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ZUSAMMENFASSUNG 

 

Für die globale Nahrungsmittelproduktion sind bewässerte landwirtschaftliche Flächen 

von hoher Bedeutung. Ca. 20 % der globalen landwirtschaftlichen Flächen werden bewässert, 

jedoch werden 40 % der weltweit geernteten Nahrungsmittel auf diesen bewässerten Flächen 

produziert. Die globale Landwirtschaft ist mit 69 % der größte Süßwasserverbraucher und 

aufgrund des sich ändernden Klima wird erwartet, dass die bewässerten Flächen zunehmen 

werden. Ein höherer Wasserverbrauch der Landwirtschaft würde zu Interessenkonflikten 

zwischen unterschiedlichen Sektoren wie Energiewirtschaft, Industrie und private Haushalte 

führen. Daher ist ein effizienterer Umgang der Landwirtschaft mit der Ressource Wasser 

notwendig. Die aktuellen Bewässerungstechniken bestehen zumeist aus 

Oberflächenbewässerung im Stau- oder Rieselverfahren oder Sprinklerbewässerung. Diese 

Techniken nutzen die Ressource Wasser nur sehr ineffizient, da ein hoher Anteil am Wasser 

von der Oberfläche in die Atmosphäre verdunstet und nicht von der Pflanze genutzt werden 

kann. Um bei einer Verknappung der Ressource Wasser durch ein sich änderndes Klima und 

den damit einhergehenden landschaftlichen Veränderungen, wie dem Abschmelzen der 

Gletscher, die landwirtschaftliche Produktion dieser Flächen zu erhalten, wird eine Erhöhung 

der Wassernutzungseffizient notwendig. Der Wasserkreislauf wird hinsichtlich des Anteils des 

in den Pflanzen gebundenen Wassers (grünes Wasser) und dem Wasser, welches zurück in 

den Wasserkreislauf geführt wird, verändern. Um Wasserflüsse dieser Art Modellieren und 

damit Handlungsempfehlungen für politische Entscheidungen aussprechen zu können, 

werden Informationen über die bewässerten Flächen und Bewässerungstechniken in einer 

möglichst hohen räumlichen Auflösung benötigt. Bestehende Datensätze unterscheiden sich 

in ihrer Aussage über die bewässerten landwirtschaftlichen Flächen. Dies liegt vor allem an 

der unterschiedlichen Definition („bewässert“ oder „ausgestattet für Bewässerung“), an den 

Zeitpunkten der ermittelten Flächen und an den unterschiedlichen Methodiken und 

verwendeten Eingangsdaten. In der vorliegenden Arbeit wird eine neue Methodik entwickelt, 

die verschiedene Eingangsdaten kombiniert und bewässerte Flächen von nicht bewässerten 

Flächen unterscheidet. Hierfür werden nationale und sub-nationale Statistiken verwendet, die 

von den Ländern an die Food and Agriculture Organisation (FAO) gemeldet werden. Die 

Statistiken werden mit einer räumlichen Auflösung von 0,008333 Grad (ca. 1 km am Äquator) 

auf landwirtschaftlichen Flächen verteilt.  

Zusätzlich zu den Statistiken wurde mittels Satellitendaten das Pflanzenwachstum global 

untersucht und mit einem von Klima- und Bodendaten abgeleiteten Datensatz in Bezug auf 
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die landwirtschaftliche Eignung verglichen. Entspricht die Vegetationsentwicklung auf 

landwirtschaftlichen Flächen nicht dem von Klima- und Bodendaten zu erwartendem 

Pflanzenwachstum wird davon ausgegangen, dass landwirtschaftliches Management in Form 

von Bewässerung zu dem beobachteten Pflanzenwachstum führt. Die Methodik detektiert 

18 % mehr bewässerte Flächen als offiziell an die FAO gemeldet werden und deckt damit eine 

Wissenslücke in der aktuellen Forschung auf. Dies zeigt, dass Handlungsempfehlungen, die auf 

den offiziell gemeldeten Daten beruhen, nur bedingt praxistauglich sind. Darauf aufbauend 

vertieft die Arbeit die Frage nach den Unsicherheiten und möglichen Fehlerquellen des 

entwickelten Datensatzes. Hierbei wird systematisch für drei verschiedene Regionen der 

Einfluss der räumlichen Auflösung des Sensors an Bord des Satelliten analysiert. Der 

entwickelte Datensatz basierst auf dem Sensor SPOT-VGT mit einer räumlichen Auflösung von 

ca. 1 km. Um den Einfluss der räumlichen Auflösung systematisch zu quantifizieren, wurden 

hochaufgelöste Satellitendaten von Sentinel-2 von 10 m schrittweise auf 1 km skaliert und 

erneut die Bewässerung detektiert. Für die Durchführung des Experiments wurde, um 

Rechenzeit zu sparen, drei Regionen ausgewählt. Es konnte gezeigt werden, dass in zwei der 

Regionen (USA und Sudan) mit abnehmender räumlicher Auflösung auch eine Abnahme der 

detektierten bewässerten Flächen erfolgte. In China bleibt die detektierte Fläche konstant. 

Eine Analyse zeigt, dass je nach Lage und Verteilung der bewässerten Flächen, diese detektiert 

werden. Dichte, zusammenhängende Felder werden detektiert, lose im Raum verteilte Felder 

werden bei einer gröberen räumlichen Auflösung vernachlässigt. Dies konnte in der Studie mit 

Landschaftsmetriken erklärt werden, mit denen ein regional unabhängiger Zusammenhang 

zwischen dem Verlust von bewässerten Flächen bei gröberer Auflösung und dem „Landscape 

Shape Index“ (LSI) hergestellt werden konnte. Der Index ist ein Aggregationsindex und 

berechnet wie komplex eine Klasse (in diesem Fall „bewässerte Fläche“) gegenüber einer 

anderen Klasse in einer Landschaft (in diesem Fall „nicht bewässerte Fläche“) ist. Anhand 

dieser Erkenntnis können Regionen identifiziert werden, die anfällig für die Unterschätzung 

bewässerter Flächen sind und daraufhin mit feiner aufgelösten Satellitendaten korrigiert 

werden können.  

Die räumliche Auflösung eines Sensors ist immer eine Abwägung zwischen technischer 

und finanzieller Umsetzbarkeit, Handhabung, Einsatzgebiet und Forschungsfragen. 

Bestehende Multi- und Hyperspektrale Satellitenmissionen mit Fokus auf Fragen über die 

Umwelt und Landwirtschaft weisen Sensor Auflösungen von 10 m (Sentinel-2) bis 30 m 

(EnMAP, LANDSAT) auf. Inwiefern sich diese Auflösungen für die Analysen landwirtschaftlicher 

Flächen eignen, wurde bisher noch nicht systematisch untersucht und ist Teil der vorliegenden 

Arbeit. Hierfür wurden Feldgrenzen der deutschen Bundesländer Bayern und Niedersachsen 
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und der Niederlande in eine Sentinel-2 Geometrie umgewandelt und in die Auflösungen von 

5 m, 10 m, 20 m, 30 m und 50 m gebracht. Die Felder wurden dahingegen analysiert, bei 

welcher Auflösung diese noch von einem Satelliten abgebildet werden können und sich so für 

die Analyse landwirtschaftlicher Fragestellungen eignen. Zudem wurde analysiert wie viele 

Felder sich für Precision Farming Anwendungen eignen, um gezielt innerhalb des Felders zu 

bewässern oder zu düngen. Hierfür wurde ein Minimum von 50 Pixel pro Feld angenommen, 

welche notwendig sind, um Precision Farming Anwendungen einzusetzen. Die Analyse zeigt, 

dass bei einer Sentinel-2 Auflösung von 10 m 2-4 % der Felder nicht abgedeckt werden können 

und 20-50 % nicht für die Anwendung von Precision Farming zur Verfügung stehen. In die 

Analyse wurden zudem die Feldfruchtarten miteinbezogen, um besser zu verstehen, welche 

Fruchtarten für das Monitoring mit Satellitendaten zur Verfügung stehen werden. Die Arbeit 

stellt eine Grundlage zur Entscheidungsfindung zukünftiger Satellitenmissionen dar und hilft 

die Umsetzbarkeit von Anwendungen mit den aktuellen Satellitenmissionen einzuschätzen.  

Insgesamt stellt die Arbeit die hohe Bedeutung von Informationen über globale 

Bewässerung in den Vordergrund und verdeutlicht die hohe Komplexität der Detektion 

bewässerter Flächen. Mit der Entwicklung eines neuen Datensatzes konnte die räumliche 

Auflösung verbessert werden und es wurde aufgezeigt, dass in vielen Regionen die bewässerte 

Fläche deutlich unterschätzt wird. Zudem wurde der Einfluss der räumlichen Auflösung 

analysiert und es konnte aufgezeigt werden, welche Sensor Auflösung zukünftiger 

Satellitenmissionen landwirtschaftliche Felder in Europa am besten abbilden können.  
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SUMMARY 

Irrigated agricultural area is of high importance for global food production. Approximately 

20 % of global agricultural area is irrigated, but 40 % of the world's harvested food is produced 

on these irrigated area. Global agriculture is the largest consumer of freshwater (69 %) and 

due to a changing climate, irrigated area is expected to increase. Increased water consumption 

by agriculture would lead to conflicts of interest between sectors such as energy, industry, 

and households. Therefore, a more efficient use of water by agriculture becomes necessary. 

Current irrigation techniques mostly consist of surface or sprinkler irrigation. Both techniques 

use the resource water only very inefficiently, since a high proportion of the water evaporates 

from the surface into the atmosphere. In order to maintain the agricultural production of 

these areas in the case of a scarcity of the resource water due to a changing climate and the 

accompanying landscape changes, such as the melting of the glaciers, an increase in the water 

use efficiency becomes necessary. In order to model water flows and to analyze future 

changes for recommendations for policy decisions, information on irrigated area and irrigation 

techniques, at a high spatial resolution, is needed. Existing data set differ in the extent of 

global irrigated area. Reasons are the different definition ("irrigated" or "equipped for 

irrigation"), the investigated time period, and the different methodologies and input data. In 

the present work, a new methodology is developed that combines different input data and 

distinguishes irrigated areas from non-irrigated areas. National and sub-national statistics 

reported by countries to the Food and Agriculture Organization (FAO) are one input. This 

information is spatially distributed on agricultural area at a spatial resolution of 0.008333 

degrees (approximately 1 km at the equator), the only available dataset with a spatial 

resolution of 1 km. In addition to the statistics, satellite data were used to examine plant 

growth globally and compare it to agricultural suitability derived from climate and soil data. If 

the vegetation development on agricultural area does not correspond to the plant growth 

expected from climate and soil data, it is assumed, that agricultural management, like 

irrigation, leads to the observed plant growth. The methodology detects 18 % more irrigated 

areas than officially reported to FAO, revealing a knowledge gap in current research and 

showing that recommendations for action based on officially reported data are limited. Based 

on these issues, this thesis delves into the question of uncertainties and possible sources of 

error in the dataset. The influence of the spatial resolution of the sensor is analyzed 

systematically for three different regions. The developed data set is based on the SPOT-VGT 

sensor with a spatial resolution of about 1 km. To systematically quantify the influence of 

spatial resolution, high-resolution satellite data from Sentinel-2 were scaled from 10 m to 

1 km stepwise and irrigation was detected. To save computational time, three regions were 
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selected for the conduction of the experiment. It was shown that in two of the regions (USA 

and Sudan), decreasing spatial resolution leads to decreasing of detected irrigated area. In 

China the detected area remains constantly. An analysis of the spatial distribution of the 

irrigated area shows that the mapping result depends on the spatial arrangement and 

distribution of the irrigated area. Dense, contiguous fields are detected, loosely distributed 

fields are neglected at a coarser spatial resolution. The study demonstrated, that the negative 

areal change can be explained by landscape metrics. The application of landscape metrics 

showed a regionally independent relationship between the loss of irrigated areas at coarser 

resolution and the "Landscape Shape Index" (LSI). The index is an aggregation index and 

calculates how complex one class (in this case "irrigated area") is compared to another class 

in a landscape (in this case "non-irrigated area"). This finding can be used to identify regions 

that are prone to underestimating irrigated area, for further analysis using high resolution 

satellite data.  

The spatial resolution of a sensor is always a trade-off between technical and financial 

feasibility, handling, scope of application, and research questions. Existing multi- and 

hyperspectral satellite missions focused on environment and agriculture have sensor 

resolutions ranging from 10 m (Sentinel-2) to 30 m (EnMAP, LANDSAT). The suitability of these 

resolutions for the analysis of agricultural areas has not yet been systematically investigated 

and is part of this thesis. Field boundaries of the German states Bavaria and Lower Saxony and 

the Netherlands were converted into a Sentinel-2 geometry and rescaled to the resolutions of 

5 m, 10 m, 20 m, 30 m, and 50 m. The fields are analyzed regarding at which resolution the 

fields can be recorded completely by a satellite and are thus suitable for the analysis of 

agricultural questions. In addition, it was analyzed how many fields are suitable for precision 

farming applications in order to establish an in-field management monitored by satellites. 

Therefore, a minimum of 50 pixels per field was assumed, which are necessary to use precision 

farming applications. The analysis shows that at a Sentinel-2 resolution of 10 m, 2-4 % of the 

fields cannot be covered and 20-50 % are not available for precision farming applications. Field 

crop types were also included in the analysis for a better understanding which crop types will 

be available for a satellite-based monitoring. This thesis provides a basis for decision making 

for future satellite missions and helps to assess the feasibility of applications with current 

satellite missions.  

Overall, this thesis highlights the high importance of global irrigation information and the 

high complexity of methods detecting irrigated area. With the development of a new dataset, 

the spatial resolution could be improved and it was shown that in many regions the irrigated 

area is significantly underestimated. Furthermore, the influence of spatial resolution was 
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analyzed and it could be shown how the spatial resolution of current and future satellite 

missions affects the possibility of agricultural monitoring in Europe and the possibility of in-

field management and precision farming applications. 
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1 Introduction 

1.1 SUSTAINABLE INTENSIFICATION OF GLOBAL AGRICULTURE AS KEY TO ADDRESS THE 

SUSTAINABLE DEVELOPMENT GOALS 

Global agriculture plays a crucial role in addressing the two major challenges of the 21st 

century: food security and climate change. The transition of global agriculture towards a more 

sustainable use of resources is critical to both of these goals. Separate by sector, agriculture 

is with 69 % the largest consumer of fresh water (FAO, 2014) and with 17 % one of the largest 

producers of greenhouse gases (FAO, 2021). Therefore, changes are needed especially in the 

use of natural resources such as fresh water for irrigation or fertilizers and pesticides. To 

secure today’s and future global food supplies in a sustainable way, agriculture has to increase 

the efficiency of the used resources (Foley et al., 2011). Therefore, new agricultural farming 

practices, which use resources in a more sustainable way are needed (Mueller et al., 2012). 

Considering a rising world population, a changing diet towards more meat consumption and 

an increase use of biofuel and bio-based materials lead to estimations that global agricultural 

production will have to double by 2050 (FAO, 2012, Godfray et al., 2010, Tilman et al., 2011). 

An expansion of cropland does not solve the problem of overusing natural resources and leads 

to a decline of biodiversity (Zabel et al., 2019). Therefore, new agricultural farming practices, 

which use resources in a more sustainable way are needed. A crucial role for global food 

security plays the irrigated agricultural area. 40 % of the global yields are harvested on 

irrigated area, which currently constitutes 20 % of the harvested area globally (FAO, 2016). 

The extent of irrigated area almost doubled over the last 50 years and a future expansion and 

a related increase in water consumption is expected (FAO, 2016, Neumann et al., 2011).  

Depending on the region, climate change decreases agricultural water availability 

(Strzepek et al., 2010). The low irrigation efficiency of the common irrigation techniques such 

as sprinkler and flood irrigation (Evans et al., 2008), the unsustainable usage of limited sources 

like groundwater (Wada et al., 2014), the changing river regimes (Döll et al., 2012) and the 

changing supply by snowmelt (Mankin et al., 2015, Prasch et al., 2013) underline the need for 

a transition towards more sustainable and efficient use of water. The UN Sustainable 

Development Goals clearly reflect this need to achieve food security and the sustainable 

development of land use (United Nations, 2015). For better inventorying and investigation of 

global and regional water cycles and as input for crop models, detailed global information on 

irrigated areas at high resolution are needed.  
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Agriculture will not be the only sector with an increasing demand for fresh water, which 

leads to conflicts between different groups of interest like hydropower, industry and private 

houses (Mostafa et al., 2021, Wu et al., 2022). Further, the withdrawal of water has an impact 

on surrounding ecosystems and on downstream riparian. This could lead not only to conflicts 

between sectors but between states (Swain, 2011). Therefore, transnational rules are 

important to avoid resource conflicts (Petersen-Perlman et al., 2017). Developing 

international rules must rely on current and reliable data on agricultural land and its 

management – in this case, irrigation practices, while these data are scarcely available. 

 

1.2 LAND COVER AND LAND USE DATA, NATIONAL AGRICULTURAL STATISTICS AND THE 

QUESTION OF ACCURACY 

Information about land use and management are available in different aggregation levels 

depending on the region. Well known are the country-wide statistics of the Food and 

Agriculture Organization (FAO) about cropland, yields and management practices. The FAO is 

part of the UN and successor of the International Institute of Agriculture (IIA) founded in 1905 

(Phillips, 1981). To prevent exploitation and cartelization of the agriculture sector the IIA 

published a yearly report including information and statistics about the extent of cropland and 

indicators for production. In 1930 the IIA was the largest international organization 

representing the agricultural sector in 75 countries (Phillips, 1981). After the second World 

War, the UN and FAO was founded and the IIA merges into the FAO. The FAO sees itself in the 

tradition of the IIA, but sets other priorities and goals, such as raising the nutritional and living 

standards of its members, improving the production and distribution of food, and improving 

the living conditions of rural populations. The ultimate goal remains to produce and distribute 

enough food for all people. To achieve these goals, not only data and statistics are collected, 

but also research and application of alternative farming methods are carried out and global 

development projects towards sustainable agriculture are offered. The verification of these 

implemented new methods and the creation of a comprehensive monitoring will continue to 

be statistics and data of the member states as spatially accurate as possible requested and 

reported (FAO, 2015). The problem that already at the beginning of the IIA showed that by 

missing independent controls the data provided by the members are made consciously wrong 

to cover up wrong developments or to use it as an instrument to assert political interests (FAO, 

2015, Vörösmarty, 2002). Nevertheless, the data are the only available data for global 

agriculture, even besides the described deficiencies and their spatial limitation since the 
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reports consist mostly of country-wide statistics. Surveys about agricultural management 

practices are always limited to a region and are costly and time-consuming to conduct. In 

addition, data about farming practices and yields are often sensitive data and are highly 

protected. In case of agricultural subsidies, like the Common Agriculture Policy (CAP) in 

Europe, farmers are reporting the extent and cultivated crops to the European Commission 

(European Commission, 2022). Data on the spatial location of the fields including their crops 

are available but are subject to strict data protection regulations and mostly not available to 

the public.  

Methods that do not rely on surveys or official statistics and reports have been developed 

to identify agriculture area, their management and other land cover classes (García-Álvarez et 

al., 2022). Even before the introduction of remote sensing tools, some land use and land cover 

(LULC) information were available but with the introduction of aerial and especially satellite 

imagery starts of systematic land use and land cover maps at different spatial scale. LULC maps 

in times before aerial and satellite imagery were based on ground-based data acquisition, a 

very time-consuming, laborious process (García-Álvarez et al., 2022). Using aerial photography 

and later satellite data LULC mapping became easier and cheaper (Fuller et al., 1994). 

Especially the start of the Landsat program in 1972 is a turning point for the LULC mapping 

community, as the first multi spectral scanner (MSS) on board of a satellite. The first regional 

study about vegetation monitoring using the Normalized Difference Vegetation Index (NDVI) 

was based on Landsat 1 imagery (Rouse et al., 1973). The constricted data access and the 

limited computational power leads to a more local and regional use for LULC mapping 

(Belward et al., 2015). During the 1980ies first global LULC data set were produced with a 

strong thematic focus on vegetation by combining existing maps, field data and interpretation 

of aerial and satellite information from multiple spectral sensors like AVHRR sensor aboard 

the NOAA and EUMETSAT weather satellite (Giri, 2005). In 1994 the first systematically 

classified LULC was published by Defries et al. (1994) using AVHRR data at a very coarse spatial 

resolution of 1 degree (~111km at the equator). The development of medium resolution 

sensors like SPOT and MODIS opened a new chapter in LULC mapping at a high spatial 

resolution of 30 arc seconds (~1km at the equator) and the increasing computational power 

allows researcher to perform LULC mapping for different time periods like GlobeCover (Arino 

et al., 2012), GLC250 (Wang et al., 2015) or MCD12Q1 (Friedl, 2022). Improvements in LULC 

mapping methods and an increase in computational power takes place parallel to the launch 

of new satellite missions like the Copernicus program of the European Space Agency (ESA, 

2022). This results in yearly updated LULC products at 300 m back to 1992 (ESA, 2017) and 
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since the operational use of Sentinel-2 data, LULC data are available at a spatial resolution of 

10 m (Zanaga, 2021).  

The methods deriving the LULC maps and the research objectives differ. Therefore, a 

cross-data analysis is not recommended, since even the classification scheme varies 

depending on the initial research objectives. Thematic LULC maps focus on a specific land use 

or land cover like water (Klein et al., 2017, Pekel et al., 2016), artificial land cover (Schneider 

et al., 2008), ice, sown and glaciers (GLIMS Consortium, 2005) or regional focus e.g. Amazonas 

basin (Cherif et al., 2022) or arctic shield (A’Campo et al., 2021). A focus on vegetation is one 

of the most popular research objectives of LULC as it combines a wide range of different 

disciplines like mapping the extent and changes of forests (Holzwarth et al., 2020, Thonfeld et 

al., 2022), grassland (Reinermann et al., 2020) or the classification of regional vegetation types 

(Borges et al., 2020, Sano et al., 2010). Agriculture as part of the vegetation and one of the 

predominant land use, plays an important role in LULC products. The land use class of 

agriculture ranges from rice fields to crops such as corn and wheat to specialty crops like 

vegetables and grapes. Agriculture area is also characterized by different agriculture 

management. Derived management practices are tilling (Porwollik et al., 2019), fertilization 

(Ludemann et al., 2022), harvesting (Kavats et al., 2019) or irrigation (Meier et al., 2018).  

1.3 STATE OF THE ART IN GLOBAL IRRIGATION MAPPING 

One part of this thesis is the development of a new method to derive irrigated area on a 

global scale. Previous studies showed the potential of earth observation (EO) data to detect 

irrigated areas for small- and medium-scale analyses. Several studies have shown the 

feasibility of mapping irrigated area using EO data from local to regional scale (Abuzar et al., 

2015, Ambika et al., 2016, Jin et al., 2016, Ozdogan et al., 2008). The methods combine 

different data to exclude rain-fed and irrigated land by strong indicators like 

evapotranspiration (Cammalleri et al., 2014), climatic conditions (Salmon et al., 2015), thermal 

variations over an irrigated field (Abuzar et al., 2015) or soil moisture (Lawston et al., 2017). 

Only few studies identify irrigated area on a global scale (Meier et al., 2018, Salmon et al., 

2015, Siebert et al., 2005, Thenkabail et al., 2009). General LULC data often neglect irrigated 

area, some classify irrigated area as a separate class, without a focus on irrigated area (ESA, 

2015).  

