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Abstract—The CO2Image satellite mission, led by the German
Aerospace Center (DLR), aims to demonstrate the feasibility of
quantifying carbon dioxide (CO2) and methane (CH4) emissions
from medium-size point sources. Several DLR institutes are
currently working on the preliminary design phase (Phase B) of
the mission. Here we present a performance analysis based on the
current instrument specifications. The Beer InfraRed Retrieval
Algorithm (BIRRA), the line-by-line radiative transfer model
Py4CAtS (Python for Computational ATmospheric Spectroscopy)
and a COSIS (Carbon dioxide Sensing Imaging Spectrometer)
instrument model are employed to infer CO2 and CH4 concentra-
tions from synthetic COSIS spectra. We evaluate the instrument’s
performance and determine if it meets the intended requirements.
The study assesses uncertainties in the retrieved concentrations
as well as errors in point source emission estimates caused by
instrument noise. First results suggest that the detection and
quantification limits stated in the mission requirements document
are justified. The analysis also demonstrates that retrieval errors
tend to increase when the signal-to-noise ratio is low, complicating
the distinction between emission sources and background concen-
trations. Furthermore, we discuss non-instrumental effects and
demonstrate that the fit quality significantly improves if a low-
level plume is scaled instead of a background reference profile
that covers the atmosphere’s full vertical extent. The analysis
on heterogeneous scenes (high albedo contrast) reveals that the
various instrument setups perform similarly for both molecules.

Index Terms—carbon dioxide, methane, concentration fields,
emission rates, short-wave infrared, radiative transfer, inversion

I. INTRODUCTION

Carbon dioxide (CO2) is a crucial component of the Earth’s
atmosphere that helps to regulate our planet’s climate. How-
ever, human activities have caused a significant increase in
atmospheric CO2 levels, leading to climate change. Methane
(CH4) is an even more potent greenhouse gas with a global

warming potential over 25 times higher than CO2 over a 100-
year time frame. Understanding the sources and dynamics of
both atmospheric constituents is vital for developing effective
strategies to mitigate the impacts of climate change [1].

In this context the United Nations Framework Convention
on Climate Change (UNFCCC) requires countries to report
their greenhouse gas emissions, including carbon dioxide. In-
dependent verification of these reported emissions is essential
for accounting and effective reduction measures, as outlined
in the Paris climate agreement [2]. However, currently there is
no global independent emission verification system in place.
Although planned satellite missions such as the European
Carbon Constellation (CO2M, [3]) will monitor global emis-
sions, their focus is on large urban agglomerations (>Berlin)
and isolated large power plants (>10 MtCO2/yr), leaving a
significant fraction of the total emissions unaccounted for.

CO2Image is a demonstrator satellite mission envisioned to
complement global survey missions as a magnifying glass to
zoom in on sources. The platform is intended to fly in a sun-
synchronous low earth orbit at between 525 km and 575 km,
with a local overpass time of about 10:30. The national mission
is led by the German Aerospace Center (DLR) and was
originally planned to launch in 2026.

The primary mission objective is to demonstrate the feasi-
bility of quantifying carbon dioxide emissions from localized
sources such as coal-fired power plants down to medium
source strength >1 Mt/yr (with detection above 0.3 Mt/yr).
Column-integrated atmospheric CO2 enhancements from the
local background (∆XCO2) shall be measured with a precision
of 2 ppm (or better) for a dark reference scene (1.0 · 1012

photons/s/nm/cm2/sr). Point source emissions will be derived
from the gradients in XCO2 relative to the local background.
The secondary mission objective is to quantify methane emis-
sions from localized sources such as oil/gas facilities and
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TABLE I
SUMMARY OF SOME IMPORTANT COSIS INSTRUMENT PROPERTIES.

Property Value
Mass 110 kg
Swath 50 km
Spatial resolution 50 m×50 m
Spectral range 1950–2400 nm
FWHM (2.5 pix) 1.29 nm
Resolving power 1600
Aperture diameter 15.0 cm
f number 2.4
Integration time 70 ms

landfills down to source strength >300 kg/hr (with detection
above 100 kg/hr).

