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Abstract: Seagrasses provide ecosystem services worth USD 2.28 trillion annually. However, their
direct threats and our incomplete knowledge hamper our capabilities to protect and manage them.
This study aims to evaluate if the NICFI Satellite Data Program basemaps could map Seychelles’
extensive seagrass meadows, directly supporting the country’s ambitions to protect this ecosystem.
The Seychelles archipelago was divided into three geographical regions. Half-yearly basemaps from
2015 to 2020 were combined using an interval mean of the 10th percentile and median before land
and deep water masking. Additional features were produced using the Depth Invariant Index,
Normalised Differences, and segmentation. With 80% of the reference data, an initial Random Forest
followed by a variable importance analysis was performed. Only the top ten contributing features
were retained for a second classification, which was validated with the remaining 20%. The best
overall accuracies across the three regions ranged between 69.7% and 75.7%. The biggest challenges
for the NICFI basemaps are its four-band spectral resolution and uncertainties owing to sampling
bias. As part of a nationwide seagrass extent and blue carbon mapping project, the estimates herein
will be combined with ancillary satellite data and contribute to a full national estimate in a near-future
report. However, the numbers reported showcase the broader potential for using NICFI basemaps
for seagrass mapping at scale.

Keywords: seagrass; Sentinel-2; blue carbon; Seychelles; PlanetScope NICFI; nationally determined
contributions; Google Earth Engine

1. Introduction

Seagrass meadows provide ecosystem services worth USD 2.28 trillion annually [1],
such as blue carbon sequestration [2], provisioning of habitats and nurseries for com-
mercially important fishes [3] and endangered species [4], as well as improving water
quality [5]. Unfortunately, these very valuable ecosystems are facing many threats [6,7].
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Since Waycott et al. [8] highlighted the large gaps in knowledge for the distribution and
trends of seagrass habitats, our current spatial knowledge of seagrass habitats has im-
proved [6]. However, some of these gaps still exist, owing to resource limitations, nascency
in the pertinent data and scalable analytics, and access issues, despite the need to push
towards protecting the seagrass meadows [6]. Furthermore, the aforementioned gaps
imply unaccounted seagrass losses in regions of poor data availability, such as Africa and
Southeast Asia [9,10]. As such, this reinforces the need for more investment to understand,
monitor, and conserve these habitats.

The knowledge gaps are not only restricted to the unknown seagrass habitats. While
25% of the global seagrass blue carbon is in World Heritage sites, 7 out of 28 of these sites had
no State of Conservation reports, and many lacked a long-term monitoring programme [11].
Many seagrass conservation or management programmes are concentrated on a small
spatial or temporal scale [7], as coastal wetlands, including seagrasses, can be difficult
to access and survey [12]. Without basic information on the distribution and extent of
seagrasses, it is hard to assess levels of protection [13]. In comparison to the often spatially
associated habitats of coral reefs and mangroves, the presence and services provided by
seagrass meadows are generally less recognised by the general public, even in the Great
Barrier Reef World Heritage Area, where they cover a larger area [14]. Such neglect is a
challenge if the seagrasses are to be adequately protected, managed, and restored to avoid
further degradation and revert to previous losses [15]. An easily accessible and large-scale
approach to seagrass mapping and monitoring is needed to put seagrasses on the map to
increase their visibility and perceived value [16]. This is essentially the scope and value of
remote sensing, including satellite Earth Observation.

Remote sensing-driven efforts can map and monitor global surface habitats, especially
for areas that are not easily accessible [2,17,18]. This has been further enhanced with
the introduction of cloud computing, such as the Google Earth Engine (GEE) platform,
which provides anyone with easy access to computational resources to map the Earth’s
surface across space and time [19,20]. Since then, seagrasses have been mapped in GEE
on a national and regional level using Sentinel-2 [16,21–23] and Landsat 8 [24]—both
free and publicly available satellite archives that have a spatial resolution of 10 m and
30 m, respectively [2]. Traganos et al. [16] mapped the Greek seagrass on a national
level using a multitemporal approach, achieving an overall accuracy of 72%, and later
extended it to the countries around the Mediterranean Sea with an average overall accuracy
of 72% [22]. By using a soft probability classifier to map national seagrasses in Kenya,
Tanzania, Mozambique, and Madagascar, overall mapping accuracies ranging from 73.2%
to 89.6% were achieved in East Africa [23]. By including segmentation, texture features,
as well as a Principal Component Analysis in conjunction with the variable selection
and dataset normalisation, Blume et al. [21] were able to increase the overall accuracy to
71.0% and 76.6%, depending on whether the minimum or maximum seagrass extent of the
Bahamas was considered. Sebastian et al. [25] mapped the seagrasses in Kalpeni Lagoon,
India, over ten epochs between 2003 and 2020, achieving an R2 value of 0.97 when validated
with field survey data.