The existing global irrigation maps are combining multiple data sources to derive irrigated 

area. A common approach distributes official reported irrigated area from national or sub-

national statistics on agriculture area from existing LULC (Siebert et al., 2005). The resulting 

Global Map of Irrigation Areas (GMIA) is restricted to the official numbers and is hard to verify, 
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since statistics may include errors and the quality of the data depends on the willingness of 

the member countries. Around the year 2000 the official FAO statistics about irrigated area 

engendered criticism after comparing national statistics with remote sensed based data 

(Vorosmarty et al., 2000). The discrepancies between those data were explained by the 

politicized nature of the FAO data reports and different definitions of irrigated area 

(Vörösmarty, 2002). The first remote sensing based global irrigation map is the study of 

Thenkabail et al. (2009). The study combines meteorological data, LULC maps and remote 

sensing data from multiple sensors and identified 43 % more irrigated area than reported in 

FAO statistics. Salmon et al. (2015) combine statistics, climate -and remote sensing data. The 

study also shows an underestimation by the national -and sub-national statistics – although a 

smaller one than the study of Thenkabail et al. (2009) – and showed, that merging remote 

sensing data and ancillary data is suitable for irrigation mapping. Thenkabail et al. (2009) 

concludes that ‘both remote sensing and national statistical approaches require further 

refinement’.  

The differences in the extent of irrigated area are well known and discussed controversy 

in the scientific community (Puy et al., 2022a, Puy et al., 2022b). The differences are caused 

by several reasons: the approaches differ, the studies are applied at different time periods 

and the EO data are not always from the same satellite/source. The sensor resolution of 

satellites varies depending on their initial research objectives and technological requirements. 

The influence of the sensor resolution on the accuracy of LULC mapping is analyzed with a 

focus on high spatial resolution between 1 m and 30 m (Fisher et al., 2018, Yu et al., 2020) but 

coarser resolution of global data are neglected. Even the source of error outgoing from sensor 

resolution of global irrigation map is very obvious but there is no study which analyze the 

influence of spatial resolution on irrigation mapping methods. From a global perspective, large 

contiguous irrigated area like the Nile delta, Central Valley in California, irrigated area at the 

Indus and Ganges or in South-East Asia are well known and are part of the global irrigation 

data set. In many regions irrigation is part of very small subsidence agriculture and is not part 

of any reports. For instance in some countries in Western Africa the informal irrigated areas 

in urban and peri-urban areas are twice the size of the officially reported irrigated areas for 

the whole country (Drechsel, 2006). Even with a high-resolution sensor the spatial resolution 

of the sensor always limits the analysis of small scaled agriculture. 
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1.4 SCOPE OF THE THESIS 

Based on the state of the art in global irrigation mapping, this thesis is focusing on the 

development of a new approach to derive irrigated area, the comparison of the mapping 

result to existing products and the investigation of potential source of errors. One source of 

error lies in the choice of the spatial resolution. Therefore, a systematic analysis of the 

influence of the sensor resolution on the result of the irrigation mapping was conducted. The 

influence of the spatial resolution of a sensor on the mapping result has not been evaluated 

systematically yet. Velpuri et al. (2009) compared data from different satellites on an irrigation 

mapping method for a local study but did not transfer their findings to other regions. Applying 

the developed irrigation mapping approach on Sentinel-2 data downscaled stepwise from 

10 m to 1000 m showed different results depending on the arrangement and size of the fields. 

The findings are important for the interpretation of existing irrigation maps since it shows, 

that the areal change with coarser resolution is caused by the spatial arrangement of the fields 

and this varies regionally. The spatial resolution of a sensor always limits the analysis of small 

scaled agriculture. To obtain meaningful information about agricultural management on field 

level, the spatial resolution of the sensor must correspond to the size of the fields. To evaluate 

the coverage of current and future satellite missions, this work analyzed the extent to which 

agricultural monitoring is possible with a common resolution of 5 m to 50 m. Agricultural fields 

are heterogeneous, depending on the soil properties and location. An in-field monitoring can 

assist farmers with detailed information about plant conditions for a precise application of 

fertilizer or water and can use resources more efficiently. The choice of spatial resolution of 

the satellite sensor is always a trade-off between several system parameters. Among those 

are the spatial resolution of the optical system, the sensor and the electronics, the onboard 

storage capacity and/or the transmission bandwidth in combination with the chosen orbit and 

revisit time. This study supports the design of future satellite missions in terms of how many 

fields are available for agriculture monitoring and site-specific management information e.g. 

precision farming which promises large commercial and environmental benefits through a 

more efficient use of resources.  
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2 Framework of the thesis and overview of the publications 

1. Meier, J.; Zabel, F.; Mauser, W. (2018): A global approach to estimate irrigated areas 

– a comparison between different data and statistics. Hydrol. Earth Syst. Sci., 22, 1119-

1133, https://doi.org/10.5194/hess-22-1119-2018. 

 

2. Meier, J.; Mauser, W. (2023): Irrigation mapping at different spatial scales: Areal 

change with resolution explained by landscape metrics. Remote Sensing, 15, 315. 

https://doi.org/10.3390/rs15020315. 

 

3. Meier, J.; Mauser, W.; Hank, T.; Bach, H. (2020): Assessments on the impact of high-

resolution-sensor pixel sizes for common agricultural policy and smart farming 

services in European regions. Computers and Electronics in Agriculture, 169, 105205, 

https://doi.org/10.1016/j.compag.2019.105205. 

 

The first publication is focusing on global information about irrigated area. The paper 

outlines the possibilities of surveying data about irrigated area and summarizes the state of 

the art and approaches of the existing data set about global irrigated area. Outgoing from the 

state-of-the-art data set of Siebert et al. (2005) the study evolves a new data set of global 

irrigated area in combining existing data set and until now unknown irrigated area. First, the 

approach is downscaling the irrigation map of Siebert et al. from 5 arc minutes to 30 arc 

seconds, this increases the spatial resolution from approx. 10 km² to 1 km² (at the equator).  

The approach investigates the development of the plant growth on agriculture area, 

known from global land use and land cover data set. The crop development is then compared 

to an agricultural suitability analysis considering soil and climate data (Zabel et al., 2014). In 

case of observed plant growth at a low agricultural suitability, it is assumed that artificial 

irrigation has been applied. The agricultural suitability also provides the possibility of multiple 

cropping in one year. This information can be compared with the annual course of the multi 

temporal NDVI data. If the NDVI course shows two or more cropping seasons in one year while 

the agriculture suitability shows a limitation to fewer cropping cycles, the area is assumed as 

irrigated. The combination of the reported irrigated area and newly detected irrigated area 

results in a new global irrigation map. The new irrigation map is compared to existing global 

irrigation maps and the differences are discussed. The new global irrigation map is freely 
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available and serves as a basis and/or benchmark for many recent studies since the data set 

is downloaded 337 times and was cited 115 times in scientific publications.  

One reason for the differences in mapping results is the sensor resolution of the used 

satellite. The scope of the second paper is to quantify the mapping result at different spatial 

resolutions. Therefore, data from Sentinel-2 at 10 m resolution are artificially downscaled to 

20 m, 40 m, 60 m, 100 m 300 m, 600 m and 1000 m and the mapping approach presented in 

the first paper is applied. The study is conducted in three regions in USA, China and Sudan to 

cover a broad range of farming systems. The results show that in general the mapped area 

decreased but not to the same extent. The mapped irrigated area in USA (-48%) and Sudan (-

29%) decreased tremendously while the mapped area in China remains at all spatial 

resolution. The study showed that the decrease in mapped irrigated area is caused by the 

spatial formation and arrangement of the irrigated area. A high distribution of the irrigated 

area is more affected by the downscaling to a lower resolution than irrigated area in a dense 

cluster. The negative change of mapped irrigated area can be explained by landscape metrics, 

a concept well known from biodiversity and habitat analysis. The applied Landscape Shape 

Index (LSI) showed in all three regions a strong correlation with the negative changes of 

mapped irrigated area with spatial resolution (r>0.9). The relations show that the concept is 

regionally independent and transferable to other regions.  

The choice of the sensor resolution directly affects the mapping result. High resolution 

sensors like Sentinel-2 allows the analysis of agricultural management on field scale. From a 

global perspective, field scale differ regionally and depend on different parameters like the 

level of mechanization and on the economic, cultural and geographic background. Depending 

on the spatial resolution of the sensor and the field scale the derivation of information about 

agricultural management on field scale is possible. Coarser spatial resolution sensors lead to 

a spectral mix of different fields or land uses. Considering a field as a homogeneous unit the 

margins might overlap with other land uses in the recording path of the satellite. The question 

of the requirements for the spatial resolution of a sensor is the topic of the third paper. Which 

spatial sensor resolution is needed to cover agricultural area and how many fields are not part 

of the current satellite missions? To evaluate the agricultural coverage of current satellite 

missions, data on real field boundaries are essential. Information about agriculture field 

boundaries are available for some regions. The European Commission is using data about 

agricultural plots collected in the Land Parcel Identification System (LPIS) to monitor the 

Common Agricultural Policy (CAP), mainly known from agricultural subsidies, but the public 

availability of the data differs and is often subject to data protection law. Therefore, three 

regions are selected, where access to the LPIS data portal was possible: Bavaria and Lower 
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Saxony in Germany and the Netherlands. The field boundaries, available as polygons, are 

rasterized at 5 m, 10 m, 20 m, 30 m and 50 m using the Sentinel-2 pixel location and geometry. 

To avoid spectral mix pixel at the field margins, only the pure pixel inside the field boundaries 

were considered to ensure the correct application of algorithms for deriving agricultural 

management like irrigation. The study also evaluated the possibility of site-specific agriculture 

management (smart farming), which promises major economic and environmental benefits as 

resources such as water, pesticides, and fertilizers can be applied more efficiently and 

minimize environmental impacts. Therefore, we assume 50 pure pixel inside a field is a critical 

number of pixel for site-specific farming, fields with less than 50 pure pixel are not considered 

as available for smart farming applications. The information on the crop types remains during 

the analysis and shows which crops are covered by current or potential future satellite 

missions. 

The abstracts of the three publications summarize the manuscripts and the results 

obtained. 

2.1  A GLOBAL APPROACH TO ESTIMATE IRRIGATED AREAS – A COMPARISON BETWEEN 

DIFFERENT DATA AND STATISTICS. (PAPER 1) 

Agriculture is the largest global consumer of water. Irrigated areas constitute 40 % of the 

total area used for agricultural production. Information on their spatial distribution is highly 

relevant for regional water management and food security. Spatial information on irrigation 

is highly important for policy and decision makers, who are facing the transition towards more 

efficient sustainable agriculture. However, the mapping of irrigated areas still represents a 

challenge for land use classifications, and existing global data set differ strongly in their results. 

The following study tests an existing irrigation map based on statistics and extends the 

irrigated area using ancillary data. The approach processes and analyzes multi-temporal 

normalized difference vegetation index (NDVI) SPOT-VGT data and agricultural suitability data 

– both at a spatial resolution of 30 arcsec – incrementally in a multiple decision tree. It covers 

the period from 1999 to 2012. The results globally show a 18 % larger irrigated area than 

existing approaches based on statistical data. The largest differences compared to the official 

national statistics are found in Asia and particularly in China and India. The additional areas 

are mainly identified within already known irrigated regions where irrigation is more dense 

than previously estimated. The validation with global and regional products shows the large 

divergence of existing data set with respect to size and distribution of irrigated areas caused 

by spatial resolution, the considered time period and the input data and assumption made. 
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2.2 IRRIGATION MAPPING AT DIFFERENT SPATIAL SCALES: AREAL CHANGE WITH RESOLUTION 

EXPLAINED BY LANDSCAPE METRICS (PAPER 2) 

Monitoring of irrigated area still represents a complex and laborious challenge in land use 

classification. Extent and location of irrigated area vary with both methodology and scale. One 

major reason for discrepancies is the choice of spatial resolution. This study evaluates the 

influence of the spatial resolution on the mapped extent and spatial patterns of irrigation 

using an NDVI-threshold approach with Sentinel-2 and operational PROBA-V data. The 

influence of resolution on the irrigation mapping was analyzed in the USA, China and Sudan 

to cover a broad range of agricultural systems by comparing results from original 10 m 

Sentinel-2 data with mapped coarser results at 20 m, 40 m, 60 m, 100 m, 300 m, 600 m and 

1000 m and with results from PROBA-V. While the mapped irrigated area in China is 

independent of resolution, it decreases in Sudan (-29%) and the USA (-48%). The differences 

in the mapping result can largely be explained by the spatial arrangement of the irrigated 

pixels at the fine resolution. The calculation of landscape metrics in the three regions shows 

that the Landscape Shape Index (LSI) can explain the loss of irrigated area from 10 m to 300 m 

(r>0.9) 

 

2.3 ASSESSMENTS ON THE IMPACT OF HIGH-RESOLUTION-SENSOR PIXEL SIZES FOR COMMON 

AGRICULTURAL POLICY AND SMART FARMING SERVICES IN EUROPEAN REGIONS (PAPER 3) 

High-resolution (5–50 m) remote sensing satellite sensors provide a reliable, free and 

open data infrastructure for public and private agriculture and land use services. The further 

market penetration of these services critically depends on the fraction of agricultural fields 

and area that the services can cover. EU’s Common Agricultural Policy (CAP) and smart farming 

services require a minimum of spectrally pure measurements per agricultural field. The impact 

of pixel size on the coverage of agriculture is studied in this paper considering present free 

and open optical sensors (Sentinel-2 and LANDSAT). It further studies the implications of the 

selection of spatial resolution of planned extensions of these sensors, i.e. the next generation 

of Sentinel-2, as well as Copernicus’s hyperspectral CHIME and thermal LSTM future candidate 

missions. The paper analyzes the 2018 vector boundaries and crop types of 3.6 million 

agricultural fields in the German States of Bavaria and Lower Saxony and the Netherlands. The 

fields were rasterized using Sentinel-2 flight geometry and a pixel spacing of 5, 10, 20, 30 and 

50 m. The study specifically considered: (1) fields with no pure pixel inside where no CAP 

services can be provided and (2) fields with less than 50 pure pixels inside, which is estimated 

to be the critical number for site-specific smart farming. The percentage of agricultural fields 
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and agricultural area was determined for the main crop types. It shows, that with 10 m pixel 

spacing 2–4 % and 20 m pixel spacing 12–22 % of the agricultural fields in the study area do 

not contain a single pure spectral sample (Sentinel-2 case). This fraction decreases to 1–3 % 

at 5 m spacing and increases to 25–40 % for 30 m (LANDSAT and CHIME) and 50–70 % for 50 m 

(LSTM) spacing. The percentage of fields with less than 50 pure pixels is 20–50 % at 10 m and 

70–85 % at 20 m spacing (Sentinel-2). This fraction decreases to 5–12 % for 5 m spacing and 

reaches the level of 92–97 % for 30 m (LANDSAT) and 99 % for 50 m spacing (LSTM). Our 

analysis shows, that with a pixel spacing of 5 m the Sentinel-2-based site-specific smart 

farming services could increase their potential customer base from ~50 % to ~90 % of the 

agricultural fields and could potentially cover 99 % of the regions’ agricultural area. A 20 m 

pixel spacing would increase the agriculture area from 23 % to 56 % in the Central and 

Western European study regions on which the Copernicus hyperspectral candidate mission 

CHIME is capable to measure pure and full spectra for highly advanced future site-specific 

management services. LSTM would also profit from a spatial resolution of 30 m, which would 

raise coverage of the agricultural area in Central Europe with pure thermal measurements 

from 3 % at 50 m to 23 % at 30 m. 
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3 Conclusion and Outlook 

The aim of the thesis was the development of a new global irrigation map. The complex 

approach, the influence of sensor resolution on the mapped extent of irrigated area and the 

question of how the sensor resolution should be designed to meet the requirements for 

agriculture monitoring and precision farming were the key issues addressed in the three 

publications.  

Mapping irrigated area still represents a challenge in land use classification. Until now, 

there is no existing approach to detect irrigated area globally without ancillary data. This thesis 

pointed out that irrigation mapping in arid area is possible but is limited in humid area where 

farmers mostly use supplementary irrigation. That means, from a climatological point of view 

it is possible to farm in this area but due to economical or traditional reasons farmers are 

irrigating their fields. This is the case in the Po Valley in Italy, where a large amount of paddy 

rice is traditionally grown in a climate where rainfed agriculture would be possible. Therefore, 

additional data from official statistics are included. The developed global irrigation map 

extends the area officially reported by the FAO by 18 % and confirms findings from other 

independent information on global irrigated area, that official numbers are underestimating 

the current extent of irrigated area. The until now unknown or unreported irrigated area are 

located in regions already characterized by large irrigated area like in India and China but are 

not reported to the FAO. This shows the need of independent information about land use and 

agriculture management. Independent information on global irrigated area differs and are 

discussed in this thesis. The influence of spatial resolution on irrigation mapping is analyzed 

systematically in three different regions and showed that the mapped extent of irrigated area 

is affected differently depending on the spatial distribution and arrangement of the irrigated 

fields. This thesis could show that landscape metrics, well known from biodiversity and 

habitats analysis, can explain the negative areal change in irrigation mapping at different 

spatial resolutions. The relation between lost mapped irrigated area and the Landscape Shape 

Index (LSI) was found in all three analyzed regions which shows the correlation is regionally 

independent and thus transferable to other regions. Analyzing existing irrigation maps using 

the LSI can detect regions that tends to underestimate the mapped irrigated area in the 

existing products, which are mainly derived by wide swath medium-resolution sensors like 

VEGETATION, MODIS and AVHRR. Further, this thesis showed, that high spatial resolution 

sensors like Sentinel-2 satellite mission can open a new chapter of global irrigation mapping. 

This also relates to the temporal dynamic which is neglected in the existing products since the 

mapping is limited to one year or to a defined time period. Ambika et al. (2016) showed in a 
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regional study in India a high temporal dynamic regarding irrigation practices since the 

application of water is mainly done when water is available or access to infrastructures, like 

irrigation equipment or electric power, is provided. High resolution sensors like the Sentinel-2 

satellite mission and increasing computational power enables a more precise detection of 

irrigated area. Information on irrigated area are highly needed in climate models, as the land 

surface influences the atmosphere and land surface models, like hydrological and crop growth 

models, to improve the knowledge regarding water flows. The combination and comparison 

of spatially distributed crop growth models with time series of multi spectral remote sensing 

observations over the whole vegetation period will allow the traceability of the irrigation 

management like the used irrigation water by the crops, irrigation water loss through 

interception or soil evaporation and overall water use efficiency. A remote sensing-based 

monitoring system of the described kind is the prerequisite for the improvement of irrigation 

management towards a less wasteful use of the precious water resources by the farmers and 

can be a strong instrument in negotiations regarding upstream-downstream water conflicts in 

large watersheds. 

The next step should be the development of an automatically updated irrigation 

monitoring system that supplies the user’s up-to-date information about the state of irrigation 

in terms of location, area and type. This allows in-field management and a direct application 

of water or fertilizers and pesticides to plants affected by water stress or diseases. Smart 

farming or precision farming with in-field management based on space-born information has 

the potential to increase the efficiency of used resources in agriculture in a sustainable way. 

The basic requirement for the use of smart farming applications is that the resolution of the 

sensor corresponds to the size of the fields and beyond. The evaluation of current satellite 

missions and their suitability for smart farming applications in Europe showed that future 

satellite missions should be designed in at least the Sentinel-2 resolution of 10 m. Due to the 

small scaled agriculture in parts of Europe, in-field management as a comprehensive solution 

would need an even higher spatial resolution of the sensor. The findings of this thesis can 

provide a basis for decision-makers in planning future satellite missions.  

 

 

 



References 

- 27 - 
 

REFERENCES  

 

A’Campo, W.; Bartsch, A.; Roth, A.; Wendleder, A.; Martin, V.S.; Durstewitz, L.; Lodi, R.; Wagner, J.; 
Hugelius, G. (2021): Arctic Tundra Land Cover Classification on the Beaufort Coast Using the 
Kennaugh Element Framework on Dual-Polarimetric TerraSAR-X Imagery. Remote Sensing, 13, 
4780. 

Abuzar, M.; McAllister, A.; Whitfield, D. (2015): Mapping Irrigated Farmlands Using Vegetation and 
Thermal Thresholds Derived from Landsat and ASTER Data in an Irrigation District of Australia. 
Photogrammetric Engineering & Remote Sensing, 81, 229-238. 

Ambika, A.K.; Wardlow, B.; Mishra, V. (2016): Remotely sensed high resolution irrigated area mapping 
in India for 2000 to 2015. Sci Data, 3, 160118. 

Arino, O.; Ramos Perez, J.J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, E. (2012): Global 
Land Cover Map for 2009 (GlobCover 2009). European Space Agency (ESA) & Université 
catholique de Louvain (UCL), PANGAEA. 

Belward, A.S.; Skøien, J.O. (2015): Who launched what, when and why; trends in global land-cover 
observation capacity from civilian earth observation satellites. ISPRS Journal of 
Photogrammetry and Remote Sensing, 103, 115-128. 

Borges, J.; Higginbottom, T.P.; Symeonakis, E.; Jones, M. (2020): Sentinel-1 and Sentinel-2 Data for 
Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons. Remote 
Sensing, 12, 3862. 

Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. (2014): Mapping daily 
evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote 
sensing data fusion. Agricultural and Forest Meteorology, 186, 1-11. 

Cherif, E.; Hell, M.; Brandmeier, M. (2022): DeepForest: Novel Deep Learning Models for Land Use and 
Land Cover Classification Using Multi-Temporal and -Modal Sentinel Data of the Amazon Basin. 
Remote Sensing, 14, 5000. 

Defries, R.S.; Townshend, J.R.G. (1994): NDVI-derived land cover classifications at a global scale. 
International Journal of Remote Sensing, 15, 3567-3586. 

Döll, P.; Schmied, H.M. (2012): How is the impact of climate change on river flow regimes related to 
the impact on mean annual runoff? A global-scale analysis. Environmental Research Letters, 7, 
014037. 

Drechsel, P., Graefe, S., Sonou, M., Cofie, O. O. (2006): Informal Irrigation In Urban West Africa: An 
Overview; International Water Management Institute: Colombo, Sri Lanka. 

ESA (2022): Copernicus. Available online: 
https://www.esa.int/Applications/Observing_the_Earth/Copernicus (accessed on 
25.10.2022). 

ESA (2015): ESA CCI Land Cover. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/index.php 
(accessed on 22.10.2022). 

ESA (2017) Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available online: 
maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 
22.10.2022) 

European Commission (2022) Agricultural monitoring. Available online: https://joint-research-
centre.ec.europa.eu/scientific-activities-z/agricultural-monitoring_en (accessed on 
25.10.2022). 



References 

- 28 - 
 

 

Evans, R.G.; Sadler, E.J. (2008): Methods and technologies to improve efficiency of water use. Water 
Resources Research, 44. 

FAO (2015): 70 Years of FAO (1945-2015), Rome, Italy. 

FAO (2021): Emissions due to agriculture, Rome, Italy. 

FAO (2016): FAOSTAT statistical database. Available online: https://www.fao.org/faostat/en/#data 
(accessed on 14.06.2016). 

FAO (2014): Total Withdrawal by Sector. Available online: 
http://www.fao.org/nr/water/aquastat/tables/WorldData-Withdrawal_eng.pdf (accessed on 
24.11.2016). 