Localized CO2 emission monitoring poses some significant
challenges, such as the need for a sufficient ground resolution
to accurately detect and resolve plumes in specific locations
[4]. This requirement often comes at the expense of decreasing
the spectral resolution of the instrument. The COSIS (Carbon
dioxide Sensing Imaging Spectrometer) instrument aboard
the CO2Image platform observes reflected solar radiation in
the Short-Wave InfraRed (SWIR) from 1950–2400 nm where
molecular absorption allows to infer molecular concentrations
of CO2 and CH4 in the atmosphere. Moreover, SWIR obser-
vations have a sensitivity that extends down to the tropospheric
boundary layer. The moderate spectral resolution of 1.30 nm
at FWHM (Full Width Half Maximum) is optimized to max-
imize signal strength while minimizing correlations with the
surface spectral reflectance [5]. The high spatial resolution of
50 m×50 m requires to employ a ”staring” technique where
COSIS looks at each along-track row of measurements and
adjusts the viewing angle as it flies, using forward-motion
compensation. The downside of this method is that the in-
strument proceeds nearly 700 km during the observations over
a single 50 km×50 km target area. Due to the additional time
required for repositioning and stabilization, the satellite can
only select five to seven targets from the daytime side per
orbit. A list of some basic instrument parameters is given in
Table I.

II. METHODOLOGY

A. Radiative transfer and inversion

In atmospheric remote sensing the forward model F (x, b, λ)
is represented by a radiative transfer model that mimics
the observed measurements based on a given set of input
parameters. In order to retrieve atmospheric gas concentrations
such as carbon dioxide and methane, an inverse method is
employed to find (retrieve) values that best match the observed
measurements.

B. Forward modelling

Line-by-line models rely on high-resolution molecular spec-
troscopy data to calculate the absorption of radiation by
atmospheric constituents such as water vapor (H2O), CO2, and
CH4 (see Fig. 1). Moreover, these models require atmospheric
pressure, temperature, composition to accurately calculate
molecular optical depths.

Fig. 1. Exemplary monochromatic transmissions in the SWIR spectral range
for a nadir looking observer.

In the SWIR spectral range the upwelling radiance observed
by a nadir looking space-borne observer under clear sky
conditions is described by Bouguer-Beer’s law according to

F (x, b, λ) =
r(λ)

π
cos(θ)Esun(λ)

exp

− ∫
path

∑
m

αm τm

 ⊗ S(λ, γ) , (1)

where r refers to the surface reflectivity, Esun the irradiance
at top-of-atmosphere and θ represents the solar zenith angle.
The model assumes a pure gas atmosphere with the optical
depth τm given by the path integral over the molecular number
densities nm and the pressure and temperature dependent
absorption cross section km

τm =

∫
path

ds
∑
m

nm(s) km(λ, p(s), T (s)) . (2)

The unknown (to be estimated) parameters are composed
as elements of the state vector x which includes, e.g., the
molecular scaling factors αm of the individual molecules m
that scale the initial guess profiles. The instrument spectral
response (ISRF) to the monochromatic at-aperture radiance is
either modelled by the convolution S = Gauß ~ Box or read
from tabulated values.

C. Retrieval

Fitting the model in Eq. (1) to some observation yobs

by nonlinear least squares is accomplished by finding the
minimum 2-norm of the objective function with respect to x

min
x
‖yobs − F (x, b)‖2 . (3)
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Fig. 2. Schematic depiction of an iterative optimization algorithm. The
number of iterations is influenced by the tolerance criteria |∆x| / |x| < εx
and |yobs − ymod| < εy [9, Fig. 3.2].

The vector b comprises all model parameters required by the
forward model that are not retrieved by the inversion, i.e.
geometry, p, T , molecular optical properties such as line data,
etc. Nonlinear least squares methods are iterative (see Fig. 2)
and require calculating derivatives for each of the state vector
elements across the spectral axis ∇xF (x, b), starting from the
initial guess x0.

