonstrates that the algorithm
is capable of high extrapolations over 30 degrees. In sum-
mary, even if the test data set performance is only as good
as the rigid body model, the overall performance over the
year can be judged as superior to the rigid body model,
since the model performance only declines at the edges.
The accuracy is consistently higher for the inner part of
the distribution and thus for the majority of the year.

7. Discussion

Our study demonstrates that our new model outper-
forms all comparison models. Despite using neural net-
works, our model provides reliable and traceable behavior
of heliostats over the year due to its hybridization with
the rigid-body model. However, it is important to con-
sider the data distribution more carefully than with the
common approach. The new model has a tendency to
produce higher errors in edge regions due to the signif-
icantly increased number of free parameters in those re-
gions. While this may not significantly impact the annual
average, it can result in higher errors during early morning
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a) Regularization sweep results for the AM35 heliostat.

100 150 200 250 300
Sun Azimuth [Deg]

10

20

30

40

50

60

70

Su
n 

El
ev

at
io

n 
[D

eg
]

Training
Validation
Testing
1 mrad

b) Achieved accuracies of the AM35 heliostat on the test and validation
data sets using a weight decay factor of 0.0015, which achieved the best
validation accuracy.

Figure 9: Results for the AM35 heliostat.

and late evening hours. Moreover, this issue can be easily
addressed through targeted measurements in the morning
and evening.
The data set obtained from AM43 exhibited the high-
est level of accuracy using the Hybrid model, albeit with
the smallest improvement when compared to the Coarse
model. This could potentially be attributed to the im-
pact of measurement errors, which become increasingly
significant at higher levels of accuracy. At the solar tower
in Jülich, the vectorial deviation between model an real-
ity is determined by calculating the centroid of area of
each focal spot, which is then compared to the target
point. However, various factors such as mirror deforma-
tions, over/underexposure, partial shading by heliostats
located in front, and algorithmic instabilities can result
in inaccuracies in the measurement. To further minimize
these errors, it may be useful to calculate the loss directly
from the recorded image instead of the vectorial devia-
tion. For example, this can be achieved through the use of
a differentiable ray tracing environment (Pargmann et al.
(2023)).
In future works, model architecture investigations could
improve model prediction capabilities even further.
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8. Conclusion

In this study, we proposed a Hybrid-Model that combines a
coarse rigid body model with a fine neural network model
to predict the motor positions for heliostats in the solar
power plant in Jülich. Using this technique, we achieved
higher accuracies than all tested rigid body models, in-
dependent of the data set size. The results demonstrate
that all data points within the test/validation data sets
are accurately predicted, including those at the distribu-
tion’s edges. Simultaneously we lowered the amount of
data compared to previously full deep learning models by
a factor of 5 for reaching top accuracies below 0.7mrad
and is able to maintain accuracy even in the presence of
imbalanced data. The reported accuracies exhibit large
distances to the training data set over 20 degrees. Overall,
our study contributes to the development of more accurate
and reliable solar power plant operations.
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