FAO (2012): World agriculture towards 2030/2050: the 2012 revision, FAO Agricultural Development 
Economics Division: Rome, Italy. 

Fisher, J.R.B.; Acosta, E.A.; Dennedy-Frank, P.J.; Kroeger, T.; Boucher, T.M. (2018): Impact of satellite 
imagery spatial resolution on land use classification accuracy and modeled water quality. 
Remote Sensing in Ecology and Conservation, 4, 137-149. 

Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; 
O'Connell, C.; Ray, D.K.; West, P.C.; Balzer, C.; Bennet, E.M.; Carpenter, S.R.; Hill, J.; Monfreda, 
C.; Polasky, S.; Rockström, J.; Sheehan, J.; Siebert, S.; Zacks, D.P.M. (2011): Solutions for a 
cultivated planet. Nature, 478, 337-342. 

Friedl, M., Sulla-Menashe, D. (2022): MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN 
Grid V061 [Data set]. NASA EOSDIS Land Processes DAAC.  

Fuller, R.M.; Groom, G.B.; Jones, A.R. (1994): The Land Cover Map of Great Britain: An Automated 
Classification of Landsat Thematic Mapper Data. Photogramm Eng Remote Sensing, 60, 553-
562. 

García-Álvarez, D.; Nanu, S.F. (2022): Land Use Cover Datasets: A Review. In Land Use Cover Datasets 
and Validation Tools: Validation Practices with QGIS, García-Álvarez, D., Camacho Olmedo, 
M.T., Paegelow, M., Mas, J.F., Eds.; Springer International Publishing: Cham, pp. 47-66. 

Giri, C. (2005): Global Land Cover Mapping and Characterization: Present Situation and Future 
Research Priorities. Geocarto International, 20, 35-42. 

GLIMS Consortium (2005): GLIMS Glacier Database, Version 1 [Data Set]. Boulder, Colorado USA. NASA 
National Snow and Ice Data Center Distributed Active Archive Center.  

Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, 
S.; Thomas, S.M.; Toulmin, C. (2010): Food Security: The Challenge of Feeding 9 Billion People. 
Science, 327, 812-818. 

Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, 
T.; Leutner, B.; Kuenzer, C. (2020): Earth Observation Based Monitoring of Forests in Germany: 
A Review. Remote Sensing, 12, 3570. 

Jin, N.; Tao, B.; Ren, W.; Feng, M.; Sun, R.; He, L.; Zhuang, W.; Yu, Q. (2016): Mapping Irrigated and 
Rainfed Wheat Areas Using Multi-Temporal Satellite Data. Remote Sensing, 8, 207. 

Kavats, O.; Khramov, D.; Sergieieva, K.; Vasyliev, V. (2019): Monitoring Harvesting by Time Series of 
Sentinel-1 SAR Data. Remote Sensing, 11, 2496. 

Klein, I.; Gessner, U.; Dietz, A.J.; Kuenzer, C. (2017): Global WaterPack – A 250m resolution dataset 
revealing the daily dynamics of global inland water bodies. Remote Sensing of Environment, 
198, 345-362. 



References 

- 29 - 
 

Lawston, P.M.; Santanello, J.A.; Kumar, S.V. (2017): Irrigation Signals Detected From SMAP Soil 
Moisture Retrievals. Geophysical Research Letters, 44, 11,860-811,867. 

Ludemann, C.I.; Gruere, A.; Heffer, P.; Dobermann, A. (2022): Global data on fertilizer use by crop and 
by country. Scientific Data, 9, 501. 

Mankin, J.S.; Viviroli, D.; Singh, D.; Hoekstra, A.Y.; Diffenbaugh, N.S. (2015): The potential for snow to 
supply human water demand in the present and future. Environmental Research Letters, 10, 
114016. 

Meier, J.; Zabel, F.; Mauser, W. (2018): A global approach to estimate irrigated areas – a comparison 
between different data and statistics. Hydrol. Earth Syst. Sci., 22, 1119-1133. 

Mostafa, S.M.; Wahed, O.; El-Nashar, W.Y.; El-Marsafawy, S.M.; Zeleňáková, M.; Abd-Elhamid, H.F. 
(2021): Potential Climate Change Impacts on Water Resources in Egypt. Water, 13, 1715. 

Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. (2012): Closing yield 
gaps through nutrient and water management. Nature, 490, 254-257. 

Neumann, K.; Stehfest, E.; Verburg, P.H.; Siebert, S.; Müller, C.; Veldkamp, T. (2011): Exploring global 
irrigation patterns: A multilevel modelling approach. Agricultural Systems, 104, 703-713. 

Ozdogan, M.; Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and 
ancillary data: An application example in the continental US. (2008): Remote Sensing of 
Environment, 112, 3520-3537. 

Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. (2016): High-resolution mapping of global surface 
water and its long-term changes. Nature, 540, 418-422. 

Petersen-Perlman, J.D.; Veilleux, J.C.; Wolf, A.T. (2017): International water conflict and cooperation: 
challenges and opportunities. Water International, 42, 105-120. 

Phillips, R. (1981): FAO: its origins, formation and evolution 1945-1981; FAO: Rome, Italy. 

Porwollik, V.; Rolinski, S.; Heinke, J.; Müller, C. (2019): Generating a rule-based global gridded tillage 
dataset. Earth Syst. Sci. Data, 11, 823-843. 

Prasch, M.; Mauser, W.; Weber, M. (2013): Quantifying present and future glacier melt-water 
contribution to runoff in a central Himalayan river basin. The Cryosphere, 7, 889-904. 

Puy, A.; Lankford, B.; Meier, J.; van der Kooij, S.; Saltelli, A. (2022a): Large variations in global irrigation 
withdrawals caused by uncertain irrigation efficiencies. Environmental Research Letters, 17. 

Puy, A.; Sheikholeslami, R.; Gupta, H.V.; Hall, J.W.; Lankford, B.; Lo Piano, S.; Meier, J.; Pappenberger, 
F.; Porporato, A.; Vico, G.; Saltelli, A. (2022b): The delusive accuracy of global irrigation water 
withdrawal estimates. Nature Communications, 13, 3183. 

Reinermann, S.; Asam, S.; Kuenzer, C. (2020): Remote Sensing of Grassland Production and 
Management—A Review. Remote Sensing, 12, 1949. 

Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. (1973): Monitoring vegetation systems in the great 
plains with ETRS. Environmental Science, 309-317. 

Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. (2015): Global rain-fed, irrigated, and 
paddy croplands: A new high resolution map derived from remote sensing, crop inventories 
and climate data. International Journal of Applied Earth Observation and Geoinformation, 38, 
321-334. 

Sano, E.E.; Rosa, R.; Brito, J.L.; Ferreira, L.G. (2010): Land cover mapping of the tropical savanna region 
in Brazil. Environ Monit Assess, 166, 113-124. 

Schneider, A.; Friedl, M.A.; Potere, D. (2008): Monitoring the Extent and Intensity of Urban Areas 
Globally using the Fusion of MODIS 500m Resolution Satellite Imagery and Ancillary Data 



References 

- 30 - 
 

Sources. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 
7-11 July 2008. 

Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.M.; Frenken, K.; Feick, S. (2005): Development and 
validation of the global map of irrigation areas. Hydrology and Earth System Sciences, 9, 535-
547. 

Strzepek, K.; Boehlert, B.(2010): Competition for water for the food system. Philosophical transactions 
of the Royal Society of London. Series B, Biological sciences, 365, 2927-2940. 

Swain, A. (2011): Challenges for water sharing in the Nile basin: changing geo-politics and changing 
climate. Hydrological Sciences Journal, 56, 687-702. 

Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; 
Gangalakunta, O.R.P.; Turral, H.; Cai, X.; Vithanage, J.; Schull, M.A.; Dutta, R. (2009): Global 
irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. 
International Journal of Remote Sensing, 30, 3679-3733. 

Thonfeld, F.; Gessner, U.; Holzwarth, S.; Kriese, J.; da Ponte, E.; Huth, J.; Kuenzer, C. (2022): A First 
Assessment of Canopy Cover Loss in Germany&rsquo;s Forests after the 2018&ndash;2020 
Drought Years. Remote Sensing, 14, 562. 

Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. (2011): Global food demand and the sustainable intensification 
of agriculture. Proceedings of the National Academy of Sciences, 108, 20260-20264. 

United Nations (2015): Transforming our World: The 2030 Agenda for Sustainable Development. 
Available online: https://documents-dds-
ny.un.org/doc/UNDOC/GEN/N15/291/89/PDF/N1529189.pdf?OpenElement (accessed on 
20.10.2022). 

Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L. 
(2009): Influence of Resolution in Irrigated Area Mapping and Area Estimation. 
Photogrammetric Engineering & Remote Sensing, 75, 1383-1395. 

Vörösmarty, C.J. (2002): Global water assessment and potential contributions from Earth Systems 
Science. Aquatic Sciences, 64, 328-351. 

Vorosmarty, C.J.; Sahagian, D. (2000): Anthropogenic disturbance of the terrestrial water cycle. 
Bioscience, 50, 753-765. 

Wada, Y.; Wisser, D.; Bierkens, M.F.P. (2014): Global modeling of withdrawal, allocation and 
consumptive use of surface water and groundwater resources. Earth Syst. Dynam., 5, 15-40. 

Wang, J.; Zhao, Y.; Li, C.; Yu, L.; Liu, D.; Gong, P. (2015): Mapping global land cover in 2001 and 2010 
with spatial-temporal consistency at 250m resolution. ISPRS Journal of Photogrammetry and 
Remote Sensing, 103, 38-47. 

Wu, L.; Elshorbagy, A.; Alam, M.S. (2022): Dynamics of water-energy-food nexus interactions with 
climate change and policy options. Environmental Research Communications, 4, 015009. 

Yu, X.; Lu, D.; Jiang, X.; Li, G.; Chen, Y.; Li, D.; Chen, E. (2020): Examining the Roles of Spectral, Spatial, 
and Topographic Features in Improving Land-Cover and Forest Classifications in a Subtropical 
Region. Remote Sensing, 12, 2907. 

Zabel, F.; Delzeit, R.; Schneider, J.M.; Seppelt, R.; Mauser, W.; Václavík, T. (2019): Global impacts of 
future cropland expansion and intensification on agricultural markets and biodiversity. Nature 
Communications, 10, 2844. 

Zabel, F.; Putzenlechner, B.; Mauser, W. (2014): Global agricultural land resources--a high resolution 
suitability evaluation and its perspectives until 2100 under climate change conditions. PloS 
one, 9, e107522. 



 

- 31 - 
 

Zanaga, D.V.D.K., Ruben; De Keersmaecker, Wanda; Souverijns, Niels; Brockmann, Carsten; Quast, Ralf; 
Wevers, Jan; Grosu, Alex; Paccini, Audrey; Vergnaud, Sylvain; Cartus, Oliver; Santoro, Maurizio; 
Fritz, Steffen; Georgieva, Ivelina; Lesiv, Myroslava; Carter, Sarah; Herold, Martin; Li, Linlin; 
Tsendbazar, Nandin-Erdene; Ramoino, Fabrizio; Arino, Olivier. (2021): ESA WorldCover 10 m 
2020 v100 (Version v100) [Data set]. Zenodo. 

 

  



Appendix I 

- 32 - 
 

Appendix I 

Appendix I consists of the three consecutive peer-reviewed publications that comprise 

this thesis. 



Publication 1 

- 33 - 
 

PUBLICATION 1 

 

Meier, J.; Zabel, F.; Mauser, W. A global approach to estimate irrigated areas – a 

comparison between different data and statistics (2018): Hydrol. Earth Syst. Sci., 22, 1119-

1133, https://doi.org/10.5194/hess-22-1119-2018 

 
  



Hydrol. Earth Syst. Sci., 22, 1119–1133, 2018
https://doi.org/10.5194/hess-22-1119-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.

A global approach to estimate irrigated areas – a comparison
between different data and statistics
Jonas Meier, Florian Zabel, and Wolfram Mauser
Department of Geography, Ludwig Maximilians University, 80333 Munich, Germany

Correspondence: Jonas Meier (jonas.meier@lmu.de)

Received: 17 March 2017 – Discussion started: 5 April 2017
Revised: 7 January 2018 – Accepted: 8 January 2018 – Published: 9 February 2018

Abstract. Agriculture is the largest global consumer of wa-
ter. Irrigated areas constitute 40 % of the total area used for
agricultural production (FAO, 2014a) Information on their
spatial distribution is highly relevant for regional water man-
agement and food security. Spatial information on irrigation
is highly important for policy and decision makers, who are
facing the transition towards more efficient sustainable agri-
culture. However, the mapping of irrigated areas still repre-
sents a challenge for land use classifications, and existing
global data sets differ strongly in their results. The follow-
ing study tests an existing irrigation map based on statis-
tics and extends the irrigated area using ancillary data. The
approach processes and analyzes multi-temporal normalized
difference vegetation index (NDVI) SPOT-VGT data and
agricultural suitability data – both at a spatial resolution of
30 arcsec – incrementally in a multiple decision tree. It cov-
ers the period from 1999 to 2012. The results globally show
a 18 % larger irrigated area than existing approaches based
on statistical data. The largest differences compared to the
official national statistics are found in Asia and particularly
in China and India. The additional areas are mainly identi-
fied within already known irrigated regions where irrigation
is more dense than previously estimated. The validation with
global and regional products shows the large divergence of
existing data sets with respect to size and distribution of irri-
gated areas caused by spatial resolution, the considered time
period and the input data and assumption made.

1 Introduction

One of the major challenges of the 21st century will be feed-
ing the world’s growing population (Foley et al., 2011). Con-

sidering increasing meat consumption and additionally the
increased use of biofuel and bio-based materials leads to
estimations that global agricultural production will have to
double by 2050 (Alexandratos and Bruinsma, 2012; God-
fray et al., 2010; Tilman et al., 2011). Separated by sec-
tor, agriculture is the largest consumer of water. 69 % of the
global water withdrawal from rivers, lakes and groundwa-
ter (blue water) is used for agriculture, in some regions the
share can be over 90 % like in Southern Asia or in the Mid-
dle East (FAO, 2014b; please note that regional designations
are based on UN Geographical Regions in UN, 2013). The
regional limitation of fresh water availability plays a crucial
role in global agricultural production, considering that 40 %
of the global yields are harvested on irrigated fields (FAO,
2014a). Irrigated areas almost doubled over the last 50 years
and currently constitute 20 % of the harvested areas globally
(FAO, 2016b). Future expansion of irrigated areas and a re-
lated increase in water consumption is expected (Neumann
et al., 2011). Due to climate change in some areas agricul-
tural water availability is expected to decrease (Strzepek and
Boehlert, 2010). The low irrigation efficiency of the common
irrigation techniques such as sprinkler and flood irrigation
(Evans and Sadler, 2008), the unsustainable usages of lim-
ited sources like groundwater (Wada et al., 2014), the chang-
ing river regimes (Döll and Schmied, 2012) and the changing
supply by snowmelt (Mankin et al., 2015; Prasch et al., 2013)
underline the need for a transition towards more sustainable
and efficient use of water. The UN Sustainable Development
Goals clearly reflect this need to achieve food security and
the sustainable development of land use (UN, 2016). For bet-
ter inventorying and investigation of global and regional wa-
ter cycles and as input for crop models, detailed global infor-
mation on irrigated areas at high resolution is needed.
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Methods that do not rely on surveys and that are indepen-
dent of statistics have been developed to identify irrigated
areas (Ozdogan et al., 2010). Remote sensing can be an alter-
native approach for mapping irrigated areas. Previous studies
showed that remote sensing data can be used to detect irri-
gated areas for small- and medium-scale analyses (Abuzar
et al., 2015; Ambika et al., 2016; Jin et al., 2016; Ozdogan
and Gutman, 2008). Vegetation indices (Ozdogan and Gut-
man, 2008) and climate elements, such as evapotranspiration
(Abuzar et al., 2015) derived from satellite information and
combined with meteorological data, have been used to deter-
mine irrigated area. Ozdogan et al. (2010) summarized dif-
ferent approaches for mapping irrigated areas from local to
global scale.

There are only a few studies which identify irrigated areas
globally (Salmon et al., 2015; Siebert et al., 2005; Thenkabail
et al., 2009a). Land use classification data sets often neglect
irrigated area. Some classify irrigated area as a separate class
(ESA, 2015; USGS, 2000) but do not make it a focus.

A common approach to the specific mapping of irrigated
area, such as provided by the Global Map of Irrigation Ar-
eas (GMIA; Siebert et al., 2005), distributes statistical data
of national and subnational agricultural surveys like AQUA-
STAT (FAO, 2016a) to the agricultural and “other” land use
classifications. However, approaches that are restricted to
statistics alone are hard to verify, since statistics may include
errors and multi-scale statistics hardly exist globally. For in-
stance in some countries in Western Africa the informal irri-
gated areas in urban and peri-urban areas are twice the size
of the official irrigated areas for the whole country (Drechsel
et al., 2006). Irrigation may increase due to economic growth
and a dietary shift from staple crops towards more vegetables
and fruits (Molden, 2007). In fact, even 15 years ago official
FAO statistics were criticized after comparing national statis-
tics with remote-sensing-based data (Vörösmarty and Saha-
gian, 2000). The study of Thenkabail et al. (2009a) globally
identified 43 % more irrigated areas than reported in official
FAO statistics. The discrepancies between those data were
explained by the politicized nature of the FAO data reports
and different definitions of irrigated area (Vörösmarty, 2002).
The global irrigated area mapping (GIAM) undertaken by
Thenkabail et al. (2009a) is a combination of meteorological
data, land use classification information (forest) and remote
sensing data from multiple satellite sensors. It is validated us-
ing ground truth data and Google Earth images. Thenkabail
et al. (2009a) showed that the global irrigated areas might be
underestimated by the official statistics. Another approach
to map global irrigated areas was developed by Salmon et
al. (2015). They combine statistics, climate and remote sens-
ing data. The study also shows, although small, an underes-
timation by the national and subnational statistics. Salmon et
al. (2015) showed that merging remote sensing data and an-
cillary data is suitable for irrigation mapping. Thenkabail et
al. (2009b) conclude that “both remote sensing and national
statistical approaches require further refinement”.

The aim of this study is to test an existing statistics-
based medium-resolution irrigation map (Siebert et al., 2013)
with high-resolution data from satellite observations which
have since become available. We study, through extraction
of likely irrigated areas from the high spatial resolution data,
to what extent and where formally undetected irrigated areas
show up. At first we downscale the Siebert et al. (2005) sta-
tistically based irrigation map using high-resolution remote
sensing information. In the second step we derive irrigated
land from agricultural suitability data combined with remote
sensing information consisting of multi-temporal normalized
difference vegetation index (NDVI) profiles at high spatial
resolution. By following a decision tree we identify irrigated
areas as showing active vegetation growth in agricultural un-
suitable regions. If these irrigated areas are not reported by
the official statistics they are added in the new irrigation map.
Hence, the new irrigation map is not restricted to irrigated
areas recognized in official reports and allows for extending
these predetermined areas. Finally, we compare our results
with existing global approaches as well as with regional anal-
yses (USA, India, China) and investigate the differences with
the official national and subnational statistics.

2 Data and methods

The basic idea of our approach is to combine different data
sets providing different kind of information. The applied data
sets are available at different spatial resolutions (Table 1). As
a first step, the data sets are homogenized to the same spa-
tial resolution. We decided on the high spatial resolution of
30 arcsec (approx. 1 km2 at the Equator), since the demand
for high-resolution global data is increasing in different ap-
plications (Deryng et al., 2016; Jägermeyr et al., 2015; Liu
et al., 2007; Mauser et al., 2015; Rosenzweig et al., 2014)
and the pixel size of approximately 1 km2 is already close to
the size of large fields (depending on the region) or an ag-
glomeration of smaller irrigated fields. For Africa and Asia,
the field size of 1 km2 might be too large (Fritz et al., 2015),
but usually, irrigated fields can be much bigger in size, since
irrigation is often applied by large-scale farms. Small fields
are agglomerated since irrigation is usually not practiced on
a single field, due to high investment and installation costs of
irrigation systems. The resulting data at 30 arcsec only distin-
guishes between irrigated and rain-fed and does not contain
percentage shares.

The decision tree in Fig. 1 shows how the data sets are
analyzed and formerly undetected irrigated areas are identi-
fied. As we mentioned above, the basic idea is to increase
the spatial resolution of an existing global irrigation map to
30 arcsec and to extend the data set with additional identified
irrigated areas. The lower grey box in Fig. 1 shows the prin-
cipal of the downscaling process, where we assign the per-
centage values of Siebert et al. (2005) to the high-resolution
pixels within a medium-resolution pixel showing the highest
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Figure 1. The scheme used for processing and analyzing the different spatial data and the multiple decision tree to determine irrigated area.
The grey boxes show the described Sects. 2.1, 2.2 and 2.5.

NDVI values (see Sect. 2.1). The assigned irrigation percent-
ages of the high-resolution pixels form the basis of our new
irrigation map. The upper grey box in Fig. 1 shows the pro-
cessing of the NDVI data, which is only done on agricultural
areas (see Sect. 2.2 and 2.3). The processed NDVI data are
compared to a global high-resolution data set of agricultural
suitability (see Sect. 2.5 and the right grey box in Fig. 1).
The combination of the downscaling and the comparison of
NDVI and agricultural suitability results in a global high-
resolution irrigation map. The development of the map is de-
scribed more in detail in the following section.

2.1 The downscaling of the statistically based data set

Siebert et al. (2005) distribute statistical data to the Global
Map of Irrigated Areas (GMIA). The data set has a reso-
lution of 5 arcmin and is available in several versions – we
applied the version 5.0 (Siebert et al., 2013). To combine
the different data sets to a final irrigation map at a resolu-
tion of 30 arcsec, the resolution of GMIA has to increase.
For the downscaling process, shown in the lower grey box
in Fig. 1, we use global bimonthly (computed once every
2 months) maximum MERIS NDVI data (ESA, 2007) at a

spatial resolution of 10 arcsec and calculate the yearly max-
imum NDVI (Fig. 2). The bimonthly maximum NDVI data
cover the period November 2004–June 2006 and represent
more or less the center of the covered time period of the ap-
plied GMIA version. After upscaling the yearly maximum
NDVI to 30 arcsec using a majority algorithm, the GMIA
data are distributed to the areas with the highest NDVI within
a corresponding coarse pixel. To avoid distributions to dense
woodlands (closed tree cover > 40 %), cities and open water,
these areas are excluded from the distribution, based on the
ESA Climate Change Initiative Land Cover (CCI-LC) data
set (ESA, 2015). Pixels with a share of irrigated area below
1 % are not considered. The downscaled data set of Siebert
et al. (2013) shows the irrigated area at a high spatial reso-
lution of 30 arcsec and will in the next steps be extended by
irrigated area, which are not part of the statistics yet. In the
following, the downscaled data set of Siebert et al. (2013) is
referred to as “downscaled GMIA”.

2.2 Remote sensing data

This part of the decision tree is shown in the upper left grey
box in Fig. 1. For the detection of the actual active vegeta-
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Figure 2. Yearly maximum NDVI derived from maximum bimonthly NDVI data of the EnviSAT MERIS instrument.

Table 1. Applied global data sets.

