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Abstract

Heliostat calibration is a vital task in solar tower plants to ensure high plant efficiencies. Currently calibration is
performed at close time intervals for every heliostat, to ensure constantly precise heliostat tracking, because it is assumed
that a heliostat’s precision tends to degrade over time. Consequently, new heliostat calibration procedures are frequently
presented that incorporate time-dependent data set splitting for training and testing. In this study, we present a new
data-set splitting method that measures the nearest neighbor distance between each calibration point using sun positions
in Euler angles (Azimuth, Elevation). We conducted a comparative analysis with the common time-based split method,
and our results demonstrate that neither time nor data set size significantly impacted the tracking accuracies. Instead,
the distribution of sun position within the data set emerged as the most important factor. Moreover, our findings
suggest that using time as a metric can be misleading when reporting validation accuracies. The proposed method has
significant implications for the calibration of heliostats, previous and upcoming publications as well as the daily power
plant operation. Utilizing this method, the acquired data sets are expected to achieve higher levels of accuracy while
requiring less data. Furthermore, it has the potential to enhance the comparability between publications and enable
risk-averse assessments of new methods to ensure stated accuracies and improve model evaluation reliability.

Keywords: Concentrating solar power, Solar tower power plant, Heliostat aiming, Artificial intelligence, Neural
Networks

1. Introduction1

The efficiency of power plants relies heavily on the ability2

of heliostats to accurately track the sun. Heliostats must3

meet strict requirements for accuracy and cost-effectiveness,4

while also being able to withstand various external factors.5

There are two main types of heliostat-control: open- and6

closed-loops.7

Closed-loop methods have a higher accuracy, but rely on8

additional hardware, negatively effecting the cost-effectiveness9

of the heliostat field.10

Open-loop heliostat control is cheaper, but requires direct11

or indirect measurements and modelling of the heliostat12

characteristics, making the heliostats’ tracking accuracy13

dependent on the quality of model training. With open-14

loop control, heliostat calibration is therefore key to main-15

taining high tracking accuracies. The most commonly used16

method is the camera-target method (Stone, 1986).17

This involves moving a single heliostat from the receiver18

to a target located close by. Due to individual errors of19

the heliostat, the intended position of the heliostat may20

deviate from its measured position. By analyzing this de-21

viation, along with the heliostat’s position in the field and22
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the sun’s position, an error model can be fitted by regres-23

sion. This model can then be used to adjust the orienta-24

tion of the heliostat and minimize its sun tracking error.25

The method is highly automated and stable, although its26

accuracy typically falls in the range of 1-5 milliradians.27

Moreover, AL-Rousan et al. (2020) and Armendariz et al.28

(2013) found that employing month, day, and time vari-29

ables to predict tilt and orientation angles performs better30

than using other variables.31

The camera-target method was taken up and improved32

by a multitude of more advanced approaches, like Helio-33

stat alignment via lasers (Sattler and Göttsche, 2022) and34

cameras (Burisch et al., 2017) or on the heliostats at night35

using stars or moonlight (Hines, 2017), measured directly36

on the receiver (Bern et al., 2020) or drone flights (Gouws,37

2018). In general, the number of published calibration38

methods is vast (Sattler et al., 2020), indicating a sig-39

nificant research effort towards developing and validating40

analytical procedures for accurate measurements and re-41

liable results. Despite the good published accuracies of42

these novel approaches, the camera-target method is still43

the most commonly used method for heliostat calibration44

in commercial power plants.45

This can be explained by the reliability of the stated accu-46

racies. All regression models heavily rely on the collected47

data set, and power plant operators are taking a big risk48
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Figure 1: Schematic drawing of the proposed nearest neighbor met-
ric. The shortest distance is measured by the sun position given in
Euler coordinates. The heliostat motor positions can be used as well,
but do not provide comparability between publications.