In 2017, as part of Norway’s International Climate and Forest Initiative (NICFI) scheme,
the Norwegian Government and PlanetScope released the NICFI Basemap composite
images for monitoring terrestrial forests over time [26,27]. With a higher spatial resolution
of 4.77 m, this dataset is also available on GEE. While optimised for terrestrial and forest
applications, a substantial buffer area extends the data from the coastline across much of
the neighbouring shallow water regions globally. This presents an opportunity to map
the shallow coastal habitats from NICFI basemaps. In relation to Seychelles, much of the
aforementioned central region is captured on NICFI basemaps, which could be used to map
the seagrasses in that region. Thus, this study evaluates the use of the NICFI basemaps to
map seagrasses in Seychelles and, more broadly, across national geographical scales. The
results of this paper will be combined with other datasets as part of a larger study to map
and estimate seagrass distribution in the Seychelles [28].
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2. Materials and Methods
2.1. Study Site

The Seychelles is an archipelagic nation in the Western Indian Ocean (Figure 1). It is the
smallest African country by land area (455 km2) [29,30] but has the largest marine area of
the continent with an Exclusive Economic Zone (EEZ) of ~1.35 million km2 [30]. Its shallow
habitat encompasses coral reefs and seagrass meadows. Previous studies have mapped
seagrasses in these shallow waters [31]. However, owing to the difficulty in accessing some
of the major islands, the national seagrass map in Seychelles was incomplete when the
present study was initiated, and its total area was unclear [32].
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Figure 1. Map of the Seychellois NICFI composite image with the mapped seagrass extent in green
derived from this study, Sentinel-2, as well as the previous dataset [28]. The three geographical
regions adopted by this study are also displayed here. The north region had the most reef seagrasses
that were not captured by the NICFI image.

At least eight species of seagrasses have been recorded in Seychelles [32], while more
recent estimates suggest the number may be as high as 12 [28]. Many seagrass meadows
were known to occur in the north on the Mahé Plateau [31], but also in other regions [33].

The Seychelles is highly vulnerable to climate change [34]. Their coral reef habitats are
at risk, along with adjacent coastal habitats such as the seagrass meadows [34,35]. Further-
more, seagrass meadows themselves are also vulnerable to the effects of environmental and
human activities [36]. In light of their rich marine biodiversity [37–39], it is thus natural for
Seychelles to take the lead in protecting these habitats, including seagrasses [40].

Seychelles is a pioneer proponent of the Blue Economy, which aims to reduce or stop
the loss of marine biodiversity while allowing for economic development [40]. Seychelles
recently committed to protecting all its seagrass meadows by 2030 in its most recently
updated Nationally Determined Contribution (NDC) to the Paris Agreement [28]. Naturally,
implementing this commitment and strengthening the Blue Economy requires a spatial
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inventory of their blue carbon habitats, such as the seagrass meadows, which could then be
extended to blue carbon accounting [2]. For large-scale marine mapping applications in
the tropics, optical imagery is the cheapest and most efficient approach, particularly when
imagery is cloud-free, the sea surface is calm and wave-free, and the water is not turbid,
permitting a clear view of the seabed conditions that well-represent much of the Seychellois
waters [41]. Unfortunately, the central region of Seychelles (Figure 2) was not acquired by
Sentinel-2 imagery until mid-2021, which resulted in a lack of usable images in that region.
This meant that the Sentinel-2 archive provided less information to map the seagrasses in
that central region compared to the other geographic locations (Figure 2).
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for Seychelles.