In this study the new Python version of the BIRRA (Beer
InfraRed Retrieval Algorithm, [6], [7]) level 2 processor is
used for the retrieval of column-averaged mole fractions Xm

(i.e., XCO2 or XCH4). The spectral interval for the retrieval
is 1950–2450 nm. The code employs Py4CAtS (Python for
Computational Atmospheric Spectroscopy, [8]) as its forward
model which together comprise a flexible toolbox for proto-
typing.

D. Python for Computational Atmospheric Spectroscopy

The Py4CAtS software package is a Python reimplemen-
tation of the Fortran Generic Atmospheric Radiation Line-
by-line Code (GARLIC, [10]) and is publicly available under
the link https://atmos.eoc.dlr.de/tools/Py4CAtS/index.html. In
Py4CAtS the individual steps of a IR computation are imple-
mented in separate modules and functions which are sketched
in Fig. 3. The calculation of absorption cross sections by
lbl2xs is the computationally most demanding step. This
study exploits GEISA 2020 (Gestion et Etude des Informations
Spectroscopiques Atmosph’eriques; [11]) spectroscopic line
data to compute the molecular absorption cross sections but
HITRAN (HIgh resolution TRANsmission database, [12]) can
be used alternatively. The sum of all cross sections scaled
by the molecules number densities gives the absorption co-
efficient (ac). This step (including appropriate interpolation)
is performed by the xs2ac function level-by-level. Next the
absorption coefficients are integrated by ac2dod to compute
the vertical delta (or layer) optical depths (dod) — the result is

Fig. 3. Individual steps of a SWIR computation in Py4CAtS.

a list of optical depths, one for each atmospheric layer (defined
by the lower and upper levels).

Usually, the steps lbl2xs, xs2ac, and ac2dod are com-
pleted at once by the function lbl2od. Finally, dod2tod
is used to calculate the total optical depth by summing up
all layer optical depths, which is the integral of the absorp-
tion coefficient from bottom- to top-of-atmosphere. To avoid
time-consuming recomputing of lbl2xs precomputed optical
depths were saved via odSave and then read by odRead.

E. Spectrum generation and Level-2 processing

In order to test and evaluate the performance of retrievals,
synthetic COSIS spectra from 1950–2450 nm (Level-1b data)
must be created for a set of scenes. First, high-resolution
at-aperture radiance spectra for perturbed molecular concen-
tration profiles are generated using Py4CAtS. To generate
representative signal and noise levels, the total instrument
signal is derived and COSIS radiometric calibration is ap-
plied. Note that the instrument noise is caused by several
factors, which include calibration errors, detector noise, and
background noise. Finally, the signal is converted back to
spectral radiance at instrument resolution (sampling 0.65 nm)
and XCO2 and XCH4 are then retrieved from the Level-1b
radiance data (see Fig. 4) using BIRRA.

Fig. 4. Example of 100 noisy COSIS Level-1b radiance spectra for scene with
30 % surface reflectivity and US-Standard atmospheric conditions [13], except
for CO2 and CH4 concentration profiles, which were scaled to 410 ppm and
1785 ppb, respectively.

III. RESULTS

A. Signal to noise impact

The primary objective is to assess the impact of instrument
noise on the retrieval errors of CO2 and CH4. Therefore, the
effect on the retrieval’s accuracy and precision is evaluated for
different surface albedos and concentration enhancements. The
results of this analysis will provide insight into the sensitivity
of the retrieval to signal-to-noise (SNR), which is a crucial
aspect in the preliminary design phase of the mission.

Figure 5 depicts the difference between the retrieved and
true molecular concentration as a function of the albedo. The
retrieval ensemble comprises 4000 observations ranging from

https://atmos.eoc.dlr.de/tools/Py4CAtS/index.html
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Fig. 5. Noise errors as a function of surface brightness, with the dotted line
indicating our reference scene and the dashed lines indicating the 68th and
95th percentiles of the XCO2 and XCH4 noise errors for the different spectral
setups.