Name Description Period Resolution Data source

Global Map of Areas equipped for irrigation 2000–2008 5 arcmin Siebert et al. (2013)
Irrigation Areas in percent of the total pixel
(GMIA) version area.
5.0

Agricultural Agricultural suitability, rain- 1981–2010 30 arcsec Zabel et al. (2014)
suitability fed and irrigated for the period

1980–2010

Multiple cropping Numbers of crop cycles, rain- 1981–2010 30 arcsec Zabel et al. (2014)
fed and irrigated

Maximum NDVI Maximum of global bimonthly 2004–2006 10 arcsec ESA (2007)
NDVI maxima from the
ENVISAT MERIS instrument

7-day mean 7-day mean NDVI data 1999–2012 30 arcsec ESA (2015)
NDVI SPOT-VGT

ESA-CCI-LC Land classification product 2008–2012 10 arcsec ESA (2015)
(v. 1.6.1)

GlobCover Land classification product 2009 10 arcsec ESA (2010)

WorldClim Yearly reanalysis precipitation 1961–1990 30 arcsec Hijmans et al. (2005)
precipitation data

tion we used the NDVI product of ESA-CCI (ESA, 2015).
The data provide 7-day NDVI means and covers the time pe-
riod from 1999 to 2012. From these data, we calculated the
annual course of NDVI, averaged over the whole time period,
from which we derived the number of annual NDVI peaks.
In order to increase the precision of detecting active vegeta-
tion, each pixel is analyzed according to an NDVI threshold
approach (Ambika et al., 2016; Shahriar Pervez et al., 2014).
The chosen thresholds are a result of a comparison of differ-
ent studies (Ambika et al., 2016; Shahriar Pervez et al., 2014)
and the comparison of NDVI values of known irrigated and

rain-fed areas. The following criteria need to be fulfilled and
are shown in Fig. 3:

– The minimum NDVI has to be below 0.4, while the
maximum NDVI has to be over 0.4. Since the NDVI
product is a 7-day mean over 14 years, it is very likely
that fields lie fallow within the time period, result-
ing in lower mean values. Therefore, an NDVI of 0.4
turned out to be a suitable lower threshold. This guaran-
tees clear distinction between non-vegetated and vege-
tated pixels and eliminates evergreen vegetation, such as
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Figure 3. Idealized NDVI course of single and multi-cropping and
the conditions which must be fulfilled.

forests and pasture. Thresholds like minimum and max-
imum NDVI used in this study have a strong effect on
the result. For a global study it is difficult to find univer-
sal, transferable thresholds that can be applied globally.

– Minimum and maximum NDVI must at least differ
by 0.2 to identify only pixels with a dynamic annual
course that is assumed for agricultural areas.

– NDVI peaks must be at least 12 weeks apart to assign
a peak to a specific growing period, assuming that the
growing period length is at least 12 weeks (Sys et al.,
1993). Additionally, this allows for separating multiple
growing periods within a year. Often, a slight greening
right after harvest was observed. This can be explained
by the seeding of legumes for soil treatment, or the de-
velopment of natural vegetation after harvest, which re-
sults in an increase in NDVI.

– In order to avoid classifying multiple peaks as a regular
harvest, it turned out that two sequenced peaks must not
differ by more than 25 %.

The described criteria of minimum, maximum and yearly
course of NDVI and the length of growing period turned out
to be robust for determining the number of crop cycles glob-
ally. The chosen criteria are suitable regarding the fact that
we used 7-day NDVI means averaged over 14 years.

2.3 Land use classification products

The extension of irrigation is restricted to agricultural ar-
eas. The information on cropland is taken from the ESA-

Table 2. User accuracy of the applied land use data sets.

ESA-CCI-LC GlobCover

Cropland rain-fed 88 % 82 %
Cropland irrigated 92 % 83 %
Mosaic cropland > 50 % 59 % 97 %

Table 3. List of all considered crops.

Crop name

Barley (Hordeum vulgare)
Cassava (Manihot esculenta)
Peanut (Arachis hypogaea)
Maize (Zea mays)
Millet (Pennisetum americanum)
Oil palm (Elaeis guineensis)
Potato (Solanum tuberosum)
Rapeseed (Brassica napus)
Paddy rice (Oryza sativa)
Rye (Secale cereale)
Sorghum (Sorghum bicolor)
Soy (Glycine max)
Sugarcane (Saccharum officinarum)
Sunflower (Helianthus annuus)
Summer wheat (Triticum aestivum)
Winter wheat (Triticum aestivum)

CCI-LC product (cropland rain-fed, cropland irrigated, mo-
saic cropland> 50 %; ESA, 2015) and from the predecessor
GlobCover (ESA, 2010; post-flooding or irrigated croplands,
rain-fed croplands, mosaic cropland; 50–70 %). According
to the authors, the “accuracy associated with the cropland
and forest classes” is high “and therefore a quite good re-
sult” (ESA, 2015). The user’s accuracies of both data sets are
shown in Table 2. The classification of cropland depends on
the definition of cropland. In both data sets pasture is neither
a separate class nor part of the class “grassland” or “crop-
land”. False classification of cropland can therefore lead to
false classification of irrigated areas. The combination of
both data sets increases the chance of classifying irrigated
areas only on cropland. Pixels that are classified as mosaic
cropland in the underlying land use data sets are weighted by
the averaged amount of cropland fraction for the correspond-
ing class. All other cropland pixels are assumed to be 100 %
cropland.

2.4 Agricultural suitability data

Agricultural suitability data are taken from Zabel et
al. (2014). The data describe the suitability for 16 staple, en-
ergy and forage crops (Table 3) according to climate, soil and
topography conditions at a spatial resolution of 30 arcsec. It
determines suitability for crop cultivation and the potential
number of crop cycles per year, under the climate for 1981–
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Figure 4. Irrigated areas identified by different approaches.

2010 (Zabel et al., 2014). Soil properties are not consid-
ered in this approach, because human activities may alter soil
properties, for example through fertilizer and manure appli-
cation or soil tillage. The data are available for past and fu-
ture climate periods as well as for rain-fed and irrigated con-
ditions separately. The data set used in this study represents
for each pixel the highest suitability value over all selected
crops as well as the annual course of the growing period and
the potential number of crop cycles per year.

2.5 High-resolution mapping of irrigated areas

The downscaled GMIA data serve as a basis, providing a
proven global distribution of irrigated areas. The irrigated ar-
eas which are already part of the statistics are extended with
additional, previously undetected irrigated areas. The iden-
tification of the additional irrigated areas in the new irriga-
tion map is accomplished using the criteria described above
and relationships of the annual temporal NDVI profiles to
the agricultural suitability. The general criterion for the iden-
tification of unknown irrigated areas is that the land use is
already cropland according to ESA-CCI-LC and GlobCover.
The restriction to cropland avoids the classification of irri-
gated areas in other land use or cover types in dry areas with
high NDVI values due to lichen or weeds, since a low agri-
cultural suitability does not exclude plant growth at all. The
upper right grey box in Fig. 1 shows the assumption for irri-
gated areas using the NDVI and agricultural suitability data:

A. the annual NDVI course clearly suggests dynamic veg-
etation growth while the agricultural suitability shows a
low value;

B. the number of NDVI peaks is higher than the potential
number of crop cycles per year under rain-fed condi-
tions;

Figure 5. Results of the new irrigation map compared the down-
scaled GMIA.

C. land is not suitable but classified as cropland, while at
the same time NDVI values and yearly courses indicate
vegetation.

If one of the criteria is true, we assume the full area of the
30 arcsec pixel as being irrigated. As a result, the combina-
tion of A, B and C identify the irrigated pixels that were not
assigned to irrigation areas in the downscaled GMIA irriga-
tion map.

3 Results

3.1 Global analysis

The new global irrigation map shows 18 % more irri-
gated areas than the downscaled GMIA (Fig. 4). Overall,
3 674 478 km2 of irrigated areas have been identified, which
is an increase of 659 605 km2 compared to the downscaled
GMIA (Fig. 5). The global result confirms the underestima-
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Figure 6. Yearly precipitation within the irrigated areas. Criteria A
and C are suitable in dry regions, while criterion B identifies in hu-
mid regions as well. Further, irrigation decreases with increasing
precipitation, but is also used in regions with high yearly precipita-
tion.

tion of irrigated areas of Thenkabail et al. (2009a), who glob-
ally identified 3 985 270 km2 of irrigated area using a remote-
sensing-based approach, which is significantly higher than
the results of Salmon et al. (2015) with 3 141 000 km2 and
the global estimates of the FAO or of Siebert et al. (2005).

Figure 5 shows the global irrigated area additionally allo-
cated through each of the criteria A, B and C of Sect. 2.5. The
largest amount of additional irrigated area is identified by
considering multiple cropping (B). In this case, 493 123 km2

is not part of the downscaled GMIA. These areas are mainly
found in Asia (Fig. 4), where according to our results, ir-
rigation is often required for multiple cropping. An area of
100 069 km2 is additionally identified because it is not suit-
able for crop cultivation but is classified as cropland (crite-
rion C). By the use of criterion A, 76 054 km2 is additionally
allocated.

3.2 Regional analysis

The criteria A, B and C show different amounts of additional
irrigated area for different regions. Criteria A and C identi-
fied irrigated areas mostly in arid and semi-arid regions, by
comparing low or no suitability versus high NDVI. Figure 6
shows that additional irrigated areas by using A and C are
mainly found in regions with annual precipitation < 500 mm,
according to the WorldClim data set for 1961–1990 (Hijmans
et al., 2005).

In humid regions, criteria A and C are not sensitive, be-
cause agricultural suitability values in humid regions are high
since precipitation is not limiting. We found that B extends

Figure 7. The Indian subcontinent and its identified irrigated areas.
The blue areas are the information of the downscaled GMIA. Irri-
gation is more dense than expected in already irrigated regions and
new areas appear in the state Madhya Pradesh.

irrigated areas in regions with low as well as high annual
precipitation (Fig. 6), where irrigation is often used to allow
for a second harvest. In total, Fig. 6 demonstrates that irri-
gation decreases with increasing precipitation, but irrigation
does not only take place in dry regions. The largest amounts
of new areas are in countries where irrigation plays an im-
portant role in agriculture. Irrigated areas seem to be denser
in already irrigated regions.

3.2.1 Asia

The newly identified irrigated areas are mainly found in Asia,
particularly in Central and Southeastern Asia. The coun-
tries with the largest amounts of additional area are India
(+267 283 km2) and China (+149 871 km2). In these coun-
tries, irrigation plays a dominant role in agriculture, where
40 % (India) and 57 % (China) of the total cropland is ir-
rigated according to statistics (FAO, 2016b). Nevertheless,
statistics seem to largely underestimate irrigated areas, par-
ticularly in India. Here, we found on the one hand consider-
able additional irrigated areas compared to GMIA within re-
gions that are sparsely irrigated, such as the state of Madhya
Pradesh (Fig. 7). On the other hand, irrigated areas are ad-
ditionally identified within regions that already show a high
irrigation density, such as Uttar Pradesh along the foothills
of the Himalaya, where even the density of irrigated areas in-
creases in our results (Fig. 7). In these regions in particular,
the irrigated areas were detected by comparing the potential
vegetation cycles to the actual yearly NDVI course. Due to its
seasonality, precipitation only allows for one harvest – a sec-
ond harvest requires irrigation. Even legumes, which serve
as nitrogen fertilizers, have to be irrigated.
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Within Asia, the developed method unveils large previ-
ously unknown irrigated areas in Kazakhstan (+30 661 km2),
Pakistan (+26 667 km2), Myanmar (+25 212 km2), Uzbek-
istan (+17 454 km2) and Turkmenistan (+13 483). In Cen-
tral Asia the irrigated areas along the rivers are particularly
larger than previously reported. The Asian countries with
the largest percentage difference compared to FAOSTAT
(FAO, 2016b) statistical data (averaged from 1999 to 2012)
are Mongolia (+815 %), Kazakhstan (+183 %), Myanmar
(+119 %) and Yemen (+103 %).

3.2.2 Africa

Irrigation plays a minor role in the tropical regions of Africa,
while there are contiguous irrigated regions along the Nile
in Egypt and Sudan, some smaller irrigated areas within
the Mediterranean countries and some irrigated areas within
Southern Africa. The countries with the largest amount of
additional irrigated areas are found in Somalia (+6427 km2),
Egypt (3867 km2) and Ethiopia (+3536 km2). The irrigated
regions along the Nile Delta are denser and result in an in-
crease in irrigated area of 12 % in Egypt. The African con-
tinent shows the highest percentage discrepancy when com-
pared to FAOSTAT (averaged from 1999 to 2012; Table 4).
Countries with the highest percentage differences compared
to the statistics are Chad (+500 %), Somalia (315 %), Kenya
(311 %) and Cameroon (+243 %).

3.2.3 Europe

The discrepancy between the downscaled GMIA and the
new irrigation map in Europe is smaller than in the
regions mentioned above. The largest differences exist
in Italy (+11 059 km2), Spain (+5270 km2) and Greece
(+3922 km2). While the Po Valley, the largest contiguous
irrigated region within Europe, does not show significant
differences between the downscaled GMIA and our high-
resolution irrigation map, many additional areas on Sardinia
and Sicily are detected. In Spain, the known irrigated areas
near the Pyrenees are well captured by GMIA, but the in-
tensely used agricultural area around Valladolid in the north-
west of Spain in particular shows additional irrigated areas
according to our results. The highest percentage difference
compared to FAOSTAT is found for Bosnia and Herzegov-
ina (+500 %), Croatia (+220 %), Montenegro (+207 %) and
some other countries in Eastern Europe. The comparison of
FAOSTAT to GMIA in these regions results in similar high
differences, since the FAOSTAT data were obviously not
used in the GMIA data. The highest percentage differences in
Western Europe to FAOSTAT are found in Portugal (+41 %),
Great Britain (+28 %), France (+27 %) and Italy (+26 %).

3.2.4 America

The position and extent of the large irrigated areas in North
America in Fig. 4 are very consistent with the distributed

Table 4. The results of the new irrigation map compared to the
downscaled GMIA and FAOSTAT (FAO, 2016b). The countries are
grouped according to UN Geographical Regions (UN, 2013).

Region New GMIA FAOSTAT
irrigation downscaled 1999–2012

map (km2) (km2)
(km2)

Africa 163 783 136 826 137 817
Eastern Africa 38 232 25 194 24 589
Middle Africa 3820 1685 1692
Northern Africa 89 870 82 853 83 969
Southern Africa 15 844 15 828 15 956
Western Africa 16 018 11 267 11 611
Americas 520 446 500 106 494 988
Caribbean 13 267 13 248 13 346
Central America 76 072 73 226 70 638
South America 133 743 122 695 135 183
North America 297 365 290 938 275 822
Asia 2 675 125 2 094 375 2 147 293
Central Asia 165 668 102 861 99 412
Eastern Asia 799 187 642 388 664 684
Southern Asia 1 284 744 976 866 1 018 484
Southeastern Asia 252 997 216 052 213 601
Western Asia 172 528 156 209 151 112
Europe 269 190 238 939 262 372
Eastern Europe 83 967 81 799 109 648
Northern Europe 10 227 10 227 10 015
Southern Europe 130 460 106 134 104 132
Western Europe 44 536 40 780 38 578
Oceania 41 844 41 266 30 673
Australia and New Zealand 41 821 41 242 30 525
Melanesia 24 24 134
Micronesia 0 0 3
Polynesia 0 0 10

World 3 670 390 3 011 512 3 073 142

statistics of the downscaled GMIA. Only in the northwest-
ern USA do our results show significantly more irrigated ar-
eas than GMIA. It is notable that additional identified irri-
gated areas are found next to already detected irrigated ar-
eas in California, northwest and midwest of the USA. Thus,
density increases within irrigated agglomeration regions. The
percentage differences compared to FAOSTAT are relatively
low compared to the other continents (Table 4). The high-
est percentage difference is found in Chile (+71 %), Canada
(+41 %), Mexico (+12 %) and Brazil (+8 %).

To demonstrate the effect of the high spatial resolution of
the results, Fig. 8 shows the results for a particular area in the
northwest USA (Oregon). The comparison of the new irriga-
tion map at 30 arcsec resolution with the GMIA at 5 arcmin
resolution demonstrates the improvement of the data (Fig. 8).
The higher resolution allows for more precise identification
of irrigated fields. Further, the additionally recognized irri-
gated areas that are not included in the GMIA data set match
well with the underlying true-color satellite image. In this
case it also shows that the resolution of 30 arcsec degree is
suitable for field-scale irrigation mapping in this region.
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Figure 8. Small-scale analysis of the new irrigation map (c) and GMIA (b) in the USA compared to the raw satellite image (a).

3.3 Differences between the downscaled GMIA and the
original GMIA

The downscaling process leads to differences between the
downscaled and the original GMIA data. Since fractions of
irrigated areas < 1 % are not allocated to the finer resolution,
they are neglected within the downscaling process. This leads
to a global loss of irrigated area of 46 329 km2. If there are
no pixels available for distribution, e.g., due to excluded land
such as forests, water bodies or urban areas, the irrigated area
may not be allocated, which results in a global reduction
of 19 780 km2. Since we can only distribute integer values
we additionally lose 2442 km2 through rounding the floating
point numbers of the percentage share of the irrigated areas.
Overall, we do not distribute 68 551 km2 of irrigated areas,
which is 2.28 % of the GMIA data set at its original resolu-
tion. This small difference in percentages allows us to spa-
tially compare the new irrigation map with the downscaled
GMIA at the same spatial resolution, which is a result of the
procedure described above.

4 Validation

The new irrigation map partially shows significant differ-
ences compared to the statistics and the resulting GIAM data
set. No final truth exists on the amount and location of global
irrigated area. Nevertheless, in order to validate the new high-
resolution irrigation map we compare our results to existing
global and also regional studies. The comparison of ground

truth data with the new irrigation map can also be a way
to outline the differences between the new map and ground
truth data. There are ground truth data available (European
Environment Agency, 2014), providing point-specific land
use information for specific regions, but they are rare and
not always tagged with needed land use information like ir-
rigation. Further, there are always scaling issues, concerning
the spatial resolution, in comparing point information with
spatial information. For the validation we decided to com-
pare our map with the existing global data set IWMI-GIAM
(Thenkabail et al., 2009a) and GRIPC (Salmon et al., 2015).
Additionally we compare our results with regional studies in
the USA (Ozdogan et al., 2010), China (Zhu et al., 2014) and
India (Ambika et al., 2016), where we map the highest ab-
solute differences compared to the statistical data and where
irrigation is an important agricultural practice. Regional stud-
ies are able to develop approaches which consider local char-
acteristics, while global studies have to transfer their methods
to regions with completely different conditions. The global
comparison is done on country level and the regional com-
parison on the level of states or provinces. For each coun-
try/state the irrigated area is calculated and compared to other
studies.

4.1 Global validation

The resulting global irrigated area of 3.67 million km2 lies
between the GRIPC results of 3.14 million km2 (Salmon
et al., 2015) and IWMI-GIAM results of 3.98 million km2

(Thenkabail et al., 2009a). All three data sets show a larger
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Figure 9. Regression plots of the two compared global data sets. The blue line is the linear fit and the dotted black line the linear equation.

irrigated area than reported by the statistics. Despite the ab-
solute difference our new high-resolution map shows strong
correlation with both data sets (IWMI-GIAM r = 0.97;
GRIPC r = 0.99; Fig. 9) when correlating country values.
The irrigated area is weighted by the size of the country.
Thus, the deviations of the countries are comparable with
each other. The slope shows a small overestimation of our
results compared to GRIPC (1.04) and a larger underestima-
tion of IWMI-GIAM (0.76). The regression plots also show
the range of deviation (Fig. 9). The linear fit is strongly in-
fluenced by the high values and shows the underestimation
of our results compared to IWMI-GIAM and overestima-
tion compared to GRIPC (Fig. 9). The average difference per
country is expressed in RMSE. The RMSEs of IWMI-GIAM
(3.48 %) and GRIPC (3.24 %) are quite similar. The results
of GRIPC (3.14 million km2) are very close to the official
statistics (3.07 million km2). GRIPC uses a regionally based
field size factor which weights the size of the pixels. Without
the field size factor the results show remarkably more irri-
gation (3.76 million km2 instead of 3.14 million km2). If we
apply the GRIPC field size factor to our results, it changes
the amount of irrigated area to 3.05 million km2. The use of
field size factors can be a way to adjust regions characterized
by small holder farms and heterogeneous landscapes. On the
other hand it needs to be appropriately determined and vali-
dated, and it may create other sources of uncertainty.

4.2 Regional validation

The regional data suggest a strong linear correlation be-
tween our results and the regional studies described by the
correlation coefficient: r = 0.94 (USA), 0.84 (China) and
r = 0.92 (India; Fig. 10). The slope shows overestimation of
our results compared to all other data sets. The RMSE was
weighted by the size of the compared state and shows a small
overestimation of our data set compared to the regional stud-
ies.

The difference between our results and the irrigated area in
the USA given by Ozdogan et al. (2010) can be explained by
the statistical areas used to derive our irrigation map. They
are 25 % larger than the corresponding areas of Ozdogan et
al. (2010). Our map extends this area and results in 28.7 %
more irrigated area than given by Ozdogan et al. (2010). The
regions where our analysis shows more irrigated areas are
in the dry regions in the western USA and in the south (Ta-
ble S1 in the Supplement). The largest irrigated areas in the
USA are found in California, where we estimate 41 816 km2

of irrigated areas. Ozdogan et al. (2010) calculate 26 808 km2

of irrigated areas, while the United States Geological Sur-
vey (USGS) reports 42 087 km2 of irrigated areas for the
year 2010 (USGS, 2014). California is a good example of
the different information about irrigated areas and the prob-
lems of validating irrigation maps. Even the official statis-
tics for the year 2010 show two different values: the USGS
states an irrigated area in California of 42 087 km2, while
the California Department of Water Resources (2010) reports
38 033 km2. The example of California shows that the avail-
able statistics differ remarkably, which leads to strong im-
pacts on the validation results. The water rights complaints
in California regarding “Unauthorized Diversion” prove the
existence of illegal irrigation activities (California Environ-
mental Protection Agency, 2017), which are not part of the
official statistics and are not only an issue of smallholder
farmers or of watering lawns (Bauer et al., 2015). The com-
parison of our irrigation map with a study of irrigated areas
in India shows a smaller relative error compared to the irri-
gation map of the USA. Overall the results are 138 172 km2

higher than the results for India of Ambika et al. (2016). The
differences could be caused by the different spatial resolu-
tion. The data of Ambika et al. (2016) are applied at a spatial
resolution of∼ 250 m, which fits better to the small fields and
the heterogeneous landscape of smallholder farms as they oc-
cur in India.
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Figure 10. Regression plots of the compared our irrigation map compared to regional data sets of the USA (Ozdogan et al., 2010), India
(Ambika et al., 2016) and China (Zhu et al., 2014). The blue line is the linear fit and the dotted black line the linear equation.

Zhu et al. (2014) developed an irrigation map of China that
shows official statistics downscaled by using NDVI data. The
differences compared to the new irrigation map are high and
expectable, due to the restriction to the statistics. The highest
differences are found in the province of Xinjiang (percentage
and absolute) in the northwestern part of China. Xinjiang is
characterized by a very dry continental climate. Nearly 90 %
of the area has less than 200 mm of precipitation per year (Hi-
jmans et al., 2005). Therefore, agriculture is almost impossi-
ble without irrigation. Similar to the examples in the USA
and in India, the distribution and the patterns of the irrigated
areas fit the data of Zhu et al. (2014) but are denser. Irri-
gated areas seem to exceed the official numbers and confirm
the results of previous studies on water allocation and water
consumption in the Tarim Basin, where the water consump-
tion exceeds the relevant water quotas (Thevs et al., 2015).
The denser distribution of irrigated areas in the Tarim Basin
shows the overuse of water despite the water quotas of the
Chinese government and shows an underestimation of irri-
gated areas in the official reports.