2.2. Datasets

The study applies the NICFI Satellite Data Program’s Basemaps for Tropical Forest
Monitoring—Africa dataset on the Google Earth Engine to the application of seagrass
mapping. These basemaps are multitemporal composites of atmospherically corrected
PlanetScope Surface Reflectance images sourced from Planet Labs PBC, with a half-yearly
range from December 2015 to August 2020 and a monthly range from September 2020 to the
present [26]. Compared to a single PlanetScope image, the NICFI basemaps use statistics
to bypass issues when lacking good images during certain time periods [42,43] while
retaining the high spatial resolution of PlanetScope images for seagrass classification [44].
Although the atmospheric correction is terrestrial, previous use of terrestrially corrected
surface reflectance images in other satellite imagery, such as the Sentinel-2 Level 2A Surface
Reflectance Product on GEE, was found to still produce useful results [23,45]. As with the
standard PlanetScope imagery, the spatial resolution of the NICFI basemaps is better than
Sentinel-2 or Landsat 8 at 4.77 m (Table 1) [12]. Furthermore, the temporal resolution of
PlanetScope imagery is better as there is a high probability of a standard quality, cloud-free
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image per five consecutive days in many parts of the world [46]. As such, it has been used
for high-resolution time series for forest monitoring [43]. The coverage of NICFI basemaps
extends to the central Seychelles, which was not covered by Sentinel-2 until May 2021.
However, the spectral resolution of NICFI basemaps features only four bands—blue, green,
red, and near-infrared [26]. Owing to the stretched use of its buffered region from the
coastline, seagrasses that are too far from the coastline are naturally excluded (Figure 1),
but this also substantially removes large areas corresponding to deep water pixels. More
importantly, the NICFI basemaps were able to cover a substantial area of central Seychelles
that was excluded from the Sentinel-2 data collection (Figure 2). Thus, NICFI basemaps
provided the most viable data for mapping seagrasses across much of the central region.

Table 1. Attributes of Sentinel-2 imagery [47] against PlanetScope NICFI basemaps [26].

PlanetScope NICFI Sentinel-2

Temporal Range December 2015 to present June 2015 to present (Level 1)
March 2017 to present (Level 2)

Image Type

Half-yearly composite (December 2015
to August 2020)

Monthly composite (September 2020
to present)

Single Images

Image Level Surface reflectance Top of Atmosphere (Level 1)
Surface Reflectance (Level 2)

Spectral Resolution Four bands (R, G, B, N) 13 bands

Spatial Resolution 4.77 m
10 m
20 m
60 m

Temporal Resolution of Sensor 36 h on average [48] 5 days

Pre-processing/Atmospheric Correction
MODIS-based atmospheric correction
Normalisation and harmonisation to

Landsat SR data

Radiometric correction,
Orthorectification (Level 1)

Atmospheric correction (Level 2)

Reference data were pooled across fieldwork and included snorkel and diving transect
surveys, sediment coring sites, historical field observations, and an expert knowledge
annotated dataset. While the dataset was collected for a range of purposes, it was the
best available dataset and thus was used for the mapping of seagrass and other benthic
classes [49]. Our study built on previous mapping efforts in the region to define a shallow
(0–10 m) and deep subclass (>10 m to maximum optical depth), using the benthic classes of
the Allen Coral Atlas [50] as a spatial filter for the aforementioned depth subclasses [50,51].
Owing to a diversity of dataset types, all vectors were converted to points, and a declut-
tering algorithm was performed to remove points that were closer than the minimum
spatial resolution of the NICFI basemaps. However, an area or buffer exclusion was not
performed since the localised scale of the field surveys means that much data could easily
be discarded down to singular points using the kilometre-wide buffers usually employed
for remote sensing. As there was an excess of sand and seagrass points, these classes were
thinned down to a larger degree compared to the other classes to reduce the influence of
the dominant class on the Random Forest classifier [52].

2.3. Earth Observation Framework

A fully cloud-native algorithmic framework was implemented for the data processing
and image classification (Figure 3).
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2.3.1. Multitemporal Data Analytics for Planet NICFI Basemaps

The NICFI half-yearly composite basemaps from 2015 to 2020 were selected, as the
monthly composites from end-2020 onwards have issues with cloud and other atmospheric
contamination. A multitemporal composition of 14 basemaps was then performed based
on an interval mean of the 10th and 50th percentile. This statistical metric is the best-
performing in this region over other approaches such as the 20th percentile, median, as
well as other combinations of interval means. The lower and upper percentiles help to
reduce the effects of the darker cloud shadows as well as the brighter sunglint and remnant
clouds, respectively [53]. A mean of these two images combines their strengths together to
produce a better composite. Furthermore, this approach alleviates the influence of tidal
inundations [12].

