## STREAKY STRUCTURES IN A SINUSIODALLY-TEMPERED VERTICAL TURBULENT PIPE FLOW

André Dachwitz<sup>1,2</sup>, Christian Bauer<sup>1</sup>, Claus Wagner<sup>1,2</sup>

- <sup>1</sup> German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Göttingen, Germany
- <sup>2</sup> Technical University of Ilmenau, Institute of Thermodynamics and Fluid Mechanics, Ilmeanau, Germany





## MOTIVATION

André Dachwitz, Institute of Aerodynamics and Flow Technology (DLR)

#### **Motivation**

- Flows are often forced through channels or arrays of tubes to absorb heat from surfaces.
- Heating the pipe wall can cause relaminarisation in buoyancy aided flows.<sup>1</sup>
- Relaminarisation also causes a decrease in the turbulent heat flux and therefore less thermal energy.<sup>2</sup>
- For vertical Pipes thermal effects are also not to be neglected for  $Ri > 10^{-5}$ .<sup>3</sup>
- We want to investigate the buoyancy-induced changes in the size and intensity of the streaks in a pipe flow with circumferentially-varying wall temperature.

<sup>1</sup>R. Narasimha and K.R. Sreenivasan. Relaminarization of Fluid Flows. Advances in Applied Mechanics, vol. 19, pp. 221-309, 1979
<sup>2</sup>E. Marensi, S. He and A.P. Willis. Suppression of Turbulence and Travelling Waves in a Vertical Heated Pipe. Journal of Fluid Mechanics, vol. 919, pp. 17-29, 2021
<sup>3</sup>J.D. Jackson and W. B. Hall. Forced Convection Heat Transfer to Fluids at Supercritical Pressure. Turbulent forced convection in channels and bundles, vol. 2, pp. 563-576, 1979.



# NUMERICAL METHODOLOGY

V

H

#### **Numerical Methodology**

Incompressible Navier-Stokes Equations

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \nabla p = \frac{1}{Re_b} \nabla^2 \vec{u} + \frac{Gr}{Re_b^2} \theta \delta_{1i}$$
$$\nabla \vec{u} = 0$$

**Boussinesq Approximation** 

$$\widehat{\rho}\widehat{g}\approx \widehat{\rho}_0\widehat{g}\widehat{\beta}_0(\widehat{T}-\widehat{T}_0)$$

#### **Boundary Conditions**

- No-slip and impermeability boundary condition at the wall.
- Periodic boundary condition with regard to homogeneous direction.



### **Energy Equation and Thermal Boundary Condition**



#### **Energy Equation** $\frac{\partial \Theta}{\partial t} + \vec{u} \cdot \nabla \Theta = \frac{1}{PrRe_{h}} \nabla^{2} \Theta$ 0.2 5.0e-01 N = 2N = 3N = 1**Thermal Boundary Condition** $\Theta_w = sin(N \varphi) \quad N = 0, ..., 7$ 0.2 5.0e-01 0.2 0.2 5.0e-01 N = 4N = 5N = 6

#### **Numerical Set-up**

# 

#### FLOWSI solver

- 4th-order finite volume method in space
- 2nd-order semi-implicit Euler-leapfrog scheme in time
- MPI parallel



| Ν                                                  | <i>Re</i> <sub>b</sub> | Pr                                                            | Gr                  | L/D                                | $N_z \times N_{\varphi} \times N_r$                             | $\Delta r^+_{min}$ , $\Delta r^+_{max}$ | $\Delta z^+$ | $R^+ \Delta \phi$ |
|----------------------------------------------------|------------------------|---------------------------------------------------------------|---------------------|------------------------------------|-----------------------------------------------------------------|-----------------------------------------|--------------|-------------------|
| 0                                                  | 4328                   | 0.71                                                          | —                   | 21                                 | $1536 \times 256 \times 90$                                     | 0.17, 3.81                              | 4.14         | 3.72              |
| 1,7                                                | 4328                   | 0.71                                                          | $1.87 \cdot 10^{7}$ | 21                                 | $1536 \times 256 \times 90$                                     | 0.17, 3.81                              | 4.14         | 3.72              |
| Bulk Reynolds Number:<br>Friction Reynolds Number: |                        | $Re_{b} = \frac{u_{b}D}{v}$ $Re_{\tau} = \frac{u_{\tau}D}{v}$ |                     | Prandtl Number:<br>Grashof Number: | $Pr = \frac{v}{\alpha}$ $Gr = \frac{g \beta \Delta T D^3}{v^2}$ |                                         |              |                   |





- The isothermal streamwise velocity field is circumferentially-symmetric.
- For N = 1 the maximum of the streamwise velocity is shifted to the heated wall.
- Larger velocity gradients at heated wall result in larger shear stress on the surface.
- For N = 7 the streamwise velocity profile is star-shaped.



