Investigations of a boxed rotor: The STAR II rotor in DLR's test hall

Gunther Wilke (DLR AS-HEL),

Hideaki Sugawara, Yasutada Tanabe (JAXA)

Oliver Schneider and Berend G. van der Wall (DLR FT-HUB)

49th European Rotorcraft Forum, Bückeburg, Germany, September 6th 2023

Motivation & Introduction

- STAR II blade in presented in previous presentation
 - Investigation of actively twisted blades within a consortium
- Here we are interested in what is happening inside the pretest hall in Braunschweig
 - From previous tests, it was observed that maximum thrust and best Figure of Merit is lower than in the DNW-LLF
 - Strong vibrations occur at higher thrusts
 - No PIV carried out during STAR II pre-tests, therefore a CFD investigation is carried out by JAXA & DLR

STAR II rotor in test hall during testing long exposure photograph

Overview

- Simulation Approach
- Results
 - Trim convergence
 - Flow Pictures
 - Rotor Performance
 - Loads
- Summary

Simulation Approach – General assumptions

- No prior experience with 'boxed' flow rotors
- Simplified assumption of a box, despite heavy duty shelves and other apparati remaining in the pre-test hall
- Cyclic also trimmed to see asymmetric effects, but only collective used in the experiment → can be ignored and not further discussed here
- Estimated required number of revolutions to 50-100 revolutions depending on estimated induced velocity
- Comparison with 'free' out-of-ground simulations

Simulation Approach – Numerical Setup

- Both partners used 4th inviscid upwind scheme
- DLR applied SA-DDES-R including laminar-turbulent transition prediction
- JAXA used fully turbulent Menter SST
- Fluid-structure coupled results
- JAXA refined grid near the walls
- DLR included fuselage (even though cover not given in the experiment)

case	boxed		free	
partner	DLR	JAXA	DLR	JAXA
$\Delta \psi$	0.5^{o}	0.1°	0.5^{o}	0.1 ^o
blade cells				
chord	128	141	128	141
span	128	157	128	157
normal	64	71	64	71
boundary layer	20	25	20	25
total blade	1 M	1.5M	1 M	1.5 M
fuselage cells	1 M	-	1 M	-
background grid				
$\Delta x/c_{ref}$	14%	20%	14%	20%
total bg	55 M	91M	69M	107M
total sim.	60 M	97M	74 M	113M

Table 1: Grid Metrics.

Simulation Approach – DLR grids

- DLR utilized hanging grid nodes to have a refined area near the rotor in both conditions
- Farfield distance assumed out-of-ground hover for 3 rotor diameters
- Applied Froude (source/sink) boundary condition for free simulation

Simulation Approach – JAXA grids

- JAXA tried to capture the wall jet through added refinement near the wall
- JAXA applied an inner/outer background grid technique for the free flow to avoid issues with the farfield condition

Results – Trim convergence – T=2kN / c_{T}/σ = 3.54/100

- Trim convergence for free flight significantly better than for boxed flow
- Expected drift observed

Results – Trim convergence – T=3.6 kN / c_{T}/σ = 6.37/100

- DLR Fine grid issues with comprehensive code recovered on the fly
- Faster convergence for boxed flow due to higher speeds

Results – Vertical Velocity Evolution – T=2.0 kN / c_{T}/σ = 3.54/100

65 revolutions

80 revolutions

100 revolutions

- Flow not fully developed after 65 revolutions
- After 80 revolution roughly doubled estimated cycle time
- 100 revolutions shows little change and only grown chaos

Results – Vortex Strength Evolution – T=2.0 kN / c_{T}/σ = 3.54/100

65 revolutions

80 revolutions

100 revolutions

- Boxed not filled with secondary structures above the wall after 65 revolutions
- 80 revolutions first secondary structures found at the hall ceiling
- 100 revolutions the 'periodic' case, yet only increasing chaos due to adding energy

Results – Vertical Velocity – T=2kN / c_{T}/σ = 3.54/100

DLR fine grid

JAXA grid

- General flow velocity distribution similar between DLR and JAXA
- In ground, but also re-circulation observed
- Difference between JAXA & DLR
 - DLR has a more jagged velocity distribution
 - JAXA has an upwash in the hub region root vortex is not blocked by hub as for DLR (simplified hub and fuselage block this)

DLR fine grid

Results – Vortex Strength – T=2kN / c_{T}/σ = 3.54/100

DLR fine grid

Ω [1/s] 200 180 160 120 100 80 60 40 20 0 0

JAXA grid

- Primary vortices resolved by both partners
- Many more secondary vortices for DLR
 - Reason is the application of DDES with slightly finer grid spacing

Results – Vertical Velocity – T=3.6 kN / c_{T}/σ = 6.37/100

DLR fine grid

JAXA grid

- The differences among the partners remain similar for the higher thrust
- Both partners capture the same trend, that as expected, the velocities increased and in particular the re-circulation effect becomes stronger

DLR coarse grid

Results – Vortex Strength – T=3.6 kN / c_{T}/σ = 6.37/100

DLR fine grid

JAXA grid

- The strength of the primary and secondary vortices increased with thrust
- The box is therefore filled with many 'worms' in contrast to the plain free stream flow

Results – Performance

- The collective is higher for boxed flow over free flow. The DLR coarse grid needs even more (num. Diss.)
- Figure of Merit is lower for the boxed flow. Agreement with experiment is good with offset -

Results – Loads – T=2kN / c_{T}/σ = 3.54/100

- Dashed lines show 2 x standard deviation (95% interval) added to mean normal force.
- Boxed flow has noticeable greater deviation and lift distribution appears more like a climb than a hover case

Results – Loads – T=3.6 kN / c_{T}/σ = 6.37/100

• Standard Deviation grows analogue to the overall thrust

• DLR has greater deviation in both case \rightarrow a) DDES instead URANS and b) fuselage is included

Summary

- Simulation of hovering rotor in a box: investigation of the flow phenomenon in the pre-test hall at DLR Braunschweig
- Literature research revealed little existing research on that, among the first
- 'Common' sense results observed: lengthy runtimes confirmed with momentum theory, re-circulation found as expected
- Boxed flow more difficult to trim (latency), it will likely be better to run at fixed pitch angles rather than trim the rotor. Then interpolate results
- Runtimes of over 3 months recommend a Cartesian solver (only curvilinear structured applied here)

International Design Workshop on Rotor Blade Optimization (InDeWo) after ERF on Friday, September 8th , 09:00-14:00 German time (UTC+1)

- Extension of JOD-ROC open to anybody
- HART II as baseline rotor
- Participate and share results with us
- Online spots still available!
- Contact Gunther.Wilke@dlr.de
 +49 176 226 33 857