The composite image was divided by pi to obtain the normalised water-leaving
reflectance. Following, the land was masked using a Normalised Difference Water Index
(NDWI) adapted from Landsat 8 [54] and proven useful in Sentinel-2 Surface Reflectance
Products [53]. Deep water masking was performed using an adapted true colour HSV
approach owing to the band limitations of PlanetScope [55], as well as manual masking
for the pixels that were easily confused [41,49]. Owing to the limited number of spectral
bands and the use of variable importance downstream to retain only the most useful
features, the N band was retained for the downstream feature generation phase rather than
removed by standard atmospheric correction. This prevents the overcorrection of aquatic
pixels at the shallowest waters and allows the N band to be useful in detecting intertidal
seagrasses [12,42].

To remain within the computational quota of GEE, the classification was separated into
three geographical regions—north, central, and south (Figure 2). If the computational quota
of GEE had been exceeded, then the code script would time out or terminate, depending on
the type of error, and any uncompleted processes would fail to yield any valid results. For
the same computational quota reason, the spatial resolution was computed at 5 m instead
of 4.77 m.

2.3.2. Feature Engineering

Three methods were used in the feature generation phase: Normalised Difference
indices, Depth Invariant Indices (DII), and segmentation.

All combinations of the four spectral bands were used to generate different Normalised
Difference (ND) indices, including the Normalised Difference Vegetation Index (NDVI) and
NDWI. Equation (1) shows the general equation for the Normalised Difference Index. As
aforementioned, NDVI has been used for intertidal seagrass detection [12]. Although the
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NDWI might have been used upstream for land masking, it was bulk-produced and left to
the variable importance approach downstream to weigh its contributions. Meanwhile, the
blue and green bands are usually better for detection in deeper waters, as their penetration
into the water column is better than red or near-infrared [51]. Thus, Normalised Difference
Indices of blue and green combinations were also included in the analysis.

Normalised Di f f erenceij =
i− j
i + j

, (1)

where i and j are the bands used. Only a combination was used instead of the per-
mutation, as the combination ij would be the negative of combination ji, meaning
duplicated information.

The Depth Invariant Index was proposed by Lyzenga et al. [56], who found that two
logarithmically-transformed bands showed a linear relationship with respect to relative
depth, so long as the data are from the same class or cover. The DII is a good substitute for
bathymetry and is thus used in a classification where bathymetric data are unavailable [56].
The same spectral band combinations as the ND indices were also used to derive different
DII. The N band was included because there are linear relationships between the N band
combinations similar to the concept of DII. While the blue (B) and green (G) bands are
generally proposed for aquatic remote sensing [51], the band combination might also be
situational and case-specific [57], thereby necessitating an analysis across the possible
band combinations.

Depth Invariant Indexij = ln(Li)−
[

ki
kj

ln
(

Lj
)]

ki
kj
= a +

√
a2 + 1

a =
σii−σjj

2σij
,

(2)

where Li and Lj are the reflectance values of bands i and j, ki
kj

is the ratio attenuation
coefficient of bands i and j, σii is the variance of band i, σjj is the variance of band j,
and σij is the covariance of both bands i and j. The high spatial resolution of the NICFI
basemaps allows for a finer object-based approach. The GEE-inbuilt Simple Non-Iterative
Clustering (SNIC) segmentation function (ee.Algorithms.Image.Segmentation.SNIC) and
the function to connect similar pixels based on the previous function into an object
(ee.Image.reduceConnectedComponents) were used to produce the segmentation fea-
tures [43]. The SNIC is a polygonal partitioning algorithm based on Simple Linear Iterative
Clustering (SLIC), which segments an image into smaller polygons or superpixels using
seeds or pixels selected from a grid [58]. Unlike SLIC, which involves multiple iterations of
centroid computation per run, SNIC performs a constant calculation of centroid values after
each pixel is assigned to a cluster, thereby allowing for the segmentation to be completed in
one run without needing iterations [58]. As such, it is highly suitable for GEE, which is not
iterative [19]. This approach was also used to enhance the classification and identification
of different wetland types on GEE [59] and improve seagrass species identification in single
PlanetScope images [44]. Parameter optimisation was performed for the segmentation
seed grid size (seed grid) and compactness as well as for the maximum size of the reduced
connected components (Reduce Connected Components) based on the overall accuracy
of the classification. The tested ranges are 5, 10, and 15 for seed grid size, 0, 0.2, 0.4, 0.6,
and 0.8 for compactness, and 10, 100, and 1000 for the reduced connected components. The
grid size and reduced connected components cannot be increased further, given the size
of the PlanetScope NICFI composite images in this study, or else the calculations would
exceed the computational quota of GEE and not produce any valid results.