by exchanging the calibration procedure.49

To address this issue, we propose a conservative assump-50

tion metric that can be used to risk-averse estimate the51

yearly heliostat tracking-accuracy and can be quantita-52

tively compared between scientific reports and power plant53

operators.54

The proposed metric evaluates a data set based on the dis-55

tance between measurements calculated by the sun’s Eu-56

ler angles (Azimuth, Elevation) instead of the time/date57

of the measurement. By applying this approach to a huge58

data set from the solar tower in Jülich, we demonstrate59

that the distribution and balance of the calibration data60

set with respect to the sun angles have a more significant61

impact on calibration accuracy than time or data set size.62

Moreover, we show that data set splits based on time/date63

can be missleading for reporting heliostat calibration re-64

sults.65

Our proposed metric can further be applied to optimize66

the data point collection process at solar towers, resulting67

in higher accuracies with fewer data points. We also give68

advice for future publication, how to publish results and69

data sets transparently and comprehensible, accelerating70

the deployments of new approaches.71

2. Theoretical Outline72

2.1. k-Nearest Neighbors Metric73

In machine learning, subsets of all feasible model input74

combinations are used to extract and learn behavioral pat-75

terns and thus accurately predict the effects of before un-76

seen inputs. To cover all such patterns, the training data77

set should contain samples over the entire range of char-78

acteristics. Stochastically, a balanced data set can thus79

be regarded as a frequency distribution of behavioral pat-80

terns over distance to closest recorded data point with low81

Figure 2: Visual representation of the algorithm to apply the k-NN
data set partioning

variance. To facilitate the machine learning process, the82

distribution’s mean should furthermore be as low as possi-83

ble, to cover all patterns adequately. The difficult part for84

multi-dimensional data points and often unknown pattern85

distributions is to formulate a balanced distance function86

over all dimensions.87

The heliostat calibration is a regression over the parameter88

space, sun position, heliostat motor positions and target89

point to determine and correct the orientation of the he-90

liostat. While the aimpoint is rather static and most often91

only swaps between operational and calibration target, the92

solar position changes continuously and thus is the more93

determining input. The solar position can be quantified94

either as date and time or as an Euler vector.95

Since the solar position directly correlates with the helio-96

stat actuator movements, solar positions relevant to the97

heliostat’s operation can be regarded as indicators for be-98

havioral patterns. In this publication we apply the Near-99

est Neighbor (NN) distance metric to sort our training,100

validation and test set (compare Figure 1). The NN is101

computed as the minimum euclidean distance between a102

measurement’s solar position, represented by azimuth and103

elevation to another measurement. A data set is optimally104

balanced if the relevant solar positions’ NN distributions’105

mean and variance are minimal. We also employ k-NN106

with k = 1, 2, 3..., k ∈ N. Higher k-NN orders take into107

account that several measuring points may cluster at one108

location, but the cluster itself may be separated from the109

other measurement points. Here, the k-NN behaves like a110

regional density metric.111

We will show, that any sun-distance metric is better suited112

for evaluating the accuracy of a calibration procedure,113

than a time dependent split. While this metric is not capa-114

ble of completely describing the coverage of a point within115

the data distribution, it is sufficient to be applied as a cov-116

erage estimation. Examples for other factors that might117

affect the coverage, are angles between nearest neighbors,118
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Figure 3: Our kinematic model consists of an ideal heliostat behavior,
which can be distorted by up to 28 deficiency parameters (static
behavior). Each of these parameters can additionally be modeled by
dynamic functions (dynamic behavior).