5 Discussion and conclusion

This study focuses on the development of a new global irri-
gation map and its comparison with the most common irriga-
tion maps on the global and regional scale. The results enable
a high spatial resolution global view on the distribution of ir-
rigated areas. The analysis indicates that the high-resolution
view allows for the detection of additional irrigated areas,
which were not covered by the existing data sets. This also
increases the global estimate of irrigated land by 18 % com-
pared to the reported statistics.

Differences between irrigation maps result from the qual-
ity and the spatial resolution of the input data, the assump-
tions made and from the different terms and definitions of
irrigated areas. The large differences between our results and
the statistics in Central Asia (Mongolia, Kazakhstan) may
result from classification errors in the underlying input data.
Despite the high accuracy of the applied land use data sets,
the ESA-CCI-LC and GlobCover land use classification in-
clude uncertainties which lead to errors in mapping irrigated
areas. For example grassland, pastures or meadows are some-
times classified as cropland. Especially in dry regions, such
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as in Central Asia, this misinterpretation of cropland leads to
a false classification of irrigated area. Further, since the col-
lapse of the Soviet Union the cropping patterns of the inde-
pendent countries of Central Asia has changed tremendously
and fallow fields may influence the land use classification
products through the present day.

The cropland area in the underlying land use data is not
given as a proportional area of cropland within a pixel, which
may also lead to an overestimation of cropland and thus also
of irrigation.

The use of the agricultural suitability may lead to er-
rors because it consists of 16 crops and may neglect, e.g.,
drought-resistant varieties or other species that are adapted to
regional climatic conditions. Some typically irrigated crops
are not considered in the crop suitability data, such as ex-
pensive (and therefore most likely irrigated) vegetables, olive
trees, almond trees and irrigated pastures, which potentially
leads to an underestimation of irrigated area. On a global
scale, these areas are nevertheless assumed to be relatively
small.

Errors in classifying irrigated areas could occur through
high groundwater levels or the proximity to open water;
plants could reach water sources through capillary rise or di-
rectly tap into the groundwater. This creates alternate water
availability for the plants and can mimic irrigation in other-
wise unsuitable locations.

A major reason for the differences between the irrigation
maps lies in the different definitions of irrigated areas. While
the FAO defines an irrigated area as an “area equipped for
irrigation” (FAO, 2016b), the new irrigation map presented
here classifies areas as irrigated if additional water (besides
precipitation) is applied on a field. In some regions this may
influence the result. For example in Bangladesh paddy fields
are not considered as irrigated land as they cultivate mainly
during the wet season and have no permanent irrigation in-
frastructure. The high differences in India may also result
from the different definition, where 1999 only 47 % of the
total harvested area for paddy rice utilized permanent irriga-
tion infrastructure (Frenken, 2012). The precipitation is har-
vested and concentrated on the paddy fields and used for rice
cultivation by flood water recession (Frenken, 2012). Non-
equipped cultivated wetlands, an upgrade of rain-fed crop-
land using soil moisture conservation, supplemental irriga-
tion through water harvesting, non-permanent dug wells or
water concentration may also result in irrigated area in the
presented irrigation map (Molden, 2007). Due to the defi-
nition of “area equipped for irrigation” these areas are not
part of the FAO irrigation class and accordingly not part of
FAO related irrigation maps. This may influence the results
particular in semi-arid and arid regions and in regions with
small-scale and non-permanent irrigation systems (Frenken,
2012).

Compared with statistics and existing studies, our results
show differences in both directions: underestimation and
overestimation – depending on the reference data. The exam-

ple of information on irrigated areas in the USA illustrates
that the large discrepancies between the studies can be ex-
plained by the input data and the references.

The highest discrepancies to the statistics are generally
found in developing countries. Possible reasons are inad-
equate statistics that may often also be a result of politi-
cal interests (Thenkabail et al., 2009b). General uncertain-
ties or inadequacies of agricultural statistics are well known
in many developing countries and discussed in, for exam-
ple, Young (1999) and Thenkabail et al. (2009b). The re-
sults suggest that not all irrigated areas are correctly reported
in the official statistics. This indicates the existence of ille-
gal or unregistered irrigation activities. The results also go
along with previous analyses that showed large underestima-
tion of irrigated areas in statistical data, especially for India
(Thenkabail et al., 2009b) and Western Africa (Drechsel et
al., 2006). Even the FAO recommends a careful handling of
their official reports for countries in Central, Southern and
Eastern Asia since many countries make no distinctions be-
tween rain-fed and irrigated cropland (Frenken, 2012, 2013).
Independent survey techniques are strongly needed to verify
the official statistics and reports.

The huge differences between estimated and reported ir-
rigated areas demonstrate the need for further research in
the field of irrigation mapping to get a more realistic picture
of water withdrawal. The recent progress in the availability
of remote sensing instruments through the Copernicus sys-
tem of the EU (European Commission, 2017), which delivers
weekly global high-resolution (10–20 m) coverage, improves
the data availability for land use classifications and crop sta-
tus analysis and is very promising for irrigation mapping.

Irrigation is important for increasing agricultural produc-
tion (Smith, 2012): it reduces vulnerability of crop failures
and increases food security and income (Bhattarai et al.,
2002; Mengistie and Kidane, 2016). At the same time, more
irrigated areas require more water, which is mainly taken
from surface runoff and groundwater storage. This may in-
crease the pressure in existing water resources and lead to an
overuse of regionally available water resources which may
threaten future agricultural activities (Du et al., 2014). There-
fore, an accurate and more detailed inventory of irrigated ar-
eas is required to better estimate and manage available water
resources to avoid overuse of water.
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Abstract: The monitoring of irrigated areas still represents a complex and laborious challenge in land
use classification. The extent and location of irrigated areas vary in both methodology and scale. One
major reason for discrepancies is the choice of spatial resolution. This study evaluates the influence
of spatial resolution on the mapped extent and spatial patterns of irrigation using an NDVI threshold
approach with Sentinel-2 and operational PROBA-V data. The influence of resolution on irrigation
mapping was analyzed in the USA, China and Sudan to cover a broad range of agricultural systems
by comparing results from original 10 m Sentinel-2 data with mapped coarser results at 20 m, 40 m,
60 m, 100 m, 300 m, 600 m and 1000 m and with results from PROBA-V. While the mapped irrigated
area in China is constant independent of resolution, it decreases in Sudan (−29%) and the USA
(−48%). The differences in the mapping result can largely be explained by the spatial arrangement
of the irrigated pixels at a fine resolution. The calculation of landscape metrics in the three regions
shows that the Landscape Shape Index (LSI) can explain the loss of irrigated area from 10 m to
300 m (r > 0.9).

Keywords: irrigation mapping; land use classification; Sentinel-2; NDVI; rescaling technique; spatial
resolution; scaling relation; land monitoring; sensor resolution; landscape metrics

1. Introduction

Remote sensing has proven to be a suitable instrument for land use classification and
land surface monitoring. The time series of remote sensing data allow for detecting land
use change and changes in agricultural patterns and management practices. Agriculture
uses vast amounts of natural resources such as fresh water for irrigation in an often-non-
sustainable way [1]. To secure current and future global food supplies in a sustainable
way, agriculture has to increase the efficiency of the water it uses, which is expressed in the
principle of “more crop per drop” [2]. Developing and finally establishing monitoring capa-
bilities for agricultural irrigation and its efficiency therefore constitutes a major prerequisite
towards improving the efficiency, effectiveness and sustainability of agricultural water use.

Remote sensing is the central data source for a quantitative global, regional and
local monitoring of areal extent, timing and technique of irrigation. The Copernicus
Sentinel missions provide, on an operational basis, high spatial and temporal resolution
data. Together with increasing computing capacities, they extend our Earth observation
capacities to develop and deploy the monitoring systems necessary to achieve the necessary
efficiency gains in irrigation.

Since approx. 20% of the total cropland is irrigated and approx. 40% of the world food
is produced on this cropland, irrigation plays a crucial role in global food production [3].
Irrigated cropland consumes 69% of the global water withdrawal from surface and ground-
water [4]. Global irrigated area doubled in the last 50 years [3] and future expansion is
expected [5,6]. Over 50% of the irrigated areas are located in regions characterized by an-
nual precipitation smaller than 750 mm, which is considered the limit below which diverse
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demands for water may lead to allocation conflicts [7,8]. Additionally, the impact of climate
change may regionally influence precipitation and snowmelt patterns and, consequently,
river flows and groundwater recharge, and may thus reduce the availability of fresh water,
aggravate water scarcity and amplify water-related conflicts [8].

The high demand for irrigation water strains the regional hydrological cycle mainly
through withdrawal from local and regional rivers and aquifers. Irrigation water is diverted
into the atmosphere and, as a result, lost for further downstream uses. Dramatic reductions
in run-off and aquifer levels caused by irrigation with adverse effects for the regional
environment and for the downstream population are documented worldwide [9–12]. It is,
therefore, crucial to monitor, with high accuracy, the location and extent of irrigated area.

Mapping of irrigated areas still represents a challenge for remote sensing. Several stud-
ies have shown the feasibility of mapping irrigated areas using remote sensing data from
the local to global scale [13–18]. Existing irrigation mapping methods combine different
data to exclude rain-fed and irrigated land by strong indicators such as evapotranspira-
tion [19], climatic conditions [17], thermal variations over an irrigated field [20] or soil
moisture [21]. The few existing global studies about irrigated areas show large differences
in its extent and spatial pattern and are subject to controversial discussions in the scientific
community [22,23]. The differences are caused by different assumptions and definitions,
different time periods and data from different satellite missions with different spatial res-
olution and spectral coverage. This study focusses on the influence of spatial resolution
of remote sensing data on the resulting location and extent of derived irrigated areas.
Velpuri et al. [24] already showed, in a case study, that finer spatial resolution can result in
an increase in classified irrigated area. They conclude that current operational irrigation
monitoring systems, which are based on coarser resolution imagery from, e.g., AVHRR,
MODIS or PROBA-V, neglect relevant parts of the global irrigated area [24]. Nevertheless,
they do not address the transferability of their findings to other regions. On the other hand,
coarser resolution has convincing advantages for global monitoring systems of the temporal
development of global irrigation, such as daily global coverage and low data rates.

The existing long time series of medium-resolution LANDSAT data and the new
medium spatial and high-temporal-resolution Sentinel-2 data have successfully been used
in regional and local studies to determine the extent of irrigated areas with high preci-
sion [25–27]. In principle, they would be the data source of choice for a more complete,
global, operational irrigation mapping. Sentinel-2 now allows, in principle, to precisely
and operationally resolve, with high spatial resolution, the temporal NDVI-developments
on which current approaches to distinguish irrigated areas from non-irrigated areas rely.
Improved global irrigation monitoring therefore seems possible but not feasible considering
the massive computational resources necessary to analyze frequent time series of large
areas with high spatial resolution. This may be one reason why, despite the anticipated
added precision, to our knowledge, operational irrigation monitoring on a global scale
using Sentinel-2-time series is not available yet.

On the other hand, Sentinel-2 time series could potentially be used to augment existing
global low-resolution approaches to map irrigated areas, given that the local scaling laws,
which govern the change in detected irrigated areas with decreased spatial resolution, are
well understood. The hypothesis of our paper, therefore, is that the change in detected
irrigated areas with decreasing spatial resolution inherent in the current approaches fol-
lows a regional independent scaling relation. We consider the resulting scaling relations
as a property of the plot size, the spatial arrangement and the complexity of the shape of
the irrigated fields. The complexity of the spatial structure of the irrigated areas can be
described by landscape metrics, well known from biodiversity and habitat analysis [28,29].
The Landscape Shape Index (LSI) was identified to be suitable for explaining the negative
changes in the mapping results [30–32]. A proven correlating functional relation between
the differences in the mapping results caused by resolution and the LSI can be used for
estimating the accuracy of global low-resolution irrigation monitoring. In order to investi-
gate the scaling properties, we use a proven approach to globally monitor irrigated areas
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using NDVI time series, which have been widely used with wide-swath low-resolution
sensors such as MERIS and PROBA-V [7]. For the first time, we systematically analyze
the impact of spatial resolution from 10 m to 1 km on the pattern and extent of irrigated
areas in three selected global regions. We consider different geographical conditions with
respect to climate and farming systems by selecting as case studies regions in Sudan, China
and the USA.

2. Materials and Methods
2.1. Multi-Resolution Analysis

We applied the method described in Meier, Zabel and Mauser [7] to determine irrigated
area. It does not explicitly use spatial resolution as a parameter. The basis of the mapping
method is annual NDVI time series. They are used together with parameters such as land
suitability for agriculture, a land use classification, NDVI data and official national statistics
to determine global irrigated area. The annual course of NDVI is analyzed, interpreted
and compared with agricultural suitability evaluations [7,33]. The method analyzes the
NDVI time series using parameters such as amplitude of the NDVI, position of NDVI
peaks and shape of the NDVI annual temporal course. If the course of NDVI suggests
active vegetation growth with typical characteristics of agriculture and, simultaneously,
the agricultural suitability is low due to a rainfall deficit, we assume a high likeliness of
irrigation. In our case, the original mapping-method [7] is modified in two points to be
applicable to the finer spatial resolutions: (1) the information about irrigated area derived
from the official statistics are not used to avoid a biased result and (2) the restriction of
the approach to only process the land-use cropland is lifted because using an external
(coarser resolution) land use classification at this fine spatial resolution would lead to a
predetermination of the result. The result of the threshold mapping method is a map
containing Boolean information of the status of the field: irrigated or not irrigated.

We derive scaling relation of irrigation extent vs. spatial resolution in three different
regions: central Sudan around Khartoum, in northwestern China in the Uighur province
Xinjiang and in Colorado, southeast of Denver (Figure 1). These three regions were selected
based on the following criteria:

• The region’s agricultural suitability is low due to rainfall deficit to avoid both confusion
between irrigated and rain-fed areas and high cloud cover.

• The region should be dominated by irrigated agriculture.
• The selected regions should cover a broad range of agricultural systems—from subsis-

tence to high-intensity agriculture.
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All three regions are characterized by low annual precipitation values. The region
in the USA (303 mm/year) is the wettest, followed by Sudan (202 mm/year) and China
(173 mm/year), based on the ERA5 data of the year 2016 [34]. Each study area covers one
Sentinel-2 tile of approx. 100 × 100 km.

According to Fritz et al. [35], the field sizes in the three tiles ranges from “very small”
to “very large”. The field sizes in the USA are categorized as “large”, in China as “medium”
and in Sudan from “very small” to “small”. A visual pre-analysis shows that the sizes and
shapes of the fields in China and Sudan vary strongly whereas the fields in the USA are
homogeneous and only differ in shape: squared or the typical circular fields shaped by
center pivot irrigation. The cultivated crops range from alfalfa and cereals to groundnut
and fruits. The area in the USA is characterized by alfalfa (66%) and maize (31%); the
remaining agricultural areas are used mainly for fruits and vegetables [36]. The agricultural
areas in Sudan are mainly used for the cultivation of groundnut (71%), cotton (8%) and
millet (6%). The remaining area of 15% is used for the cultivation of crop types such as
maize, cassava, beans, dates and fruits. In the selected China tile, mainly cotton (37%) and
maize (32%) are cultivated. Permanent crops such as grapes (4%) and apple trees (3%) are
also cultivated, as well as vegetables and fruits.

The study of the scaling relations is carried out for the year 2016. In this study,
we apply the modified mapping method described above to the selected Sentinel-2 tiles
at a spatial resolution of 10 m, 20 m, 40 m, 60 m, 100 m, 300 m, 600 m and 1000 m to
systematically evaluate the impact of spatial resolution on the identified irrigated area.
In order to investigate how the Sentinel-2 and PROBA-Vegetation (PROBA-V) spectral
coverage compares when using the selected irrigation mapping approach and in order to
link the results of the varying-resolution Sentinel-2 mapping with the operational PROBA-V
(300 m) mapping of irrigated area, the same irrigation mapping method is also applied to
the available PROBA-V data sets of the same period and regions. PROBA-V was developed
as successor of SPOT5 to ensure the continuation of low-resolution vegetation products and
was successfully launched in 2013. The spectral range is similar to SPOT5 and provides
4 bands (BLUE, RED, NIR, SWIR) in a spatial resolution from 100 to 300 m [37,38]. The
Sentinel-2 and PROBA-V results are compared at a spatial resolution of 300 m.

Sentinel-2 is a multi-spectral satellite and is part of the EU’s Copernicus program. The
spatial resolution depends on the spectral band. The bands (band 8 (NIR) and band 4 (RED))
used in this study are available at a resolution of 10 m. We use the Top-Of-Atmosphere
reflectance (TOA) Sentinel-2 data that are corrected for atmospheric effects to Top-Of-
Canopy (TOC) reflectance data at 10 m using an inverse radiative transfer approach based
on MODTRAN radiative transfer simulations [39]. During the atmospheric correction
process, a cloud and snow mask is automatically derived from the images. All available
unmasked data of all available dates of 2016 for the selected tiles are used for our analysis.
Figure 2 shows the average number of valid observations per pixel for each month.
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The Normalized Difference Vegetation Index (NDVI) is calculated from the available
Sentinel data where RED is TOC reflectance in band 4 and NIR is TOC reflectance in
band 8 as:

NDVI = NIR(band8)−RED(band4)
NIR(band8)+RED(band4)

RED = TOC reflectance in band 4
NIR = TOC reflectance in band 8

(1)

This results in a spatially distributed multi-temporal 10 m-resolution temporal course
of NDVI covering the year 2016. To calculate multi-temporal NDVI data at 20 m, 40 m,
60 m, 100 m, 300 m, 600 m and 1000 m, the TOC reflectance values of the spectral bands RED
and NIR are separately rescaled using a moving window which averages the reflectance
of the pixel within the respective area of the coarser resolution. The upscaled reflection
value is then used to calculate the NDVI according to Formula 1. For each spatial resolution
data set, irrigation maps are created using the identical adapted threshold method to map
irrigated areas [7].

2.2. Scaling Relation at Different Spatial Resolution

The irrigation mapping results differ depending on the spatial resolution. Whereas a
perfectly homogeneous image does not show differences in NDVI with changing resolution,
the averaging of heterogeneous (with reference to the considered resolution) reflectances
in the higher resolution images results in a tendency to homogenize the NDVI values
in the coarser resolution images. Since the irrigation detection algorithm is non-linear
with NDVI, this changes the amount of detected irrigation, with NDVIs averaged over
heterogeneous areas. Therefore, we assume a relationship between the heterogeneity of the
spatial position and formation of the irrigated area as it is shown in the fine resolution and
the area changes when moving up to coarser resolutions. To measure the heterogeneity
or homogeneity of the irrigation pattern, we use landscape metrics, a measure for the
complexity of a landscape. To quantify the relation between landscape metrics and the
areal change with resolution of the mapped irrigated area, we calculate landscape metrics
for the three regions. To increase the number of samples, we split each region in 36 tiles
to generate more stable statistics. A pre-analysis showed that at and above 6 by 6 pixels,
the results remained constant. For the 36 tiles, the areal change between 300 m and 10 m is
calculated as follows:

areal change[%] = irrigated area 300 m [%]− irrigated area 10 m [%] (2)

While the pixel at 300 m gives Boolean information (irrigated or not irrigated), the
result at 10 m gives more precise information about the irrigated area at the corresponding
300 m pixel. This information is used to determine the difference between the mapping
result at 300 m and 10 m. Depending on the position and spatial arrangement of the
irrigated area, the change in spatial resolution from 10 m to 300 m can result in positive
or negative areal change of irrigated area detected by the algorithm. Negative changes
occur in case of a high heterogeneity of the considered area. Positives changes occur when
the majority of the considered area is classified as irrigated, and the spectral reflectance is
hardly affected by the upscaling process. Positive changes are rather theoretical and hardly
ever occur. Therefore, this study will focus solely on the negative changes.

To quantify the relation between landscape metrics and the areal change with resolu-
tion of the mapped irrigated area, we calculate landscape metrics on the same 36 tiles of the
three regions using the R-package of Hesselbarth et al. [40]. We assume that the position,
the shape and the spatial arrangement are reasons for the areal change of the mapping
results. To explain the negative changes of irrigated area with decreasing resolution, we
calculate the Landscape Shape Index (LSI, see Equation (3)), which describes the ratio of
the total edge length of a class, in our case, irrigated area, to the minimum edge length. LSI
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measures the complexity of a selected class (irrigated) compared to the other classes (not
irrigated) of a landscape.

LSI = E
min(E)

E = total edge length of the class
(3)

Thus, as a ratio between the actual class edge length and the minimum class edge
length, the LSI is an ‘aggregation metric’. In case of only one class in the landscape, the
minimum length equals the edge length. The higher the ratio, the more complex the pattern
of the irrigated area. The result is a high expected loss of mapped irrigated area at the
coarser spatial resolution. The LSI is calculated for the 36 tiles of the irrigation mapping
at 300 m and is correlated with the negative areal change for the mapping result between
300 m and 10 m.

3. Results
3.1. Extent of Irrigated Area

The mapped irrigated area as a function of spatial resolutions is compared in Figure 3
for the three selected study sites. Generally, it shows a decrease in irrigated area with
decreasing spatial resolution. Nevertheless, there are large differences in the relationship
between resolution and area between the selected regions. This can be seen in Figure 3 in
China, where the scaling effect is rather small, whereas Sudan and USA show a pronounced
scaling effect.
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spatial resolutions. In Sudan and USA, the mapped irrigated area decreases with decreasing spatial
resolution while the mapped irrigated area in China is almost independent of resolution.

Table 1 shows the absolute values of the mapped irrigated area in the three study sites
in km2 for the selected spatial resolutions.

Table 1. Resulting irrigated area in the three different regions.

Spatial Resolution China [km2] Sudan [km2] USA [km2]

1000 m 2872.95 2159.24 734.21
600 m 2904.48 2416.68 903.24
300 m 2908.71 2599.83 1021.41
100 m 2910.75 2832.09 1144.47
60 m 2905.35 2901.15 1233.78
40 m 2905.28 2945.68 1262.84
20 m 2919.77 3009.17 1305.00
10 m 2992.01 3044.93 1401.12
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Figure 3 and Table 1 show that the mapping result in China is hardly affected by
the upscaling resolution from 10–1000 m. Reasons are the structure of the irrigated area
in this region which consists of very large-scale cohesive irrigated plots. In this case,
NDVI does not change significantly by averaging towards lower resolutions and a mix
of different NDVI values hardly occurs in the high-resolution ensemble underlying the
low-resolution pixels.