0–15 ppm (CO2) and 0–50 ppb (CH4). Most fits show good
agreement and large retrieval errors are associated with low
SNR values which are typically attributed to observations
over dark surfaces. It was found that the CO2 estimates
have a higher correlation with the true values (R2=0.80)
compared to CH4 (R2=0.54). However, this is expected as
the examined CH4 enhancements are closer to the detection
limit (see Sec. I). For CO2 the results indicate that the
retrieval error is within the requirement of <2 ppm for surfaces
that reflect approximately >10 % of the incident intensity. A
similar conclusion can be drawn for the CH4 fits which yield
precisions <10 ppb for albedos approximately >20 %.

B. Impact of heterogeneous scene albedo

The aim is to evaluate the impact of heterogeneous albedos
(light/dark patterns) within a COSIS pixel on the retrieval of
CO2 and CH4. Heterogeneous albedos can cause non-uniform
illumination of the instrument slit, which distorts the Spectral
Response Function (ISRF) and hence induces a model error.
The effect is examined for extreme contrasts (5 % to 85 %) and
for more realistic scenes (10 % to 50 %). The stripe pattern
is slightly displaced with each measurement, resulting in a

Fig. 6. Systematic deviations of fitted CO2 and CH4 caused by the model
error due to non-homogeneous illumination of the instrument slit for a given
molecular enhancement. The impact is shown for different ”blur functions”.
The top panels shows the outcome for noise-free spectra while in the lower
panels noisy COSIS spectra with shifted ISRFs were fitted.

shifted light/dark boundary for the 43 examined cases.
The effective ISRF for a given albedo pattern is computed,
and the impact of the gradient in brightness across the pixel
is analyzed for different blur functions of the instrument
components: telescope (front optics), slit, and spectrometer.
The nominal COSIS setup is sl26-tel10-sp4 (Variant B, green),
where the numbers indicate the respective widths in µm.
By combining the three variants, a different blur effect is
produced, which affects the intensity gradient across the slit
width.
To quantify the impact on the fit, the retrieval assumes a ho-
mogeneous scene and convolves the high-resolution Py4CAtS
spectrum using the nominal COSIS response function, while
the COSIS spectra are generated with the distorted ISRF
according to the simulation. The results for the heterogeneous
scene fits are shown in Figure 6. All setups perform similarly
with respect to CO2, while Variant B (nominal) shows slightly
larger deviations for CH4. However, the retrieval results in-
dicate no significant difference between spatial and spectral
smearing.

C. Vertical concentration profiles

This section examines the impact of different vertical
concentration profiles on the total column fit. The column-
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integrated mole fractions of the target gas are composed of a
background and a plume component. While the background is
taken from the US-Standard atmosphere, the plume component
is modeled with a triangle or Gaussian at a specified altitude
and half width (see Fig. 7). Since the emissions that are
targeted by the CO2Image are located close to the ground
with molecular enhancements likely remaining within the
planetary boundary layer in the vicinity of the source, only the
plume component should be varied. In order to quantify the
error caused by scaling a wrong vertical concentration profile,
COSIS spectra are generated with molecular number densities
that do not match the initial guess profiles, resulting in a model
null-space error.

Fig. 7. An ensemble of low-level Gaussian shaped plume profiles that are
available in the profile scaling BIRRA retrieval.

Fig. 8 (top panel) shows the retrieval result for a background
profile fit of a low-level triangle shaped plume (truth) of CO2

(left) and CH4 (right). The error for the background profile
fit increases with concentration enhancements and is found
to be roughly 1 % and 0.5 % for realistic low-level plume
number densities of CO2 and CH4, respectively. Note that the
induced offset is positive for the former and negative for the
latter molecule. In the lower panel a Gaussian plume profile
according to Fig. 7 was employed. The results show that the
fit quality improves significantly, roughly two to three-fold for
realistic enhancements.

D. Gaussian plumes

In order to estimate the retrieved enhancements from given
point source emissions a Gaussian plume model is employed.
The model calculates the concentration enhancement field
Xpl(x, y, z) of a substance for a constant emission rate E from
a source located at (x0, y0, z0), wind speed u0 in x-direction,
and atmospheric stability σ according to

Xpl(x, y, z) =
E(x0, y0, z0)

2π u0 σy(x)σz(x)

exp

(
− (y − y0)2

2σ2
y(x)

)
exp

(
− (z − z0)2

2σ2
z(x)

)
. (4)

Fig. 8. Impact of vertical concentration profiles on the fit quality for a
reference scene with 30 % albedo. Synthetic measurement are generated with
a triangle shaped plume at 1000 m with a half width of 500 m.