position in the center or at the edges of the distribution119

and different weightings between azimuth and elevation.120

Choosing a metric to report calibration accuracies is open121

to researchers discretion. Nevertheless, the split is crucial122

and as we will emphasize in the upfollowing chapters, it123

should be presented transparently.124

2.2. Data set Splitting125

By means of the introduced metric, an ideal testing126

data set’s distance distribution would have a mean and127

variance of zero to completely cover all behavioral pat-128

terns. The same holds true for the evaluation and train-129

ing data set. Consequently, no ideal distribution can be130

achieved, if data set splitting is applied. Instead data split-131

ting can be chosen to be as optimal as possible by reduc-132

ing the data set distributions’ mean to cover all behavioral133

patterns and ensuring data set balancing by reducing the134

distributions’ variance.135

A heuristic solution to this optimization problem can136

be achieved by the algorithm shown in Figure 2. First137

all data points are sorted by their k-Nearest Neighbor dis-138

tance to any other available data point. Then, the Ntest139

data points of highest distance are selected as testing data140

points. Thereafter, out of the remaining data points, again141

the nval data points of highest distance are chosen as vali-142

dation data. The training data set is constructed from the143

data that is not selected as testing or validation data. If144

not all remaining data is selected to construct the training145

data set, data points of high distance are prioritized.146

2.3. Comprehensive Heliostat Model147

We test our method with a gradient-based regression of148

well-known machine learning techniques. For this purpose,149

we have created a comprehensive differentiable heliostat150

model ( Figure 3). The alignment model’s core is a rigid-151

body kinematic system. This system is modelled in the152

same way as robotic operating systems (ROS), where each153

joint forms the origin of a new coordinate system. Each154
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Figure 4: Measurement data from the solar tower in Jülich, gathered
by the camera-target method. The upper panel shows the measured
data set chronologically using a temporal training-evaluation-test
split. The lower panel shows the same split, but plots the mea-
surement data depending on the sun position.

coordinate system can be rotated and translated around155

all three axes but is part of the coordinate systems chain156

and thus has six degrees of freedom. Furthermore, ma-157

nipulating a parent coordinate system affects all its child158

systems. Using this approach not only allows to compute159

a heliostat’s alignment in global coordinates from its actu-160

ator configuration but also to use the coordinate system’s161

inverse principle to gain the actuator configuration from a162

given target alignment. For this work, heliostats with two163

or less actuators are regarded, as manipulators of higher164

degree would require a numerical solver for computing the165

inverse direction, whereas simpler manipulators’ inverse166

directions can be solved analytically. Therefore, each he-167

liostat has two actuated coordinate systems at each joint168

plus an additional coordinate system at its concentrator’s169

center point. Taking all degrees of freedom into account,170

this results in 28 possible parameters for optimization.171

The model is to our best knowledge universally applica-172

ble for all kind of heliostats and deficiency sources. It is173

written entirely in Pytorch, so the training of the model174

profits from highly GPU optimized linear algebra. The175

entire model will be made publicly available2.176

3. Measurement Data177

For evaluation, we used a calibration data set from the178

solar tower in Jülich that was collected using the camera-179

target method. It was chosen for its property of being180

the largest data set available in the field at the time. All181

data points were collected during fully automated daily182

power plant operations, and no additional measurement183

campaigns were conducted for this publication. However,184

there are some measurements taken outside of the daily185

2https://github.com/DLR-SF/holisticDIRC
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routine. These measurements were obtained during mul-186