Figure 4 shows the spatial distribution of the mapped irrigated area in the three
selected Sentinel-2 tiles for a spatial resolution of 10 m, 300 m and 1000 m. Visually, the
spatial irrigation patterns largely differ in the three regions: while irrigation in Sudan and
USA is scattered, the irrigated area in China is more clumped in two large contiguous
irrigation clusters. At the coarser spatial resolutions, the small and scattered irrigated areas
in Sudan and USA disappear while the irrigated agglomerations in China prevail.
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3.1.1. Sudan

The identified irrigated area in Sudan clearly decreases with coarser spatial resolution.
At a resolution of 100 m, the irrigated area decreases by 7% and continues to decrease to
29% at a resolution of 1000 m (Figure 3 and Table 1). At a coarser resolution of 300 m, single
small-scale fields are no longer classified as irrigated, especially when they are surrounded
by non-cultivated or abandoned fields or non-vegetated areas. This effect decreases the
extent of irrigated areas. Figure 5 shows that contiguous clusters of fields are less affected
by resolution decrease. At the finer resolutions (below 300 m), the fields are well defined
and differentiation between fallow fields, possible artificial area and other irrigated fields
is possible. At the coarser resolutions (from 300 m upwards), the areal extent decreases and
the original patterns are hardly visible.
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Figure 5. The decrease in irrigated area at coarser resolutions at the study site in Sudan. The left
image shows the area classified as irrigated at the resolution of 10 m. The middle shows the same
area at 300 m and at the right at 1000 m.

Figure 5 shows the center pivot fields in the northwestern part of the Sudan tile. This
detail serves as a good example of the decrease in the irrigated area. At the finer resolutions,
the center pivot fields can clearly be identified. At a resolution of 300 m, the center pivot
fields dissolve and almost completely disappear at the resolution of 1000 m.

3.1.2. USA

In the USA, the irrigated area decreases by 27% at the resolution of 300 m and by 48%
at the coarsest resolution of 1000 m (Figure 3 and Table 1). At the finest resolution, the
irrigated area around the Arkansas River in the south of the scene is dense and, therefore,
not affected by the coarser resolutions. In the northwestern part of the scene, some single
fields and fields in small irrigation clusters exist. Small single irrigated fields or smaller
irrigated clusters are scattered over the whole tile. By decreasing the spatial resolution, the
small, irrigated fields disappear and the fields in the larger agglomerations prevail.

3.1.3. China

In contrast to the findings in Sudan and USA, the identified irrigated area in China
almost remains constant across all spatial resolutions. The differences between the spatial
resolutions are small (~1%). The tile shows two large agglomerations and two smaller
agglomerations of irrigated area. The fields are more densely organized than in the USA
and Sudan tiles and the irrigated area is affected differently by the decrease in resolution.
Instead of decreasing the irrigated area, the small space between the fields is averaged out
and also classified as irrigated and the original pattern of the agglomeration of the fields
remains. This results in a smaller decrease in the irrigated area at resolutions up to 1000 m
compared to the results in the USA and Sudan.

3.2. Comparison of the Sentinel-2 Irrigation Mapping to PROBA-V

The coarser spatial resolutions of the different data sets, which were used to investigate
the scaling behavior, are generated by spatially averaging the reflectance values from
Sentinel-2 data before further processing the data. This ensures that the spectral sensitivity
with which the red and NIR bands reflectance is measured is the same for all resolutions
and that resulting NDVIs are derived in a consistent manner.

Operational irrigation monitoring relies on coarse resolution sensors such as PROBA-
V. It is, therefore, important from a monitoring point of view to investigate whether this
downscaling approach leads to irrigated areas, which are comparable to those which
are monitored operationally with PROBA-V. For one, the spatial resolution of 300 m of
the downscaled Sentinel-2 data geometrically closely resembles that of VEGETATION
on PROBA-V. Nevertheless, there are differences in the spectral characteristics of the red
and NIR spectral bands, the time of overpass and, thereby, the illumination condition
and related bi-directional reflectance effects during recording and the temporal coverage
between the two sensors. To explore the influence of the different sensor systems on
irrigation mapping, the results of the 300 m Sentinel-2 irrigation maps are compared to the
results using the identical approach and NDVI time series derived from PROBA-V.
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Figure 6 shows the irrigation map derived from PROBA-V NDVI data in 2016 with the
same approach used for the Sentinel-2 series of spatial resolution data sets. The patterns
shown in Figure 6 closely resemble those in Figure 3. Table 2 shows that the mapping
results of approx. 300 m PROBA-V are very close to the results at the aggregated 300 m
Sentinel-2 results in all three regions. PROBA-V overestimates the area in all three regions
by approx. 6% in Sudan, 1.4% in China and 0.7% in the USA compared to Sentinel-2.
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Table 2. Comparison of the irrigation mapping results using PROBA-V and the degraded Sentinel-2
data at 300 m.

Satellite Spatial
Resolution Sudan USA China

PROBA-V ~300 m 2671 km2 1035 km2 2940 km2

Sentinel-2300 300 m 2599 km2 1021 km2 2908 km2

We thus conclude that our irrigation mapping method using annual NDVI courses is
transferable between Sentinel-2 and PROBA-V data. On the other hand, our analysis of
the mapping results at different spatial resolutions shows that Sentinel-2, at a resolution of
10m, is able to detect additional irrigated areas which are lost at the coarser resolution. On
the other hand, the large data volume involved would be a large obstacle for an operational
global irrigation monitoring system based on Sentinel-2. By possibly using scaling relations
that would, depending on the geographical setting, allow us to correct for the lost irrigated
area in the coarse resolution operational irrigation monitoring system, the use of 10m-
resolution Sentinel-2 data would largely enhance the monitoring result. Here, we propose
a framework which would allow global PROBA-V irrigation monitoring to profit from
sample Sentinel-2 irrigation mapping by allying appropriate scaling relations.

3.3. Scaling Relation between Lost Irrigated Area and the Landscape Shape Index

In Section 2.2, we hypothesized a relationship between the Landscape Shape Index
and the negative areal change of the irrigation mapping with spatial resolution. When
applying the LSI to the 36 sub-tiles in each of the three selected Sentinel-2 tiles, the re-
sults in Figure 7 show a strong linear relationship between the LSI and the negative
change of the mapped irrigation area at 300 m compared to at 10 m (Sudan: r = −0.92,
USA: r = −0.95, China: r = −0.96). Figure 7 shows the result in the three regions and the
different characterization of the areal change and the LSI.
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Landscape Shape Index (LSI) in the three regions: Sudan, USA and China.

At small values, the relationship in all three regions behave similarly. Higher LSI
values are observed in Sudan and changes the linear equation compared to the equations
in USA and China. This shows that the mapping result depends on the spatial formation
and arrangement and the complexity of the shape of the irrigation network. These relations
seem to be independent from the region and are based solely on the spatial arrangement
and the complexity of the shapes of the mapped irrigated area.

4. Discussion

This study represents a systematical analysis of the influence of spatial resolution
of the selected sensor on the mapped irrigated area. The study confirms the findings of
Velpuri et al. [24], in that the mapped irrigated area generally decreases when moving to
a coarser spatial resolution. The magnitude of change in the irrigated area with spatial
resolution shows a strong linear relation with the LSI in all three regions and seems to be
regionally independent.

However, many factors influence the scaling relation, with the characteristics of the
regional farming system being the most obvious. These characteristic farming systems
result in the spatial formation of the irrigated fields and were affected differently according
to their shape and their spatial arrangement in the coarser spatial resolution. While the
mapping result in China stayed constant, the analyzed regions in Sudan and USA showed
large discrepancies in the mapped irrigated area at different spatial resolutions. This implies
a high complexity of the irrigation patterns which affect the spectral upscaling to a coarser
resolution, while the irrigated area in China is ordered mainly in irrigation agglomerations
with a low complexity in shape. That means the determination of irrigated areas in regions
of small and scattered fields is more affected when moving to coarser resolutions than in
regions of larger, connected fields in areas which are completely used for agriculture. As
soon as single fields are embedded in a non-irrigated surrounding of fallow fields or barren
land, the identified irrigated area is highly sensitive to a decrease in resolutions.

The upscaling of the spectral information smooths the NDVI signal and influences
the mapping method. This leads to a significant change of the average NDVI in case of a
high NDVI variation at the underlying resolution. High NDVI variations are caused by
different growth phase or by a mix of different land uses at one 300 m-resolution pixel. This
effect is shown in the example of Sudan, where the landscape is characterized by a mix of
small fields, meadows and settlements interrupted by streets and fallow land. At coarser
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resolutions (>100 m), this leads to high variations in the NDVI within one coarse resolution
pixel and, thereby, influences the mapping result (Figures 3 and 5).

The largest absolute changes in identified irrigated area with decreasing spatial res-
olutions were found in the USA. The differences may have several reasons: The annual
precipitation in the region is 329 mm/a, which is the highest of the three compared re-
gions. For rain-fed agricultural systems, this precipitation amount is very low, causing
supplemental irrigation systems to be widely used in this area. Precipitation events might
occur very locally and in summer as heavy thunderstorms, which have comparable effects
to technical irrigation. The high-resolution images show small water ponds and water
channels used for storage and transportation of water from wells or water bodies to the
irrigated fields. The greening effect around the water storage and transportation bodies are
part of the high-resolution images but are too small to be resolved in the coarser resolution
images. Decreasing the resolution, therefore, affects the recognition of the areas around
the water bodies and results in a smaller irrigated area. The most decisive reason is the
structure and the complexity of shape of the agricultural fields in this area. The irrigated
fields in the north of the scene are distributed spatially, separated by barren land, pastures
or unmanaged land. This leads to low NDVI values at the coarser resolutions, which reduce
the identified irrigated area. However, the NDVI is limited regarding the fast saturation
in case of active vegetation and does not provide details about biomass or LAI [41]. The
example in the USA shows the difficulties of greening along water-channels or the greening
after small-scale precipitation events, which leads to higher NDVI-values and influences the
irrigation mapping method. In contrast to the results in the USA and Sudan, the mapping
results in China are very similar at all spatial resolutions. Large-scaled fields of similar sizes
and a small share of fallow fields characterize the two large agricultural areas of the scene.
They indicate that the farming system follows a central management scheme resulting in a
low complexity of the shape of the fields. The regular pattern of the fields, the absence of
fallow fields and the large size of the fields in combination result in constant NDVI values
across the different spatial resolutions and, hence, scale-independent mapping results.

Besides the different behavior regarding the mapping result at a coarser spatial res-
olution in China compared to Sudan and the USA, the relation of the negative changes
of mapped irrigated area and the LSI behaves in all three regions constantly. This means
the negative areal change of irrigated area with resolution is explained by the LSI and
shows that landscape metrics can also be used outside of the analysis of natural ecosys-
tems in man-made patterns. The relations between negative areal change and LSI can be
used as information about the considered region regarding an expected loss of mapped
irrigated area at a coarser resolution derived by wide-swath medium-resolution satellites.
A transferability is possible, since the study showed that the downscaled Sentinel-2 and
original PROBA-V NDVI time series of the same spatial resolution and the same time period
were practically identical despite the differences in sensor characteristics, measurement
and sun angle. This demonstrates the stability of the overall approach and allows to link
Sentinel-2- and PROBA-V-derived irrigation maps. The scaling relation builds a bridge
between the medium-resolution sensors such as PROBA-V or the new Sentinel-3 mission
and high-resolution sensors such as Sentinel-2.

The presented results identify three main driving forces on the extent of the irrigated
area: (a) the spatial resolution, (b) the spatial distribution of the irrigated fields in the
analyzed area and (c) the complexity of the shape of the connected irrigated fields. Changes
in the spatial resolution influence the mapping results differently depending on the spatial
distribution and the complexity of the shape of the irrigated fields in the analyzed area.
Thus, the influence of the spatial resolution on the mapping results differs from landscape
to landscape. The trend towards spatially and temporally high-resolution satellite data and
high-performance computing offers opportunities to rethink existing methods of irrigation
mapping considering local conditions such as the spatial distribution of fields and combine
crop growth model results with derived information about the development of biomass
and plant conditions.
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5. Conclusions

Overall, it can be concluded that the mapping of irrigated area using an NDVI thresh-
old approach highly depends on both the spatial distribution of irrigated fields and the
spatial resolution of the observing sensor. The study demonstrates the potential of Sentinel-
2 to open a new chapter of irrigation mapping by providing high-spatial-resolution NDVI
time series with a temporal resolution of up to 2.5 days and can be applied as a transition
from the historical irrigation mapping with wide-swath medium-resolution sensors such
as VEGETATION, MODIS and AVHRR to an irrigation monitoring at a high temporal and
spatial resolution. Further, the use of the landscape metrics shows the potential to estimate
an expected accuracy of irrigation mapping derived by wide-swath medium-resolution
satellites such as Sentinel-3. Landscape metrics can identify regions characterized by a high
expected loss in irrigation mapping with coarser resolution. The information about the
influence of spatial scale on irrigation mapping will increase the accuracy of the estimation
of the actual amount of water that is withdrawn from the regional water resources and
diverted regionally into the atmosphere by irrigation.

The next step should be the development of an automatically updated irrigation
monitoring system which supplies the users up-to-date information about the state of
irrigation in terms of location, area and type. Irrigation monitoring as input information in
spatially distributed crop growth models will improve the model results regarding water
flows. The comparison of the model results with time series of multispectral remote sensing
observations, which document the development of the irrigated crops from seeding to
harvest, will allow the traceability of irrigation management such as the used irrigation
water by the crops, irrigation water loss through interception or soil evaporation and
overall water use efficiency. A remote-sensing-based monitoring system of the described
kind is the prerequisite for the improvement of irrigation management towards a less
wasteful use of the precious water resources by the farmers and can be a strong instrument
in negotiations regarding upstream–downstream water conflicts in large watersheds.
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A B S T R A C T

High-resolution (5–50 m) remote sensing satellite sensors provide a reliable, free and open data infrastructure
for public and private agriculture and land use services. The further market penetration of these services cri-
tically depends on the fraction of agricultural fields and area that the services can cover. EU’s Common
Agricultural Policy (CAP) and smart farming services require a minimum of spectrally pure measurements per
agricultural field. The impact of pixel size on the coverage of agriculture is studied in this paper considering
present free and open optical sensors (Sentinel-2 and LANDSAT). It further studies the implications of the se-
lection of spatial resolution of planned extensions of these sensors, i.e. the next generation of Sentinel-2, as well
as Copernicus’s hyperspectral CHIME and thermal LSTM future candidate missions.
The paper analyzes the 2018 vector boundaries and crop types of 3.6 million agricultural fields in the German

States of Bavaria and Lower Saxony and the Netherlands. The fields were rasterized using Sentinel-2 flight
geometry and a pixel spacing of 5, 10, 20, 30 and 50 m. The study specifically considered: (1) fields with no pure
pixel inside where no CAP services can be provided and (2) fields with less than 50 pure pixels inside, which is
estimated to be the critical number for site-specific smart farming. The percentage of agricultural fields and
agricultural area was determined for the main crop types. It shows, that with 10 m pixel spacing 2–4% and 20 m
pixel spacing 12–22% of the agricultural fields in the study area do not contain a single pure spectral sample
(Sentinel-2 case). This fraction decreases to 1–3% at 5 m spacing and increases to 25–40% for 30 m (LANDSAT
and CHIME) and 50–70% for 50 m (LSTM) spacing. The percentage of fields with less than 50 pure pixels is
20–50% at 10 m and 70–85% at 20 m spacing (Sentinel-2). This fraction decreases to 5–12% for 5 m spacing and
reaches the level of 92–97% for 30 m (LANDSAT) and 99% for 50 m spacing (LSTM). Our analysis shows, that
with a pixel spacing of 5 m the Sentinel-2-based site-specific smart farming services could increase their potential
customer base from ~50% to ~90% of the agricultural fields and could potentially cover 99% of the regions’
agricultural area. A 20 m pixel spacing would increase the agriculture area from 23% to 56% in the Central and
Western European study regions on which the Copernicus hyperspectral candidate mission CHIME is capable to
measure pure and full spectra for highly advanced future site-specific management services. LSTM would also
profit from a spatial resolution of 30 m, which would raise coverage of the agricultural area in Central Europe
with pure thermal measurements from 3% at 50 m to 23% at 30 m.

1. Introduction

Approximately 12% of the global land surface is managed farmland
(grassland and cropland) and subject to high temporal dynamics
through annual, inter-annual and perennial variations in crop type and
areal extent (Faostat, 2019). Managed farmland, contrary to un-
managed nature, is spatially organized as fields. Field size varies con-
siderably depending on the level of mechanization of agriculture and on
the economic, cultural and geographic background (Lesiv et al., 2019;

Fritz et al., 2015; Graesser and Ramankutty, 2017). In general, crop
management actions like plowing, seeding, fertilizing and harvesting
are practiced on an agricultural management unit, which we denote a
field. A so-defined field is independent of a cadastral property unit. In
Central and Western Europe each field in general carries one crop at a
time and is managed by one farmer. Using the information contained in
spectral measurements of agricultural fields e.g. through the Copernicus
Sentinel-2 satellites, to improve farm management is among the most
promising and economically as well as environmentally important
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applications of land surface remote sensing. Time series of satellite
images at a spatial resolution, which enables to recover information of
and within a field, allow monitoring important crop parameters like
crop type, plant growth and health, phenology and yield formation. In-
field, site-specific agricultural management in the context of smart
farming promises large commercial and environmental benefits by
improving resource efficiency and minimizing environmental impacts
(Wolfert et al., 2017; Walter et al., 2017).
The practical usefulness on remotes sensing data for digital services

for agriculture depends on its spatial, spectral and temporal resolution
(Hank et al., 2018). This paper focuses on the assessment of the role of
pixel spacing for the coverage of agricultural fields and area with spe-
cial emphasis on high-resolution 5–50 m Earth observation sensors. We
chose this resolution segment for our study in favor of the available
ultra-high resolution of 0.5–5 m because it provides a reliable, free and
open public data infrastructure, which will emerge into the future with
candidate satellites for a hyperspectral and thermal coverage of the
Earth surface. Pixel spacing of remote sensing data results from a trade-
off between a number of system parameters. Among those are, most
importantly, the spatial resolution of the instrument expressed by the
modulation transfer function (MTF) of the optical system, the sensor
(sensitivity, signal-to-noise ratio (SNR), spectral resolution) and the
electronics, the on-board storage capacity and/or the transmission
bandwidth in combination with the chosen orbit and revisit time. Pixel
spacing can also be chosen during the processing of raw sensor data into
the defined final data-products. Pixel spacing determines the data
quality (SNR), the data volume and handling costs and the loss or gain
of valuable information on agricultural fields and their spatial hetero-
geneity. Therefore, being aware of the difference of concepts of pixel
spacing and spatial resolution, in the following text we assume that
pixel spacing of a real world space borne sensor closely resembles its
spatial resolution, which is also the well-introduced term in almost all
documentations of Earth observation sensors. Therefore, we further use
the term spatial resolution synonymously with pixel spacing. De-
creasing spatial resolution increases the fraction of mixed pixels in a
field and below a certain ratio of a field to pixel size, no pure pixel can
be identified. At least one pure spectral measurement should be avail-
able to determine crop type, which is a monitoring requirement of the
EU’s Common Agricultural Policy (CAP) , from a time series of spectral
measurements (Skogstad and Verdun, 2009; European Commission,
2019). The ability to resolve in-field heterogeneity of crop growth is the
prerequisite for satellite-based remote sensing to contribute to site-
specific field management in the context of smart farming. Site specific
smart farming uses understanding of in-field spatial heterogeneity of
crop growth conditions (e.g. soil fertility, ground water level, relief and
its influence on erodability and climate) and their influence on crop
growth and yield in combination with advanced farming machinery to
optimize resource use (fertilizer, pesticides, irrigation water) and
minimize cost and environmental impacts. Site specific smart farming
usually divides a field into management zones for which different
management options are chosen. Different strategies are available to
optimize results. They range from gradually intensifying to extensifying
the less fertile parts of a field depending on situation and aim. For the
management options to be successful the spatial resolution should of
the spectral samples should be at a fraction of the sizes of the con-
sidered agricultural field to be able to fully quantify the in-field het-
erogeneity.
Current generation Sentinel-2 delivers multispectral images in 13

bands with a spatial resolution of 10 m in the VIS/NIR bands, 20 m in
the NIR/SWIR bands and 60 m in the atmosphere bands (ESA, 2015).
For next-generation Sentinel-2 satellites, an increase in spatial resolu-
tion of the VIS to SWIR bands to 5–10 m is considered (European
Commission, 2016). In addition, ESA currently conducts Phase A/B1
studies on the candidate Copernicus Hyperspectral Imaging Mission
(CHIME) (Nieke and Rast, 2018) and the Land Surface Temperature
Mission (LSTM) (Koetz et al., 2018). Here mission requirements

regarding spatial resolution between 20 and 30 m for CHIME and be-
tween 30 and 50 m for LSTM are discussed.
Market penetration of Copernicus based remote sensing services in a

region is limited by spatial resolution. Copernicus-based agricultural
services are usually contracted on a field basis and paid per hectare.
Empirical evidence on these real-world limits of different high-resolu-
tion sensors must therefore determine both all agricultural fields and
the complete agricultural area affected by mixed pixels with varying
spatial resolutions. This assessment is not straight forward. It has to
take into account the field size distribution, the ratio of the field to pixel
size as well as the shape of the fields. EU’s “Land Parcel Identification
System” (LPIS) as part of the “Integrated Administration- and Control
System” (IACS) is the basis for EU-subsidies to farmers. Farmers an-
nually report the crop type of all their subsidized agricultural fields.
IACS-LPIS therefore contains all fields for which satellite-based services
can potentially be offered to support CAP and site-specific smart
farming. IACS-LPIS data of selected regions in Central and Western
Europe is used in our study reported as agricultural parcels, containing
field boundaries of single fields and their cultivated crops per year. We
have chosen Central and Western Europe test regions because they are
among the most productive agricultural areas on the globe, have a di-
verse agricultural structure and because their agricultural services,
which depend on EU’s Copernicus Sentinel data, dynamically emerge.
This paper evaluates the impact of spatial resolutions ranging from

5 m (possibly improved future Sentinel-2), 10 m (current Sentinel-2,
VIS-NIR), 20 m (current Sentinel-2 NIR-SWIR and upper CHIME spe-
cification), 30 m (LANDSAT, lower CHIME and upper LSTM specifica-
tion) and 50 m (lower LSTM specification) on the coverage of agri-
cultural fields for digital agriculture services in Central and Western
Europe. We use as indicators the fraction of fields and the affected area
in the selected Central and Western European study areas, which at a
selected spatial resolution (1) have to be excluded from any remote
sensing based agricultural services and (2) have to be excluded from in-
field heterogeneity analysis due to a lack of pure pixels. The study
covers three European regions: The German Free State of Bavaria and
State of Lower Saxony in Central Europe and the Netherlands in
Western Europe. The three regions represent different cultivated land-
scapes from large agricultural operations to small family owned part-
time farms and therefore covers a large portion of the variety of Central
and Western Europe’s agriculture. Rather than using simulated field
boundaries, the use of real-world field boundaries is needed to obtain
unbiased and objective assessment results because of the complexities
in field shapes, proportions of various shapes and sizes, adjacent fields’
neighboring topology, and disturbances in field regularities caused by
land surface features such as streams (Graesser and Ramankutty, 2017;
Yan and Roy, 2014; Schmidt et al., 2016).
To our knowledge, this is the first time that field-wise agricultural

coverage by different spatial resolutions of remote sensing instruments
is investigated on a complete set of real-world subsidized fields for
application in EU’s common agricultural policy (CAP) as well as in site-
specific farming in three Central European regions. To create these new
scientific results, the paper relies on state-of-art geo-statistical methods.
The challenge of aggregating spatial data into defined boundaries is
well known and discussed since years under the “modifiable areal unit
problem” (Gehlke and Biehl, 1934; Openshaw and Tylor, 1979;
Openshaw, 1984). The problem also affects satellite images when the
spectral reflectance measured in a pixel is composed of objects with
different spectral properties (mixed pixel) (Löw and Duveiller, 2014).
Several studies addressed the influence of spatial resolution on land use
classifications derived from remote sensing data (Fisher et al., 2018;
Pax-Lenney and Woodcock, 1997) or on estimated biophysical para-
meters like leaf nitrogen concentration (Zhou et al., 2018) or leaf area
indices (Sprintsin et al., 2007). To find the most suitable spatial re-
solution these studies suggest to consider the local conditions, the topic
of the research or service question and costs when choosing the ap-
propriate spatial resolution (Atkinson, 1997).
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2. Materials and methods

The study is based on data from the EU’s “Integrated
Administration- and Control System” (IACS). One element of the IACS is
called the “Land Parcel Identification System” (LPIS), containing all
agricultural plots in EU countries as georeferenced vector field
boundaries together with information on cultivated crops. LPIS pro-
vides the field information in different types as “Agricultural parcel”
(AP), “Farmer block” (FB), Physical block” (PB) and “Cadastral parcel”
(CP) (Grandgirad and Zielinski, 2008). The following analysis is based
on the LPIS type “Agricultural parcel”, which means “a continuous area
of land, declared by one farmer, which does not cover more than one
single crop group […]. Member states may lay down additional criteria
for further delimitation of an agricultural parcel.” (European Union,
2013). The three regions provide crop specific data for each field. Since
the European agrarian subsidies are based on this data and because
field boundaries, as well as crops, are changing by growing season, the
data is updated annually and carefully checked by regional agricultural
authorities. We use 2018 data for this study because the data is avail-
able as “Agricultural parcels” for all three selected regions. They de-
scribe a field with one crop, which is independent on the cadastral si-
tuation. The regions 1) State of Lower Saxony (LS) (Lower Saxony
Ministry of Food Agriculture and Consumer Protection, 2018), 2) Free
State of Bavaria (BY) (Bavarian Bureau for Agriculture, 2018) in Ger-
many and 3) the Netherlands (NL) (Ministerie van Economische Zaken -
Rijksdienst voor Ondernemend Nederland) were selected (Fig. 1) based
on (1) availability of data (IACS-LPIS-data usually is not publically
available, in our case data from Netherlands (Basisregistratie Gewas-
percelen BRP”) and Lower Saxony (“Schlaege 2018”) is publically
available) and (2) a broad range for Central and Western European
farming systems. The three study areas are similar in size (NL:
42,508 km2, LS: 47,614 km2, BY: 70,550 km2, see Table 1) and fraction

of agricultural land. Agriculture land use in the three selected regions is
dominated by grassland and staple crops like maize, wheat, barley etc.
as well as potatoes (see Fig. 2). The IACS-LPIS data contains more than
200 crop types. For a better comparison the crop types are aggregated
to crop groups (see Fig. 2).
Table 1 shows statistics of the IACS-LPIS data sets of the three study

regions. Bavaria and the Netherlands have similar shares of agricultural
land whereas in Lower Saxony the share of agricultural land is largest
with more than 54%. With 1.6 ha the average field size is smallest in
Bavaria pointing at a large share of small farms managed part-time as
well as the influence of topography, which limits field sizes in some
parts of the State. In Lower Saxony, the average field size is largest
(2.8 ha) which is a consequence of larger commercial farms. Average
field size in the Netherlands (2.4 ha) is between Bavaria and Lower
Saxony.