The equation describes a mixing process that results in a
Gaussian concentration distribution both in crosswind and in
the vertical directions, centered at the line downwind from the
source. The standard deviations of the distribution, σy(x) and
σz(x), represent the plume’s spread in the y and z-directions
and is given by the turbulent diffusion coefficients

σy,z(x) =

√
2Ky,z

x

u0
, (5)

where Ky=40 m2/s, and Kz=10 m2/s represent rather typical
values in the lower troposphere. Note that the plume’s spread
increases with distance from the source.

The simulations are performed for a model domain of
(10 km, 1 km, 100 km) with a native model resolution of (5 m,
5 m, 10 m) in the x, y, and z directions. Five sources with stack
heights between 10 m and 100 m, and emission rates close to
the quantification and detection limits are added. Subsequently,
the model output is convolved with a box that mimics COSIS’s
50 m×50 m ground resolution. A surface albedo chart is added
to generate synthetic spectra according to Sec. II-E.
Single overpass retrieval output for the 10 km×1 km scene
is illustrated in Fig. 9. The top panel depicts the vertically
integrated CO2 mole fractions while the corresponding CH4

concentrations are shown below. The plumes are characterized
by an enhancement relative to the local background. The
elevated concentrations downwind are well captured with noise
levels primarily depending on the surface reflectivity (also see
Fig. 5).
The frequency distribution of mole fractions is shown in
Fig. 10. The figure depicts the single and averaged retrieval
output for ten overpasses together with the true values. The low
frequency of XCO2 and XCH4 for pixels with close to zero
enhancements is caused by the retrieval noise which yields
negative values for some of those observations. However, note
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Fig. 9. Retrieval output for concentrations fields ∆X from five point-like
sources with various emission rates. Wind speed u0=4 m/s. Note that the CH4

emissions are close to the detection limit while CO2 sources are emitting
around the quantification limit.

that this error is reduced in the averaged output, leading to a
smoother distribution of values that is closer to the truth.

E. Emission estimates

In order to compute the source rate E from column-
averaged mole fractions X the inferred concentration enhance-
ment ∆X = X − Xbg is expressed as the column mass
enhancement

∆Ω =
Mm

Mair
Ωair ∆Xm , (6)

where Mm and Mair are the molar masses of molecule m and
dry air, respectively, and Ωair is the column of dry air.

Various methods have been used in the past to quantify point
source emission rates from plume observations [14]–[16]. In
this study we employ the cross-sectional flux method (XSFM)
where the source rate E is estimated by computing the flux
through one or more cross sections orthogonal to the plume
axis. Figure 11 depicts the setup with transects along the y
axis perpendicular to the wind. By mass balance, the source
rate E must be equal to the product of the wind speed and
the column plume

E =

∫ ∞
−∞

u0(x, y) ∆Ω(x, y)dy , (7)

Fig. 10. Histogram of fitted CO2 (top) and CH4 (below) enhancements
from a scene with point-like emissions according to Fig. 9. The true value
represents the Gaussian model output without any retrieval applied.

where the integral is approximated in the observations as a
discrete summation of the product u0(x, y)∆Ω(x, y) over the
detectable width of the plume. Since a single transect suffers
from noise the average cross-sectional flux is computed (using
two to five transects). Note that in Eq. (7) we assume the model
wind u0 to be equal to the effective wind. The latter is used to
describe a vertical average wind speed over the plume extend
which is required in real world scenarios or LES (Large Eddy
Simulations, [14, Sec. 6]).

TABLE II
EMISSION RATE ESTIMATES VIA THE XSFM FOR A SINGLE CO2 SOURCE.

UNCERTAINTIES ARE CAUSED BY INSTRUMENT NOISE.