tiple days of continuous heliostat tracking observations in187

July 2021. As no further information about this measure-188

ment campaign is available, the data must be considered189

separately. The data set is shown in Figure 4.190

In the upper panel, the measurement data is structured191

chronologically, and a training-test-validation data split is192

applied, as it would be used at the solar tower and accord-193

ing to literature (ref. Khalsa et al. (2011), AL-Rousan194

et al. (2020) and Smith and Ho (2014)). A significant195

number of data points were obtained during the summer196

months in 2021 due to favorable weather conditions. These197

measurements appear to be far away from the measure-198

ments in the test data set.199

In the lower panel, the same data is shown in Azimuth-200

Elevation representation using the same temporal split as201

the upper panel. The measurements from summer 2021202

cluster here to, but it becomes apparent in this represen-203

tation that the sun positions of the training and testing204

data set are very close to each other. Since the data set205

contains data from over two years we can use it to evalu-206

ate the impact of time, sun distribution and data set size207

separately.208

4. Proof of Concept at the Solar Tower in Jülich209

First we want to verify our assumptions that the sun210

angle coverage of the data set is a critical parameter for he-211

liostat calibration. To achieve this, we reduced the training212

data set to a single data point and validated the remaining213

points based on their NN distance to the training point.214

Figure 5 shows the measured data set collected in Jülich.215

The upper graph shows the data points sorted by their216

time of measurement. The graph in the middle shows a217

representation in Euler angles. The color in all plots in-218

dicates the time of the measurement and the size of the219

circles depict the achieved accuracy of the regression.220

Both the time-dependent and Euler-angle plots in the up-221

per section indicate a steady increase in error with increas-222

ing temporal or spatial distances, which is consistent with223

AL-Rousan et al. (2020) claim that time is a crucial pa-224

rameter for calibration. However, some predictions in the225

time-dependent plots are very accurate despite the huge226

time distance. Moreover, in the Euler representation very227

close distant sun positions result in similar predictions,228

despite the temporal distance. The lower plot supports229

this observation and contradicts AL-Rousan et al. (2020)’s230

claim. It suggests that time has only a marginal impact on231

the results. This plot illustrates the relationship between232

the distance to the training point and the prediction ac-233

curacy. As expected, the accuracy reduces with increasing234

distance to the training point. However, measurements235

separated in time do not show any noticeable behavior.236

This form of evaluation gets more complicated, when using237

more than one data point for training and validation, since238

local distribution effects become of higher importance to239

the prediction accuracy.240
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Figure 5: Training with a randomly chosen data point. The upper
plot exhibits the validation data arranged chronologically, whereas
the middle graph showcases their Euler coordinate representation.
Both plots demonstrate an increasing prediction error with greater
distances in time or space. The lower plot exhibits a significant cor-
relation between spatial distance and prediction accuracy, charac-
terized by a linear relationship. Conversely, no discernible temporal
pattern can be observed in the data.
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set distance. For Time the distance is measured temporal, for the
other sets spatial.

We will adapt the seasonal sampling approach to verify241

our thesis by analyzing distinct subsets of the complete242

data set statistically.243

To conduct our seasonal analysis, we used a subset of 110244

data points. The first 60 data points, arranged in chrono-245

logical order, were selected for training the model, followed246

by the next 30 data points for model validation, and the247

subsequent 20 data points for testing. After completing248

the initial round of training and testing, we modified the249

dataset by removing the oldest day and adding data from250

the following days until the dataset once again contained251

110 data points. By repeating this process, we were able252

to assess the performance of the heliostat across differ-253

ent seasons, while ensuring that the dataset size remained254

constant throughout the analysis. The details of this pro-255

cess are described in further detail in the subsequent sec-256

tions. Then, the model was trained with different training-257

validation-test partitioning using a time-dependent, and258

1-3NN split. We assume, that the accuracy of the predic-259

tion is inversely related to the average distance (temporal260

or spatial) to the training data set. Due to Figure 5 we261

also expect this behavior to be linear. A non-zero slope262

indicates the existence of a dependency. In Figure 6 the263

achieved accuracies of all subsets divided by the mean dis-264

tance of the subsets validation set to the training set is265

plotted against their frequency. For the spatial data set266

splits (1-3NN) this is done by the spatial- and for the time267

depended split by the temporal-distance. As can be seen,268

all three spatial data set splits achieve a normal distri-269

bution different from zero very close to each other. This270

indicates a linear slope with some scattering due to mea-271

surement uncertainties and local minima in the regression.272

The time dependent split centers around zero, so we don’t273

see any temporal dependency.274

Based on the preceding analysis, it can be inferred that275

the sun position distribution has a greater impact on the276

tracking accuracy than time. However, the influence of277

time cannot be ruled out. In order to further explore the278

seasonal influence, the first 60 data points were used as279
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Figure 7: Training with a time-continuous amount of 60 data points
for training and 20 for validation. All other data points are then
used for testing. A cosine function with a frequency of one year is
plotted, referencing seasonal changes.