2.1. Analysis approach

The vector field boundaries from the IACS-LPIS data sets were ras-
terized at 5, 10, 20, 30 and 50 m resolutions using the Sentinel-2 pixel
locations and geometry. The conversion into pixel-based raster dataset

Fig. 1. Location of the three study regions in Central Europe in dark grey.

Table 1
Sizes of the land area, agriculture area and number and average sizes of fields in
the analyzed regions derived from EU–IACS-LPIS data.

Bavaria Lower Saxony Netherlands

Land Area Size 7.055 Mio. ha 4.761 Mio. ha 4.250 Mio. ha
Agriculture Area 3.173 Mio. ha 2.595 Mio. ha 1.880 Mio. ha
% Agricultural Area 44.97% 54.51% 44.24%
Number of Fields 1.9 Mio. 0.9 Mio. 0.7 Mio.
Ø Field Size 1.6 ha 2.8 ha 2.4 ha
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is carried out using a modified Bresenham’s line algorithm (Bresenham,
1965), which assumes the pixel center to be the valid pixel coordinate.
This approach tends to increase the rasterized fields beyond the vector
field boundaries by maximum half of the chosen resolution. The pro-
trusion of the pixels beyond the field boundaries consequently leads to
pixels containing a mix of the spectral reflection of the field crops and
their surrounding area. To ensure pure agriculture pixels the vector
field boundaries are shrunk before rasterization by half the size of the
spatial resolution. Assuming square pixels, the reduction value is cal-
culated via Eq. (1), which is based on the Pythagorean theorem:

=reduction value 2 resolution
2

2

(1)

Fig. 3 shows an exemplary result of shrinking vector field bound-
aries to ensure that only pixels are rasterized, which completely lie
within the vector field boundaries. The shrinking of the fields changes
the shape of the original field boundary polygons and may lead to new
island polygons. Small fields collapse depending on size and shape and
do not include a valid pixel.
Fig. 4 shows the resulting difference between rasterization using the

classical Bresenham’s line algorithm based on the original polygons

(center approach) and on the shrunken field boundaries (pure-pixel
approach) where the whole pixels’ area is located inside the vector field
boundaries.

3. Results

The rasterization is carried out for each of the 3.5 million 2018
IACS-LPIS fields in the study regions and each selected spatial resolu-
tion of 5, 10, 20, 30 and 50 m pixel size. It results in five raster-data sets
containing the spectrally pure pixels in each agricultural field at five
different spatial resolutions. The number of pure pixels per field serves
as parameter for the suitability of the selected spatial resolution to
analyze crop type and in-field heterogeneities in the context of site-
specific smart farming.
Fig. 5 shows an example cut-out of the rasterized pixels at the se-

lected spatial resolutions. The lowest level in Fig. 5 shows the spatial
resolution of 5 m (green) with reducing resolution to 10 m (blue), 20 m
(orange) and 30 m (black) and 50 m (purple) in the following layers.
The expected change in pixel size and pixel pattern can be seen in Fig. 5
as well as a considerable increase of white area not covered with pure
pixels and some fields, which completely lose their pixels with de-
creasing spatial resolution. The approach clearly reduces the sampled

Fig. 2. Crop composition in the three study regions Bavaria, Lower Saxony, and the Netherlands in 2018 (Source: EU-IACS-LPIS).
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area in a region because it eliminates all mixed pixels. The reduction of
the total sampled agricultural area mainly depends on the field size
distribution and the field shape.
Farmers manage fields. Of central importance are therefore (1) the

number and total area of fields that are either not covered at all by a
pure spectral measurement and (2) the number and total area of fields
that contain less than a minimum number of pure pixels. As a con-
sequence, spectral analysis is of limited use to determine crop type in
case 1 or in-field spatial heterogeneity in case 2. Consequently, these
fields are assumed to be lost to the respective scientific analysis and/or
commercial service. Case 1 fields will further be denoted ‘lost fields’.

Case 2 is not straight forward and requires a threshold number of pixels
below which field spatial heterogeneity cannot be determined in a
meaningful way for site-specific smart farming. To our knowledge no
literature-based general agreement exists on the number of pure sam-
ples in a field, which are required to enable site-specific smart farming
as defined above. The number depends on the heterogeneity of the
considered field as well as on the farming machinery used and man-
agement action applied (fertilization, plant protection, irrigation).
Practical experience suggests that a minimum of 50 pure pixels per field
is desired to determine a spatial distribution of crop growth conditions
on which in-field site-specific management actions can be based in a
meaningful way and so was selected for this assessment. This is based
on the assumption that fields are divided into zones with similar
growing conditions and management actions are defined for each zone.
We assume that a meaningful division of a field is made up of at least
three zones. In order to cluster three different zones in a field with any
statistical significance a minimum sample size of 15–20 samples per
zone is necessary. This results in a minimum number of ~50 pure
spectral samples per field to develop site-specific smart farming ser-
vices. Fields with an insufficient number of pure pixels for site-specific
farming will further be denoted ‘no site-specific farming’. Analysis
based on thresholds of 1, 10, 20, 30 and 100 pixels are provided in the
supplement (S8).
Fig. 6 shows the fractional histograms of pure pixels per field for the

three test regions and the selected resolutions of 5, 10, 20, 30 and 50 m.
The zero pixels per field column (blue) in the histograms represent the
percentage of lost fields, the red line marks the threshold of 50 pure
pixels below which a field is denoted ‘no site-specific farming’.
Fig. 6 clearly shows the changing shape of the histograms with

decreasing spatial resolution. At a resolution of 5 m the percentage of
lost fields is small (<3%) and the increasing pure pixel number classes
tend to be equally populated for all three test regions. Percentages of
lost fields sharply increase and the population of the classes becomes
more right-skewed with decreasing resolution along the lines of the
histogram matrix.
In addition to the results for the ‘no site-specific farming’ case re-

sults for fields with 1, 10, 20, 30 and 100 pure pixels are provided in the
supplement (S8) together with the numerical values of the histograms
(S5-S7). This enables further analysis with additional threshold values.
The results show that the monotonously increasing fraction of fields
that are lost to site-specific smart farming does not provide any intrinsic
indicator for an optimum number of pure samples per field. Table 2
shows the percentage of ‘lost fields’ and ‘no site-specific farming’ fields
and the related agricultural area in the three test regions as a function
of spatial resolution.
As can be expected, Fig. 6 and Table 2A show, that the percentage of

‘lost fields’ and ‘no site-specific farming’ fields both increase with de-
creasing spatial resolution. Table 2A shows, that in all test regions only

Fig. 3. Exemplary polygon to demonstrate
the shrinking of the field boundaries to ensure
that only pixels, which are completely within
the vector field boundaries are rasterized. The
figure shows the original shape of the field in
black and the shrunken field boundaries de-
pending on the spatial resolution. At 50 m
raster resolution the polygon left from the gap
disappears by the approach.

Fig. 4. Center-approach vs. pure-pixel-approach: Center-approach burns the
pixel if the center of the pixel is inside the polygon and thereby increases the
size of the field. The pure-pixel-approach burns the pixel only where the pixel is
completely inside the field boundaries. This method results in “pure-field-pixel”
but leads to a loss of covered field area.

Fig. 5. Exemplarily the change of the field sizes and shapes at different spatial
resolutions: 5 m (green), 10 m (blue), 20 m (orange), 30 m (black) and 50 m
(purple). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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2–3% of all fields are lost to spectral analysis at a spatial resolution of
5 m. This percentage roughly doubles to around 5% at the 10 m re-
solution of the contemporary Sentinel-2 VIS-NIR bands. It further in-
creases to 10–20% for the 20 m Sentinel-2 NIR-SWIR bands and the
upper resolution of CHIME. 25–40% of all fields in the test regions are
lost to a spectral analysis on at least one pure pixel at a spatial re-
solution of 30 m, which is today’s LANDSAT, the lower proposed
CHIME and upper proposed LSTM resolution. At LSTM’s lower pro-
posed resolution of 50 m, 50–70% are lost. The loss of fields with at
least one pure pixel is largest in Bavaria with its compartmentalized

agriculture and less severe in Lower Saxony with its large commercial
farms. In the Netherlands, the effect lies between the two extremes.
Table 2A also shows the analysis of the percentages of fields that fall

in the ‘no site-specific farming’ category. The general tendency is si-
milar to the ‘lost’ fields although the level of rejection is considerably
higher. 5–12% of the agricultural fields fall into the ‘no site-specific
farming’ category at a spatial resolution of 5 m. This percentage in-
creases to 22–50% at the current Sentinel-2 VIS-NIR spatial resolution
of 10 m, further increases to a stunning 70–85% at the current Sentinel-
2 NIR-SWIR and upper CHIME spatial resolution of 20 m. It reaches

Fig. 6. Fractional histograms of the number of pure pixels per agricultural field for the three test regions Bavaria, Lower Saxony and the Netherlands (columns) and
the selected rasterization resolutions of 5, 10, 20, 30 and 50 m (lines).
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92–98% for the current LANDSAT and discussed lower CHIME and
upper LSTM resolution of 30 m and 99% for the discussed lower LSTM
resolution of 50 m.
Table 2B shows the percentage area represented by the lost fields of

Table 2A. In general, the fraction of the area is lower than the fraction
of fields because small fields tend to get lost first. At the resolution of
10 m, the fields that are lost because they do not contain a single pure
pixel is ~1% of the total agricultural area in all three regions. The lost
area increases to 1–3% at 20 m, 5–10% at 30 m and to 19–34% at 50 m
resolution.
The analysis of the agricultural area assumed lost for site-specific

smart farming (<50 pure pixels inside) shows a different perspective.
Here at 5 m resolution, the lost area is below 1%. This value increases to
4–10% at 10 m resolution. 20 and 30 m resolution show a strong in-
crease of lost area to 33–55% (20 m) and 68–86% (30 m) respectively.
At 50 m resolution, 96–99% of the area is lost to smart farming, which
makes a resolution of 50 m unsuitable for site-specific farming services
in the selected test regions in Western and Central Europe.
Field sizes and shapes may vary considerably depending on land use

and crop selection. Specialty crops like wine, hops and vegetables, etc.
tend to be cultivated on smaller fields with more intensive management
and higher revenues per hectare. Staple crops like maize, cereals as well
as potatoes and sugar beet, etc. tend to be cultivated on larger fields
with more mechanization and smaller revenues per hectare. We
therefore analyze the resolution dependent fraction of ‘lost’ and ‘no site-
specific farming’ fields for the major agricultural crops in the selected
regions. We exemplary present the results for Bavaria since it is the
most compartmentalized of the chosen regions and may therefore serve
as a lower baseline for estimating the potentials of different resolutions
for high- resolution remote sensing based agriculture services (crop
specific analyses of the Netherlands and Lower Saxony are attached in
the supplement). Fig. 7a and b show the percentage of ‘lost fields’ and
‘no site-specific farming’ fields in Bavaria for different crop types as a
function of spatial resolution.
In Fig. 7a and b, the position of the crop categories is ordered by the

respective percent loss of fields. The colors of the bars represent dif-
ferent spatial resolutions. Fig. 7 shows that different crops are un-
equally affected by the reduction in the spatial resolution regarding the
percentage of (a) lost fields as well as (b) no site-specific farming fields.
Two categories can be distinguished. First staple crops like cereals and
maize as well as sugar beet, which generally populate the left side of the
graphs. They show relatively small percentages of both ‘lost’ and ‘no

site-specific farming’ fields. Second specialty crops like wine, flowers
fruits and vegetables, with higher percentages of ‘lost’ and ‘no site-
specific farming’ fields, which tend to populate the right side of the
graphs. Fig. 7 clearly shows that the current Sentinel-2 configuration
allows field-based crop type identification for more than 90% of the
staple crops in Central Europe. For about 20–40% of specialty crops, no
identification is possible because of small field sizes. On the other hand,
the 20 m NIR-SWIR spectral information of Sentinel-2 is insufficient to
determine heterogeneity for site-specific agricultural services on ap-
prox. 60–80% of Central European fields (Fig. 7b). Specifically, for
staple crops, the percentage of ‘no site-specific farming’ fields decrease
considerably when moving to 10 and decisively when moving to 5 m
spatial resolution.
Fig. 8a and b show the corresponding crop-specific agricultural area

affected by the choice of resolution. Again, similar to the results show in
Table 2B, Fig. 8a shows that the fractional agricultural area related to
the lost fields is smaller than the fractional number of lost fields for all
categories. Fig. 8 also confirms the distinction between crop categories
found in Fig. 7: areal loss in staple crops is smaller for coarser resolu-
tions than for specialty crops like wine, hops, vegetables, flowers or
fruits.
Fig. 8b shows the lost area of the ‘no site-specific farming fields’

(<50 pure pixels). The results show that the 10 m resolution of the
current Sentinel-2 fleet is able to cover about 80% of the crops area, the
fraction of the specialty crops is lower, the fraction of the lost area of
the staple crops lies under 10%. Decrease of spatial resolution of 20 m
increases loss to about 40% at staple crops and a decrease to 30 m in-
creases losses to 80%. At the spatial resolution of 50 m nearly no field of
any crop is suitable for agricultural remote sensing services based on
pure pixels.
Table 3 summarizes the three test regions to one overview result,

which includes all three Central and Western European study regions.
Columns 2 and 3 show the resulting fraction of fields, column 4 and 5
the fraction of agricultural area affected by the selected spatial re-
solution. Table 3 clearly shows that with a resolution of 5 m 90% and
more fields and more than 99% of the agricultural area can be accessed
with high-resolution satellite remote sensing systems even for sophis-
ticated agricultural services. Current Sentinel-2 due to its limited spatial
resolution cannot cover roughly half of the Western and Central Eur-
opean study sites’ agricultural fields or a quarter of their agricultural
area with site-specific smart farming services. At the spatial resolution
of 30 m or even of 50 m, more than 90% of the fields and roughly 85%

Table 2
Percentage of (A) ‘lost fields’ (with no pure pixel inside) and ‘no site-specific farming’ fields (<50 pure pixels inside) and percentage of (B) agricultural area
connected to the ‘lost fields’ and ‘no site-specific farming’ fields in (A) for each test region and selected spatial resolution.

A Bavaria: Lower Saxony: Netherlands:

% lost fields (no
pure pixel inside)

% no site-specific farming
fields (<= 50 pure pixels
inside)

% lost fields (no
pure pixel inside)

% no site-specific farming
fields (<= 50 pure pixels
inside)

% lost fields (no pure
pixel inside)

% no site-specific farming fields
(<= 50 pure pixels inside)

5 m 1.69% 12.17% 1.78% 5.72% 2.87% 9.54%
10 m 6.41% 49.79% 3.96% 23.14% 6.36% 28.84%
20 m 22.27% 86.40% 11.67% 69.65% 16.43% 75.27%
30 m 40.73% 97.72% 23.40% 91.51% 30.86% 94.42%
50 m 70.22% 99.93% 50.52% 99.57% 58.76% 99.74%

B Bavaria: Lower Saxony: Netherlands:

% area lost fields (no
pure pixel inside)

% area no site-specific
farming fields (<= 50 pure
pixels inside)

% area lost fields
(no pure pixel
inside)

% area no site-specific
farming fields (<= 50 pure
pixels inside)

% area lost fields (no
pure pixel inside)

% area no site-specific farming
fields (<= 50 pure pixels
inside)

5 m 0.08% 0.98% 0.12% 0.37% 0.21% 0.63%
10 m 0.49% 10.53% 0.29% 3.74% 0.51% 4.95%
20 m 3.58% 55.43% 1.58% 33.52% 2.34% 39.82%
30 m 10.82% 85.86% 4.86% 68.56% 7.61% 75.20%
50 m 33.91% 98.76% 18.88% 96.34% 25.35% 96.17%
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of the area are lost to site-specific smart farming services. Nevertheless,
it should be stated that the fraction of fields and related area on which
time series of images can be used to identify crops on one pure pixel is
much larger making resolutions of 30 m and above much more suitable
for EU-CAP monitoring purposes.

4. Discussion

The impact of pixel spacing / spatial resolution of existing and an-
ticipated space borne sensors on the potential coverage of agriculture
with EU’s Common Agricultural Policy (CAP) and site specific smart
farming related remote sensing services was analyzed in a real-world
scenario. We used the 2018 vector field boundaries and crop types of
3.5 million fields (management units) in the German States of Bavaria
and Lower Saxony and the Netherlands. We determined, for spatial
resolutions of 5, 10, 20, 30 and 50 m, the fraction of fields with (1) no
pure pixel and (2) less than 50 pure pixels. We assume case 1 fields
excluded from CAP-related and case 2 fields excluded from site-specific
smart farming remote sensing services. The composition of the analyzed
fields is representative for large parts of Western and Central Europe’s
agriculture. Nevertheless, we want to point out that there are regions
within EU with smaller (e.g. Romania, Southern Poland, northwest
Spain) and larger (e.g. Hungary, Czech Republic, South Spain, East
Germany) average field sizes (Kuemmerle et al., 2013).
The spatial resolution range from 5 to 50 m represents the global

present and future land surface Earth Observation free and open data
infrastructure. It covers both existing systems like Sentinel-2 and
LANDSAT and anticipated systems like the future generation Sentinel-2
as well as the Copernicus hyperspectral CHIME and thermal LSTM

candidate missions. Their data will operationally be available with
dense temporal coverage for a foreseeable future and therefore is ide-
ally suited to develop the science behind operational agricultural ser-
vices for public and private users. Ultra-high resolution space borne
sensors, which offer data at spatial resolutions of the order of 1 m on a
commercial basis currently lack the long term operational commitment
as well as the combined spectral and temporal coverage to base e.g. site-
specific smart services on their data. A spatial resolution of the order of
1 m is also an order of magnitude larger than the swath width of the
usual agricultural machinery, which is 10 m. Sensors, which offer this
resolution therefore often over perform when it comes to site-specific
smart farming services.
The analysis of the loss of coverage of agricultural fields and their

related area with spatial resolution was carried out for the major staple
and specialty crops on all agricultural fields in the selected regions
subsidized by EU. This gives insight into the relation of crop-specific
analyses, which are important because from an application point of
view it makes a difference whether fields with highly-valued crops (e.g.
specialty crops like wine, hops, vegetables) or lower-valued staple crops
(e.g. maize, cereals) and potato are lost. The first category produces
more revenue per hectare and therefore tends to be managed more
intensively. In this category, the overall economic impact of improve-
ments of crop management (water saving in irrigation, more efficient
fertilization, early detection of pests, etc.) with agricultural remote
sensing services is potentially higher. On the other hand, staple crops
generally cover much larger areas and therefore, potentially, site-spe-
cific agricultural management based on agricultural services can im-
prove efficiency and achieve positive environmental impact on much
larger areas.