- Whole pipe affected by the heating.
- Larger turbulent heat flux at the colder wall than at the warmer wall.
- Mostly positive correlation between streamwise velocity and temperature fluctuations.
- In heated area the correlation is mostly negative for the radial turbulent heat flux.



- Smaller thermal boundary layer and restriction of buoyancy force to the near-wall region.
- Streamwise turbulent heat flux is concentrated in the layer  $5 < y^+ < 20$ .
- Areas of radial turbulent heat flux only extend to the area in front of the colder and hotter wall sections.
- The turbulent heat flux is the smallest, where the velocity in streamwise direction is the biggest.

#### **Instantanious Temperature Fields for Wall-Parallel Plane**





Ζ



- Footprint of wall heating visible even at  $y^+ = 15$ , but smaller maximum temperatures for N = 7.
- For N = 1 the structure of the temperature fluctuations different in warmer and colder region.
- For N = 7 the temperature fluctuations are more ordered and elongated in flow direction.

#### **Instantanious Streamwise Velocity Fluctuation Fields**





- For N = 0 coherent structures of the flow extended and correlated regions can be seen.
- For N = 1 the streaks are less ordered and have wider circumferential and shorter streamwise length.
- For N = 7 the streamwise and circumferential length of the streaks decreases.
- Low-velocity streaks seem to be more prevalent in the colder regions, and their maximum intensity increases.



- Correlation of fast fluid moving towards the wall and slow fluid moving away from it is evident.
- For *N* = 1 smaller, more intense and chaotic velocity fluctuations and clear difference between warmer and colder region.
- For N = 7 the intensity of the fluctuations increases and they align with the temperature fluctuations.





- Correlation of fast fluid moving towards the wall and slow fluid moving away from it is evident.
- For *N* = 1 smaller, more intense and chaotic velocity fluctuations and clear difference between warmer and colder region.
- For N = 7 the intensity of the fluctuations increases and they align with the temperature fluctuations.





- Correlation of fast fluid moving towards the wall and slow fluid moving away from it is evident.
- For *N* = 1 smaller, more intense and chaotic velocity fluctuations and clear difference between warmer and colder region.
- For N = 7 the intensity of the fluctuations increases and they align with the temperature fluctuations.



- Correlation of fast fluid moving towards the wall and slow fluid moving away from it is evident.
- For *N* = 1 smaller, more intense and chaotic velocity fluctuations and clear difference between warmer and colder region.
- For N = 7 the intensity of the fluctuations increases and they align with the temperature fluctuations.





- Low-velocity streaks are decalerated and high-velocity streaks are accelerated.
- For N = 1 larger correlation between velocity and temperature fluctuations in colder region.
- For N = 7 the correlation between velocity and temperature is predominantly positive.
- The strongest turbulent heat fluxes occur for low-velocity streaks.





- Low-velocity streaks are decalerated and high-velocity streaks are accelerated.
- For N = 1 larger correlation between velocity and temperature fluctuations in colder region.
- For N = 7 the correlation between velocity and temperature is predominantly positive.
- The strongest turbulent heat fluxes occur for low-velocity streaks.





- Low-velocity streaks are decalerated and high-velocity streaks are accelerated.
- For N = 1 larger correlation between velocity and temperature fluctuations in colder region.
- For N = 7 the correlation between velocity and temperature is predominantly positive.
- The strongest turbulent heat fluxes occur for low-velocity streaks.

André Dachwitz, Institute of Aerodynamics and Flow Technology (DLR)

II Z

N = 7





- Low-velocity streaks are decalerated and high-velocity streaks are accelerated.
- For N = 1 larger correlation between velocity and temperature fluctuations in colder region.
- For N = 7 the correlation between velocity and temperature is predominantly positive.
- The strongest turbulent heat fluxes occur for low-velocity streaks.

André Dachwitz, Institute of Aerodynamics and Flow Technology (DLR)

II Z

N = 7





- Low-velocity streaks are decalerated and high-velocity streaks are accelerated.
- For N = 1 larger correlation between velocity and temperature fluctuations in colder region.
- For N = 7 the correlation between velocity and temperature fluctuations is predominantly positive.
- The strongest turbulent heat fluxes occur for low-velocity streaks.

#### **Conclusions**

- The buoyancy leads to a slowing down of the turbulent structures in the colder regions and an amplification of the low-velocity streaks.
- The buoyancy-induced acceleration in the warmer region reduces the radial heat flux.
- Heating with N = 1 increases the turbulence in the colder and warmer region.
- Heating with N = 7 results in a decrease in turbulence intensity in the heated region.
- For N = 7, the velocity fluctuations correlate with the temperature fluctuations and the wall temperature.