Albedo (%) CO2 emission rates E (Mt/yr)
N(µ, σ) 5 1 (QL) 0.3 (DL)
N(50, 20) ±.08 (≈1.5%) ±.09 (≈10%) ±.09 (≈30%)
N(30, 20) ±.24 (≈5%) ±.29 (≈30%) ±.21 (≈70%)
N(10, 10) ±.43 (≈10%) ±.48 (≈50%) ±.45 (≈150%)

Table II and III present the outcome of estimated emissions
E based on mass concentration enhancements ∆Ω inferred
from synthetic COSIS observations. The analysis is conducted
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Fig. 11. Enhancements in mass concentration of CO2 and CH4 for a source
emitting at the anticipated COSIS quantification limit (QL). The downwind
transects used for the emission estimates are marked by black and white
dashed lines.

for three distinct albedo maps and varying source strengths.
The data reveal a trend towards larger absolute errors as
albedo levels decrease, but no significant dependence on the
source strength and hence the magnitude of enhancement.
Consequently, relative errors increase towards lower column
mass enhancements over a given scene. The table indicates that
instrument noise alone is responsible for ≈10%–50% of the
uncertainty in the emission rates at the specified quantification
limit (QL). It is found that distinction of the source from
background becomes unfeasible for low albedo scenes at the
detection limit (DL). Based on these findings the QL and DL
in the mission requirements document seem to be reasonable
and justified.

TABLE III
ESTIMATES OF CH4 SOURCE STRENGTH WITH THE XSFM.

Albedo (%) CH4 emission rates E (kg/hr)
N(µ, σ) 500 300 (QL) 100 (DL)
N(50, 20) ±30 (≈5%) ±25 (≈10%) ±35 (≈35%)
N(30, 20) ±60 (≈10%) ±55 (≈20%) ±65 (≈65%)
N(10, 10) ±155 (≈30%) ±160 (≈55%) ±130 (≈150%)

IV. CONCLUSIONS

The study evaluates the expected COSIS performance for
the CO2 and CH4 estimates and discusses non-instrumental
effects. The investigations are conducted as part of the pre-
liminary design phase of the CO2Image mission.

The SNR analysis in Sec. III-A showed that large retrieval
errors were associated with low SNR values over dark sur-
faces. It is worth noting that low SNR or albedos do not
introduce any systematic bias to the retrieved quantities. If
the number of samples is sufficiently high, the mean matches
the truth. Overall, the retrieval errors were within requirements
for specific albedo ranges for both gases.

The analysis on heterogeneous scenes in Sec. III-B exam-
ined the impact of the gradient in brightness within a COSIS
pixel on the ISRF for different instrument setups and found
that the setups perform similarly with respect to CO2, but
there were slightly larger deviations for CH4.

The investigations in Sec. III-C studied the impact of
different vertical concentration profiles on the total column fit
and found that the fit quality improves two to three-fold for
realistic enhancement values when a low-level plume is scaled
instead of the US-Standard background reference profile.

The paragraphs in Sec. III-D describe the retrieval output
for a Gaussian plumes scene. The results reveal that single
overpass fits show noise levels in accordance with findings
in Sec. III-A while averaging the retrieval output for multiple
overpasses yields a smoother distribution of enhancements that
is in better agreement with the truth.

In Sec. III-E uncertainties in the emission estimates caused
by instrument noise are presented. It is found that COSIS
noise accounts for a significant fraction of uncertainty, ranging
up to 50% for low albedo scenes at the QL. A noteworthy
observation is also the increase in absolute errors with de-
creasing albedo levels, which poses challenges for emission
quantification in low albedo environments (Central Europe?!).
The results find that discerning the emission source from
background concentrations becomes increasingly difficult at
the currently defined DL in low albedo scenes. To put the result
into perspective the photon flux specified for the quantification
limits in Sec. I corresponds to a radiance of ≈1.0 at 2100 nm
when converted to units given in Fig. 4.

The results shown in this report represent an overview of
the current state. As we continue to conduct further research
and analysis, the findings may evolve and be updated in future
publications accordingly.
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