Fig. 7. Percentage of (a) ‘lost fields’ and (b) ‘no site-specific farming’ fields of different crop types in Bavaria for the selected rasterization resolutions of 5, 10, 20, 30
and 50 m. Maize (s) = silage maize, maize (g) = maize grain, silage crops = silage crops without maize.
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We found, as can be expected, a strong decrease of loss of coverage
of fields and the related area with increasing spatial resolution. Since
there are more small fields than large fields, the decrease in loss of
coverage is more pronounced for the number of fields than for their
related area. At the lowest resolution of 50 m ~ 60% of the fields and
25% of the agricultural area do not contain a single pure pixel. This
resolution also does not allow to derive site-specific smart farming
services in all three test regions. The situation becomes slightly less
serious with the current LANDSAT and lower CHIME and upper LSTM
candidate Missions’ resolution of 30 m. The fraction of analyzed fields,
which do not contain a single pure spectral measurement, decreases to
from ~60 to 35% with 8% of the area lost. With the spatial resolution of
today’s Sentinel-2 sensors still a notable fraction of 18% (at 20 m) and
6% (at 10 m) of the fields and 2.6% (at 20 m) and 0.4% (at 10 m) of the

related agricultural area are still too small to contain at least a single
pure pixel. As a conclusion, with the spatial resolution of current
Sentinel-2-time series reliable quantitative image analysis like crop type
specification to serve EU’s CAP is not possible for roughly every 5th
analyzed field. An increase of spatial resolution to 5 m would in turn
allow finding at least one pure pixel in almost all analyzed fields.
Since the criterion for a field to be accessible for site-specific smart

farming services was defined to be at least 50 pure pixels it can gen-
erally be expected that both a larger fraction of fields and a larger area
is lost for site-specific smart farming services. With resolutions of 30 m
and below only the 5% largest fields, which cover 20% of the area, are
accessible for these services. This, together with the low temporal re-
visit frequency explains why LANDSAT data is not suitable for devel-
oping smart farming services for the analyzed fields. Sophisticated site-
specific agricultural services like the provision of spatial chlorophyll
distributions within a field go beyond simple computation of NDVI.
They rely on the complete set of all Sentinel-2′s 10 and 20 m resolution
VIS-SWIR bands. They depend on some sort of resolution merge be-
tween 10 m VIS/NIR bands and 20 m NIR/SWIR bands which inevitably
degrades the spatial resolution of the merged pixels to somewhere be-
tween 10 and 20 m. At the 20 m resolution the fraction of fields, which
are potentially accessible with site specific smart farming services is
20% and the covered area is 66%. On the other hand, a spatial re-
solution of equal or better than 10 m completely changes the situation.
Site-specific smart farming services can then potentially be made
available ~2/3rd of the analyzed fields and for more than 93% of the
related agricultural area. Most importantly, at this resolution staple
crops in the selected European regions would almost completely be
covered.

Fig. 8. Percentage of (a) ‘area of lost fields’ and (b) ‘area of no site-specific farming’ fields of different crop types in Bavaria for the selected rasterization resolutions of
5, 10, 20, 30 and 50 m. Maize(s) = silage maize, maize(g) = maize grain, silage crops = silage crops without maize.

Table 3
Percentage of ‘lost fields’ (with no pure pixel inside) and ‘no site-specific
farming’ fields (<50 pure pixels inside) for all regions analyzed.

All regions:

% lost fields
(no pure
pixel inside)

% no site-specific
farming fields
(<= 50 pure
pixels inside)

% area lost
fields (no
pure pixel
inside)

% area no site-
specific farming
fields (<= 50 pure
pixels inside)

5 m 1.79% 10.02% 0.13% 0.69%
10 m 5.79% 37.75% 0.43% 6.85%
20 m 18.40% 79.89% 2.60% 44.16%
30 m 34.34% 95.48% 8.01% 77.37%
50 m 62.90% 99.80% 26.70% 97.30%
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Finally, with a resolution of 5 m 90% of the analyzed fields, which
cover more than 99% of the agricultural area in the selected regions
contain more than 50 pure pixels and are therefore accessible for site-
specific smart farming services. A major part of the specialty crops
would then also be covered. With a spatial resolution of 5 m in all bands
and the current spectral coverage and revisit time a future 2nd gen-
eration Sentinel-2 would allow developing site-specific smart farming
services for almost all farmers in the selected European study regions. It
would make next Sentinel-2 s the information backbone necessary for
smart farming to completely cover Europe’s agriculture and to realize
the environmental and commercial benefits, that potentially go along
with it.
CHIME in its upper resolution of 20 m would enable to use high-

valued, pure and complete spectral information to develop new so-
phisticated Copernicus based agricultural services, that go far beyond
current smart farming approaches, on 1/3rd of all fields and 55% of the
agricultural area in the selected European study regions. These numbers
are reduced to well below 10% of fields and 23% of the area when
choosing CHIME’s lower resolution of 30 m which is equivalent to that
of the existing and upcoming hyperspectral missions PRISMA (Labate
et al., 2009) and EnMAP (Guanter et al., 2015). Although the pivotal
role that CHIME will potentially play for developing advanced next-
generation site-specific agricultural services is not questioned by this
choice in resolution, an increase beyond the spatial resolution of ex-
isting and upcoming hyperspectral missions would be a decisive dif-
ference for both science and application and an important success-
factor for CHIME. It strongly enlarges both the number of accessible
crops and fields and as a result accelerates the transition towards next-
generation site-specific farming. LSTM in its upper resolution of 30 m
has the same coverage in terms of fields and area than CHIME’s lower
resolution. Implementing LSTM’s lower resolution of 50 m would in-
crease the fractions of fields and covered area for which no sufficient
unmixed thermal information on in-field heterogeneity can be mea-
sured for the analyzed fields to 58–70% and 99% respectively. That
means that only a few very large fields would be accessible.

5. Conclusion

Any increase in spatial resolution extends both the customer base
and the accessible acreage for Copernicus-based CAP as well as site-
specific agricultural services in Central Europe. The effect is most
pronounced between a resolution of 20 and 5 m for the number of fields
because it allows tapping into a large number of specialty fields. The
increase in covered acreage is most pronounced between 20 and 10 m
because it allows extending services to cover almost all non-specialty
crop fields in Central Europe. This is an essential step in commercial
terms because it would provide small farmers with the information to
catch up in raising the efficiency of fertilizer, pesticide and irrigation
water use. It also touches social aspects in providing to a large base of
small part-time Central European farmers the basic information needed
for fully digitized farm management, which eases their documentary
and bureaucratic burdens thereby supporting them in their struggle to
survive and to play a positive role in protecting rural lifestyles. The
benefit of a resolution increase of Sentinel-2 for central European
agriculture applications goes far beyond economic and social terms. It
also is an essential step in environmental terms because it provides a
cost-efficient path to site-specific, optimized fertilizer application on
many small fields, which currently contribute strongly to Central
Europe’s groundwater resources.
The current Sentinel-2 workhorses have already proven the useful-

ness and cost-effectiveness for site-specific agricultural services in
Central Europe (Bach et al., 2018). The results of the study clearly show
the added value in terms of coverage of an increase in spatial resolution
from today’s effective 10–20 m to ideally 5 m for all spectral bands on a
future Sentinel-2 follow-up.
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APPENDIX II 

The results of the first publication regarding the detected irrigated area is summarized in 

a supplement. All available regional and global data set of irrigated area are compared to the 

developed global irrigation map in the first publication.  
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Table S1: Comparison of different information about irrigated areas in the USA.  

 New irrigation map[km²] Ozdogan et al. [km²] USGS [km²] 

California 41,186 26,808 42,087 

Texas 30,220 18,312 23,957 

Arkansas 19,785 10,610 18,899 

Idaho 16,475 8,348 14,569 

Oregon 10,268 3,974 7,689 

Florida 9,097 4,160 8,053 

Kansas 16,146 12,131 12,464 

Colorado 16,013 12,043 13,517 

Nebraska 36,778 33,118 35,329 

Wyoming 7,412 4,370 4,371 

Washington 9,232 6,324 6,394 

Utah 6,092 3,300 5,423 

Missouri 5,632 3,047 5,301 

Nevada 3,841 1,306 2,335 

Montana 10,336 8,001 6,637 

Arizona 4,955 3,050 4,019 

Mississippi 6,542 4,755 7,244 

Minnesota 2,382 854 2,185 

New Mexico 4,985 3,665 3,553 

Wisconsin 1,514 558 1,643 

Michigan 1,939 1,208 2,048 

New Jersey 542 192 402 

Oklahoma 2,533 2,197 2,161 

New York 312 164 437 

Georgia 5,941 5,802 5,787 

Connecticut 75 0 105 

Rhode Island 25 0 25 

Massachusetts 59 53 163 

New Hampshire 1 0 24 

Vermont 1 0 16 
District of 
Columbia 0 0 0 

West Virginia 0 0 15 

Illinois 2,019 2,072 1,955 

Maine 1 92 193 

Delaware 398 600 538 

Pennsylvania 116 330 276 

1 
 
 

 



Iowa 635 851 757 

Indiana 1,440 1,973 1,607 

Ohio 146 721 230 

Maryland 328 1,047 425 

Virginia 286 1,018 473 

South Carolina 848 1,844 623 

North Dakota 974 2,536 947 

Kentucky 236 2,234 244 

Alabama 389 3,345 615 

South Dakota 2,000 5,484 785 

North Carolina 1,174 5,091 1,085 

Tennessee 348 4,267 372 

Louisiana 4,858 10,767 3,747 

Sum 286,516 222,625 251,724 

 
 

Table S2: Comparison of different information about irrigated areas in China. 

 New Irrigation Map [km²] Zhang et al. 
[km²] FAO [km²] 

Xinjiang Uygur' 99,645 30,629 46,291 

'Henan' 79,933 51,069 38,626 

'Shandong' 73,327 48,110 44,855 

'Hebei' 51,821 44,830 44,750 

'Jiangxi' 47,970 18,935 34,876 

'Anhui' 36,251 31,902 23,093 

'Jiangsu' 34,501 38,606 28,422 

'Hunan' 27,129 26,616 25,984 

'Sichuan' 25,082 23,418 21,407 

'Shaanxi' 24,668 13,123 12,116 

'Hubei' 23,879 20,712 20,825 

'Guangdong' 21,004 14,778 20,423 

'Heilongjiang' 20,725 20,327 20,031 

'Jilin' 18,837 13,119 18,187 

'Gansu' 18,826 9,430 11,531 

'Yunnan' 17,246 14,032 13,282 

'Liaoning' 16,072 14,381 10,663 

'Shanxi' 15,860 11,043 10,174 

'Nei Mongol' 15,549 21,062 13,859 

'Guangxi' 15,203 14,707 12,083 

'Zhejiang' 14,818 13,421 14,687 

'Fujian' 9,603 9,294 9,382 

'Guizhou' 7,080 6,550 5,150 

'Chongqing' 5,972 6,230 4,325 

2 
 
 

 



'Ningxia Hui' 5,473 4,012 4,972 

'Qinghai' 4,188 2,114 3,016 

'Tianjin' 4,178 3,434 3,219 

'Beijing' 3,401 3,274 3,524 

'Xizang' 3,371 1,417 2,899 

'Shanghai' 2,996 2,868 3,083 

'Hainan' 2,732 1,795 1,892 

Sum 747,342 535,237 527,631 
 

 

 

Table S3: Comparison of different information about irrigated areas in India. 

 
New irrigation map 
[km²] 

Ambika et al. 
[km²] 

'Andaman and Nicobar' 13  
'Andhra Pradesh' 62,676 60,800 

'Arunachal Pradesh' 167 1,200 

'Assam' 2,120 11,700 

'Bihar' 65,738 27,100 

'Chandigarh' 13 10 

'Chhattisgarh' 14,313 33,400 

'Dadra and Nagar Haveli' 33 50 

'Daman and Diu' 10 0 

Delhi 528 200 

'Goa' 279 500 

'Gujarat' 51,915 44,200 

'Haryana' 36,671 30,900 

'Himachal Pradesh' 1,937 2,800 

'Jammu and Kashmir' 4,483 3,600 

'Jharkhand' 4,745 14,000 

'Karnataka' 31,535 39,500 

'Kerala' 3,605 5,800 

'Madhya Pradesh' 125,178 56,000 

'Maharashtra' 55,178 35,900 

'Manipur' 323 600 

'Meghalaya' 638 1,200 

'Mizoram' 46 700 

'Nagaland' 282 1,200 

'Odisha' 18,998 33,700 

'Puducherry' 233 200 

'Punjab' 47,274 43,800 

'Rajasthan' 72,676 83,400 

'Sikkim' 110 300 
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'Tamil Nadu' 31,998 32,700 

'Tripura' 705 1,300 

'Uttar Pradesh' 200,979 142,800 

'Uttarakhand' 5,329 4,800 

'West Bengal' 36,884 25,700 

Sum 877,611 740,060 
 

 

Table S4: Global comparison of irrigation maps. The values of GRIPC are weighted by an averaged field size factor of 
0.83. 

 

New 
irrigation 
map 
[km²] 

GMIA 
(downscaled) 
[km²] 

FAOSTAT 
(average 
1999-2012) 
[km²] 

AQUASTAT 
(average 
1998-2012) 
[km²] 

GRIPC [km²] GIAM [km²] 

Afghanistan 36,043 33,484 32,063 32,080 5,618 10,081 

Åland Islands 18 18 0  0  

Albania 5,446 3,433 3,457 3,390 3,313 2,238 

Algeria 7,309 6,064 5,692 8,997 10,913 1,443 

Angola 859 836 845 855 632 233 

Argentina 17,907 16,922 18,981 23,570 22,040 93,043 

Armenia 2,740 2,705 2,740 2,735 810 1,067 

Aruba 0 0 0  0  

Australia 36,479 36,045 25,119 24,650 58,062 118,652 

Austria 1,068 1,068 1,072 1,014 2 1,165 

Azerbaijan 16,175 14,169 14,296 14,257 15,964 8,356 

Bahamas 0 0 10 10 83  

Bahrain 15 15 40 41 1  

Bangladesh 53,291 48,033 48,195 50,500 62,804 52,351 

Barbados 9 9 50 54 11  

Belarus 822 822 1,166 866 1 841 

Belgium 298 298 251 232 4 3,248 

Belize 44 44 33 35 63 39 

Benin 467 114 178 177 136 152 

Bhutan 250 248 285 298 289 10 

Bolivia 1,311 1,274 2,618 2,619 2,549 2,141 

Bosnia and Herzegovina 180 53 30 30 109 108 

Botswana 51 51 16 14 85 54 

Brazil 48,828 39,731 44,929 42,930 86,575 41,951 

Bulgaria 6,157 5,625 2,530 1,211 4,144 13,018 

Burkina Faso 897 228 385 396 15 157 

Burma 46,405 21,193 21,208 20,500 32,660 44,530 

Burundi 213 213 226 214 78 118 
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Cambodia 5,466 5,406 3,256 3,189 21,477 7,363 

Cameroon 943 266 275 257 666 527 

Canada 11,918 11,918 8,421 12,180 4,754 26,583 

Cape Verde 23 19 33 35 24 0 

Central African Republic 4 0 10  0 12 

Chad 1,748 320 291 303 3,692 252 

Chile 18,910 18,503 11,042 11,090 13,902 15,149 

China 746,284 596,413 615,240 585,695 681,448 1,119,888 

Colombia 8,353 8,340 9,662 9,935 5,714 5,462 

Congo 20 20 20  516 0 

Costa Rica 990 990 1,020  350 126 

Cote d'Ivoire 639 622 730  695 951 

Croatia 419 58 131 138 236 352 

Cuba 8,672 8,672 8,700 5,576 7,441 4,869 

Cyprus 583 583 445 555 1,189 71 

Czech Republic 520 520 375 354 0 5,180 

Democratic Republic of the 
Congo 124 122 110  1,947 218 

Denmark 4,199 4,199 4,425 4,542 2,757 11,647 

Djibouti 3 3 10 10 3 9 

Dominican Republic 2,871 2,853 2,909 2,881 160 709 

Ecuador 8,212 8,008 11,361 11,767 483 2,886 

Egypt 37,319 33,451 35,009 35,160 20,667 21,441 

El Salvador 492 492 450 452 6 116 

Eritrea 232 231 211  21 170 

Estonia 0 0 40 9 2 246 

Ethiopia 6,623 3,086 2,900 2,896 2,492 1,842 

Fiji 24 24 37 35 5 0 

Finland 819 819 822 778 0 1,253 

France 33,500 29,743 26,438 26,380 12,960 23,996 

French Guiana 57 57 56  151 29 

French Polynesia 0 0 10  13  

Gabon 41 41 40  34 0 

Gambia 24 24 29 36 6 399 

Georgia 4,299 4,150 4,384 4,328 3,522 1,285 

Germany 4,961 4,961 5,516 5,466 502 21,977 

Ghana 646 631 322 309 414 606 

Greece 19,557 15,636 15,037 13,910 13,213 9,077 

Grenada 0 0 10 4 0 0 

Guadeloupe 71 71 66  2 19 

Guam 0 0 2  0 0 

Guatemala 1,361 1,361 2,875 3,248 85 694 

Guernsey 0 0 0  0  

Guinea 973 906 950 949 553 3,026 
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Guinea-Bissau 348 209 249  58 1,080 

Guyana 1,316 1,316 1,463 1,430 1,565 963 

Haiti 929 929 959 970 572 508 

Honduras 774 774 847 888 150 706 

Hong Kong 21 21 0  43  

Hungary 3,181 3,181 1,847 1,956 493 2,417 

Iceland 0 0 0  0  

India 879,572 612,289 642,777 642,960 880,684 1,012,349 

Indonesia 62,199 61,733 63,594 67,220 30,383 31,729 

Iran (Islamic Republic of) 99,493 91,973 86,256 84,985 32,917 26,233 

Iraq 36,118 35,407 35,250  15,194 22,200 

Ireland 4 4 0 11 0 0 

Israel 1,852 1,786 2,199 2,250 2,833 998 

Italy 49,632 38,573 39,324 38,593 26,230 28,306 

Jamaica 241 241 250 307 30 49 

Japan 23,722 23,721 25,563 26,500 12,835 25,251 

Jordan 919 898 846 802 1,588 727 

Kazakhstan 57,177 26,566 20,161 19,720 42,375 72,277 

Kenya 4,040 960 981 1,301 55 854 

Kiribati 0 0 0  6  
Korea, Democratic People's 
Republic of 13,991 13,991 14,600  8,573 14,673 

Korea, Republic of 7,482 7,482 8,441 8,435 15,000 11,925 

Kuwait 105 105 87 86 10 373 

Kyrgyzstan 11,277 10,339 10,323 10,220 5,408 7,009 

Lao People's Democratic 
Republic 3,171 3,121 3,024 3,028 7,215 1,056 

Latvia 0 0 9 8 0 127 

Lebanon 1,090 1,059 1,040 1,040 1,216 247 

Lesotho 19 19 30 26 0 57 

Liberia 12 12 30  67 2 

Libyan Arab Jamahiriya 4,770 4,711 4,700 4,350 3,830 2,307 

Lithuania 0 0 55 45 0 573 

Luxembourg 0 0 365 0 0 0 

Madagascar 11,445 11,445 10,860 10,860 6,123 724 

Malawi 498 497 671 643 165 33 

Malaysia 3,422 3,422 3,752 3,800 633 2,588 

Mali 2,864 2,486 2,993 3,035 468 564 

Malta 23 23 27 28 51 0 

Martinique 51 51 64  1  

Mauritania 469 469 450 450 89 151 

Mauritius 190 190 207 212 244 53 

Mexico 71,197 68,352 63,636 63,600 63,787 38,547 

Mongolia 7,687 759 840  1,924 4,223 

Montenegro 71 36 23 24 96 103 
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Morocco 15,734 15,091 14,439 14,827 23,925 10,451 

Mozambique 1,280 1,199 1,174 1,181 601 564 

Namibia 86 86 79 76 15 105 

Nepal 18,163 11,048 12,201 11,680 16,401 12,520 

Netherlands 4,158 4,158 4,434 4,805 141 8,702 

New Caledonia 0 0 97  24  

New Zealand 5,342 5,197 5,406 5,435 4,658 1,254 

Nicaragua 884 883 1,441 1,467 1,010 164 

Niger 744 744 816 823 494 41 

Nigeria 6,277 3,172 2,907 2,918 14,507 1,979 

Norway 1,149 1,149 1,148 1,142 2 21 

Oman 1,044 599 593 589 148 179 

Pakistan 192,534 165,867 191,007 189,050 130,583 140,362 

Palestine 243 242 230 220 1,127 75 

Panama 329 329 335 321 3,807 491 

Paraguay 605 585 808 1,016 8,665 286 

Peru 18,178 17,951 22,721 25,800 1,705 3,560 

Philippines 17,470 17,293 14,527 18,790 19,279 15,426 

Poland 1,045 1,045 1,039 967 30 3,515 

Portugal 8,993 8,361 6,341 6,879 3,406 3,589 

Puerto Rico 358 358 219 219 6 120 

Qatar 139 137 130 129 3 385 

Republic of Moldova 2,915 2,915 2,475 2,677 300 2,941 

Reunion 79 79 84  19 7 

Romania 21,392 21,235 31,519 13,720 5,426 23,752 

Russia 21,651 20,171 44,770 23,750 78,337 138,869 

Rwanda 91 91 92 91 50 801 

Saint Helena 2 0 0  0  

Saint Lucia 35 35 30 30 0 0 

San Marino 2 2 0  5 11 

Sao Tome and Principe 80 80 100  0 0 

Saudi Arabia 15,195 14,050 16,190 16,200 1,931 6,787 

Senegal 1,252 1,250 1,170 1,197 827 2,114 

Serbia 1,973 1,648 931 920 276 1,719 

Seychelles 1 1 3 3 3 1 

Sierra Leone 295 295 299  2,489 218 

Slovakia 2,211 2,211 1,599 1,547 5 1,099 

Slovenia 152 152 60 65 59 4 

Somalia 8,304 2,094 2,000 2,000 12 3,725 

South Africa 15,266 15,250 15,332 15,840 8,332 8,210 

Spain 42,126 36,856 37,674 36,733 34,065 34,217 

Sri Lanka 5,398 5,391 5,700 5,700 12,291 9,480 

Sudan 19,896 18,851 19,900 18,901 8,686 17,371 
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Suriname 444 444 549 542 616 198 

Swaziland 421 421 499 499 128 198 

Sweden 1,607 1,607 1,616 1,535 475 839 

Switzerland 552 552 503 580 12 295 

Syrian Arab Republic 15,931 15,248 13,418 13,490 15,892 5,670 

Taiwan 4,088 4,058 3,795  3,564 4,990 

Tajikistan 7,271 6,949 7,301 7,307 5,947 3,832 

Thailand 67,449 60,696 61,148 57,005 74,231 66,106 

The former Yugoslav 
Republic of Macedonia 1,887 1,305 1,096 914 1,345 1,698 

Timor-Leste 341 341 343 347 47 38 

Togo 86 86 70  20 217 

Trinidad and Tobago 30 30 64 70 0 19 

Tunisia 4,841 4,685 4,230 4,452 3,821 1,091 

Turkey 61,036 54,001 51,139 51,615 22,122 17,534 

Turkmenistan 33,644 20,162 19,544 19,910 11,483 15,224 

Uganda 120 80 120 101 4 300 

Ukraine 24,073 24,073 22,327 22,563 11,770 29,956 

United Arab Emirates 2,414 2,396 1,863 1,593 41 938 

United Kingdom 2,430 2,430 1,899 1,145 233 9,707 

United Republic of 
Tanzania 1,802 1,737 1,795 1,843 567 470 

United States 285,447 279,020 267,401 267,630 226,636 280,455 

Uruguay 2,395 2,395 2,149 2,095 5,400 3,814 

Uzbekistan 56,300 38,845 42,082 41,980 36,596 36,015 

Venezuela 7,226 7,168 8,843 8,126 6,275 8,949 

Viet Nam 47,074 42,847 42,739 45,850 54,965 43,840 

Yemen 12,630 8,658 6,221 6,801 1,632 917 

Zambia 1,459 1,440 1,513 1,559 20 8 

Zimbabwe 1,851 1,846 1,740 1,735 163 47 

Sum 3,674,478 3,007,038 3,076,937 2,962,922 3,141,000 3,983,979 
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APPENDIX III 

The map of global irrigated area developed in the first publication is available for non-

commercial use (CC-NY-NC-3.0) and can be downloaded. 

 

Meier, J.; Zabel, F.; Mauser, W. (2018): Global Irrigated Areas. PANGAEA, 

https://doi.org/10.1594/PANGAEA.884744 
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