training data, the following 20 points as validation data280

and all other points as testing data. Thus all training281

and validation data was selected from summer data, while282

the testing data is distributed over the entire year. The283

upper plot of Figure 7 illustrates the trained model’s pre-284

diction accuracies. As expected, validation and training285

data points are predicted most accurately. The prediction286

results on the test data set, in contrast are of higher vari-287

ance. One distinctive feature of the resulting accuracies is288

a sinusoidal behavior over time with time spans of high and289

low prediction accuracies. This behavior can be explained290

by the sun’s relative position over the year. For compar-291

ison, we added a cosine function plot with frequency of292

one year and an arbitrary amplitude to Figure 7. The293

cosine was shifted to match the position of its negative294

amplitude to the first day within the testing data set. As295

can be seen, the prediction accuracies’ behavior resembles296

the seasonal curve. Furthermore, prediction accuracies for297

summer data are generally better than those for data in298

winter months, due to the fact that training took place in299

summer. Data points that are separated by a difference300

of one year show similar results, except for the aforemen-301

tioned measurement campaign, that performs slightly bet-302

ter. Due to winter months having lower solar elevations303

and thus greater distances to the training data, the sea-304

sonal behavior can also be observed within the data points305

distances. This is shown in the lower plot of Figure 7.306

It should be noted, that independent of the partition-307

ing metric, accuracies between 0.1 and about 10mrad were308

achieved. Other splits of the data set may result in even309
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Figure 8: Training accuracies of geometric models using different
amounts of free parameters (upper plot). Every stated accuracy
is connected with a distance to the evaluation data set (lower plot).
This link allows a quantitative comparison between stated accuracies
from different data sets.

higher variances. A published accuracy can therefore only310

be reasonably evaluated in connection with a correspond-311

ing spatial distance to the training data set.312

We conducted further analysis to investigate the impact313

of data set size on heliostat calibration quality, after ex-314

cluding time as the main parameter. For this, we trained315

different models on various data set sizes using 3-NN data316

set splitting. We used a model with 6 parameters (Static317

6 ), which utilized the same parameters as those used in318

Jülich. Additionally, we used a model with 20 free param-319

eters (Static 20 ). The other 8 possible parameters of our320

model, can lead to unsolvable solutions, so we excluded321

them from training. And also a model with intermediate322

number of parameters (Static 14 ).323

Figure 8 shows the mean test accuracy plotted against the324

data set size for all models. The prediction accuracy in-325

creases rapidly until 25 data points and then continues to326

increase until around 100 data points. Beyond that, the327

accuracy remains relatively constant or decreases slightly.328

The best accuracy of 1.7mrad is achieved by the Static 20329

Model at 100 data points.330

The plot below also depicts the mean NN distance from331

the test to the training data set plotted against the data332

set size. The curve’s shape is strongly correlated with the333

prediction accuracies. When the k-NN value stops decreas-334

ing, the accuracy also plateaus. Furthermore, adding more335

data without reducing the NN distance makes the data set336
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Figure 9: Transparent illustration of the used train-test-validation
splits while indicating the prediction error of the test-set error.

more imbalanced, ultimately reducing accuracy.337

From this we can deduce, that the data set size is sec-338

ondary. A well balanced data set, which reduces the NN-339

Distance the most, can achieve far better results than a340

larger unbalanced data set with close packed data points.341

Finally, and with knowledge from before, we trained our342

model on 100 training data points using the 3-NN data set343

split, since it achieved the highest distances to the training344

data set. The results are shown in Figure 9. The transpar-345

ent circles indicate a accuracy of 1mrad, while the colored346

circles, changing in size indicate the predicted accuracies.347

It easily becomes apparent, that the data points, inside348

the region of the training data distribution are very well349

covered, while the prediction accuracy is strongly reduced350

at the edges. This is expectable, due to the higher amount351

of extrapolation. Despite the rather high mean prediction352

error of 1.7mrad (compare Figure 8) the plot indicates353

clearly, that the heliostat behavior will be reliable through-354

out the year, maintaining or exceeding the reported accu-355

racy, except for operation in early mornings. This can also356

be reduced by intentionally adding more training data in357

this regime.358

5. Implications359

5.1. On previous publications360

Based on our prior findings, it is apparent that the size of361

the data set and the time of the measurement period have362

a subordinate impact on the accuracy of the heliostat cal-363

ibration. Since this is not covered in literature yet, we will364
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Figure 10: Sun angles selected for training, validation and testing derived from different publications. The upper row represents the temporal
representation, the lower the representation in Euler coordinates.

review several publications from recent years about open365

loop heliostat calibration, which gave enough information366

about their used data sets to reconstruct their test set-367

tings. The sorting corresponds to the date of publication.368

1. Khalsa et al. (2011) trained their model on data369

collected between 12:30pm-4:40pm on June 16 and370

9:30am and 3:55pm on June 17, 2011 at an interval371

of 15-30 minutes and evaluated on data of July 15,372

2011 12:53pm to 4:30pm at an interval of 3 to 4 min-373

utes. The authors also stated environmental condi-374

tions during their measurements. For plotting, they375

chose a data representation using hours as the x-axis.376

A training data set size of (250min + 385min) / (15-377

30min) was stated, equaling roughly 30 data points.378

We used the given information to derive a represen-379

tation in Euler angles (Figure 10 (a) ). Although380

the training and evaluation set is clearly separated381

in time, both training and testing data was taken382

close to the summer solstice and at the same time of383

day. The mean distance to the training set is below384

5◦. Since we found a approximately constant behav-385

ior in a range of 10◦-15◦ for a standard geometric386

model, the solar positions might be too similar to387

assume successfully generalized predictions.388

2. Smith and Ho (2014) evaluated their model on a ma-389

jor time difference of six months. Training data was390

collected between August 9-27 2012, October 22-29391

2012 and February 4-5 2013. Two testing campaigns392

were completed between October 30 to November 1393

2012 and February 12-27 2013. Data per heliostat394

was collected every other day at 1h intervals. The395

corresponding Euler representation is shown in Fig-396

ure 10(b) The authors waited a very long time to397

evaluate their model. However, it is evident that398

despite a significant time difference between Octo-399

ber and February, the solar angles remain similar400

due to their proximity to the equinox. Due to the401

one training in February, the mean distance to the402

training data set is greatly reduced, also affecting the403

reliability of the method.404

3. The study conducted by AL-Rousan et al. (2020)405

utilized the amount of data as the x-axis. How-406

ever, due to the absence of time information, an az-407

imuth/elevation representation could not be derived.408

It can be inferred that the measurements were con-409

ducted between December and June, over a period410

of approximately 15 days. The data set consisted of411

153 training samples, and a train/test split ratio of412

70:30 was employed. Nonetheless, it was not clear413

how the separation between the sets was performed,414

as the different subsets were not labeled in the ac-415

companying plots. Although the authors provided a416

precise description of their experimental setup, the417

presentation of their data was insufficiently trans-418

parent, which hindered the reproducibility of their419

findings. Considering the use of degrees (instead420

of mrad) in the y-axis and the limited information421

about the data set, further investigation is required422

to assess the suitability of the reported accuracy for423

practical applications on solar towers.424

4. In a former publication about the heliostat calibra-425

tion (Pargmann et al. (2021)) we used a similar rep-426

resentation as AL-Rousan et al. (2020). However,427

the x-axis also states the exact date of measurement.428

Data was used from the end of July to the mid of429

August for training, and tested on data starting at430

the end of August to early February. In Fig. Fig-431

ure 10(c), the sun positions used for training are de-432

termined on the basis of the information given in the433

paper. With the new presentation, it becomes evi-434
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dent that the proposed methodology is indeed able435

to extrapolate to a certain degree. The evaluation436

and test data is around 10 degrees apart from the437

training set. However, the test data set is very close438

to the evaluation and it becomes apparent that the439

quality of the prediction will drop sharply over the440

year. This was suspected in the former publication’s441

discussion, but without proof.442

No publication is known to us, that used a strict spatial443

separation (given by sun angles or heliostat axes) of the444

test or evaluation data set on purpose. In the worst case445

this means that the evaluation accuracy coincides with the446

training accuracy and thus a potentially significant over-447

estimation of the achievable accuracy on unknown data.448

5.2. On upcoming publications449

We highly recommend to present calibration data in450

upcoming publications using a presentation alike Figure 9451

and link stated accuarcies to a corresponding distance to452

the training set as in Figure 8.453

Figure 9 provides valuable insights into the measurement454

data by demonstrating the performance of the method455

both within and at the edges of the distribution, as well as456

facilitating the identification of training, evaluation, and457

testing data points. This, is crucial, as the data set split458

greatly affects the resulting accuracy. This representation459

allows a lot more insights in the used data sets and the460

stated accuracies than the (commonly proposed) mean er-461

ror on the entire test data set. The figure establishes reli-462

ability and comprehensibility.463

Figure 8 serves as a metric for assessing the quality of the464

prediction by plotting the accuracy against the distance465

from the training data set. Although the distance might466

not be the only data set coverage criteria, it is a good467

quantitative indicator. For example, large training data468

sets, measured over a single day, can achieve high accura-469

cies in the test set from the same day or in close proximity.470

However, in such cases, the NN distance may become ex-471

ceedingly small, reducing the weight of the statement. We472

highly recommend to present every stated accuracy with473

a corresponding distance to the training data set. In Fig-474

ure 8 we additionally presented the impact of data set size.475

This is not essential, but it is useful for modern approaches476

utilizing deep neural networks, as the data set separation,477

coverage and balance becomes increasingly relevant.478

The combination of Figure 9 with Figure 8 gives a reli-479

able estimation on how the model performs in intra- and480

extrapolation. We also recommend utilizing a 3-split strat-481

egy for training/evaluation/testing, which is not exten-482

sively covered in the literature.483

5.3. On the Calibration484

The data sets presented in this publication were gener-485

ated through regular heliostat calibration by means of the486

camera-target method, with the calibration frequency based487

on time since the last calibration. The removal of the high-488

est NN-distances from the training data significantly im-489

pairs regression results, as valuable information is excluded490

from training. Therefore, it is not directly applicable for491

existing data sets from existing power plants. However,492

this effect can be reduced by gathering the data using the493

1-NN-Metric. When a calibration procedure is carried out,494

the heliostat to be calibrated next is selected by checking495

which existing data set has the maximum NN-Distance to496

the current sun position.497

Although clustering of measurement points is still possi-498

ble, it occurs less frequently. Additionally, setting a min-499

imum NN distance further reduces clustering. Due to a500

better-balanced data set the removal of the most valuable501

measurement points should be less critical.502

503

Moreover, in Figure 5 we see an approximately constant504

behavior of the heliostat up to a radial distance of ca. 10◦505

(this may vary between heliostat types). Taking this into506

account, a data set for each heliostat can be gathered,507

spanning over all possible sun positions on just 4-5 mea-508

surement days, which can be planned in advance. Consid-509

ering such a data set and our results in this publication,510

we expect a rather constant heliostat behavior for the next511

years.512

5.4. On Daily Power Plant Efficiency Estimation513

Our study shows that the accuracy of heliostats is mainly514

affected by the position of the sun, rather than time. This515

crucially affects the prediction accuracy of heliostats for516

upcoming years. Since the time was mistakenly considered517

as the primary determinant, the accuracy of a heliostat518

for the following year could only be estimated coarsely.519

However, since heliostat accuracy is primarily reliant on520

the sun positions, precise predictions can be made for any521

given day of the (next) year, by inserting corresponding522

sun angles as lines in Figure 9 and interpolating the values523

of the evaluation data set. The proposed approach yields524

more accurate predictions than using the mean accuracy.525

6. Conclusion & Outlook526

We were able to clearly show with our results that the cov-527

erage of the solar positions is the most relevant quantity for528

the heliostat calibration and not the time or data set size,529

as often assumed. Furthermore, we could show that time530

can be missleading with respect to the training/evaluation531

data split. It can happen unintentionally that, despite a532

large temporal distance, similar sun positions are used and533

thus local overfitting instead of generalization can occur.534

The method, we propose, can be used two ways. First to535

improve the prediction quality of existing models in the536

long term and to reduce the data set required for this pur-537

pose. Second, it should also serve as a blueprint for future538

publications. The representation of the measured points539

in Euler coordinates is important for the interpretation of540
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stated accuracies. We believe that a presentation of the541

measurement data and results as shown in this publica-542

tion offers reliability and thus better acceptance for power543

plant operators as well as scientifically providing for more544

transparency and comprehensibility in this area.545
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