2.3.3. Normalisation of Reference Data

The processed image was then sampled with the cleaned reference data, which were
then split into a training and test dataset in an 80:20 ratio. Following, the training dataset
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was normalised per class to remove the lowest 5-percentile and highest 10-percentile
spectral values that might affect the classifier [21,52]. This would ensure that the trained
classifier was not biased by any possible extreme or anomalous training data, which would
allow it to be more suitable for transfer to other areas of the same geographic region. The
test dataset was not normalised to maximise the amount of data points used for testing as
well as to ensure that the quantitative penalty from misclassifications would not be reduced
(Figure 4).

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 16 
 

 

The processed image was then sampled with the cleaned reference data, which were 
then split into a training and test dataset in an 80:20 ratio. Following, the training dataset 
was normalised per class to remove the lowest 5-percentile and highest 10-percentile spec-
tral values that might affect the classifier [21,52]. This would ensure that the trained clas-
sifier was not biased by any possible extreme or anomalous training data, which would 
allow it to be more suitable for transfer to other areas of the same geographic region. The 
test dataset was not normalised to maximise the amount of data points used for testing as 
well as to ensure that the quantitative penalty from misclassifications would not be re-
duced (Figure 4). 

 
(a) 

 
(b) 

Figure 4. Cont.



Remote Sens. 2023, 15, 4500 9 of 16Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 16 
 

 

 
(c) 

Figure 4. Boxplot showing the class spectral profiles of the normalised training (left) and original 
validation (right) dataset for each class in the north region for (a) the original spectral bands, (b) the 
Normalised Difference indices, and (c) the Depth Invariant Indices. 

2.3.4. Classification 
The Random Forest function in GEE (ee.Classifier.smileRandomForest) was used for 

classification using the default parameters [16,21–23], which includes a 50:50 random split 
of the training dataset for its training. The Random Forest model is a supervised machine-
learning ensemble approach of many independent decision trees [60]. This model is robust 
against noise and overfitting [60] and is able to manage any collinearity or non-linearity 
between the predictor variables [61]. It has also performed well with high accuracies for 
coastal habitat mapping over a range of scales and in different parts of the world [21–
23,50]. The model was first trained using only the training dataset with all the features 
before a variable importance (ee.Classifier.explain) was used to identify and extract the 
top ten features [21,42]. Then, the model was trained using the training dataset again with 
only these ten features for classification. The frequency plots of the features that are se-
lected within the top ten features per region can be found in the Supplementary Materials. 

2.4. Accuracy Assessment 
The performance of the classification was quantitatively assessed via the overall im-

age accuracy, the seagrass-class producer’s and user’s accuracy, as well as the seagrass-
class F1 score using the test dataset [16,21–23]. These metrics are commonly used in re-
mote sensing [62]. Given a class i:  𝐹1 =  2 × 𝑃𝐴 ×  𝑈𝐴𝑃𝐴 + 𝑈𝐴   𝐶𝑙𝑎𝑠𝑠 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝐴 =                    𝐶𝑙𝑎𝑠𝑠 𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑈𝐴 =                 , (3) 

Figure 4. Boxplot showing the class spectral profiles of the normalised training (left) and original
validation (right) dataset for each class in the north region for (a) the original spectral bands, (b) the
Normalised Difference indices, and (c) the Depth Invariant Indices.

2.3.4. Classification

The Random Forest function in GEE (ee.Classifier.smileRandomForest) was used for
classification using the default parameters [16,21–23], which includes a 50:50 random split
of the training dataset for its training. The Random Forest model is a supervised machine-
learning ensemble approach of many independent decision trees [60]. This model is robust
against noise and overfitting [60] and is able to manage any collinearity or non-linearity
between the predictor variables [61]. It has also performed well with high accuracies for
coastal habitat mapping over a range of scales and in different parts of the world [21–23,50].
The model was first trained using only the training dataset with all the features before
a variable importance (ee.Classifier.explain) was used to identify and extract the top ten
features [21,42]. Then, the model was trained using the training dataset again with only
these ten features for classification. The frequency plots of the features that are selected
within the top ten features per region can be found in the Supplementary Materials.

2.4. Accuracy Assessment

The performance of the classification was quantitatively assessed via the overall image
accuracy, the seagrass-class producer’s and user’s accuracy, as well as the seagrass-class
F1 score using the test dataset [16,21–23]. These metrics are commonly used in remote
sensing [62]. Given a class i:

F1i =
2×PAi×UAi

PAi+UAi

Class Producer′s Accuracy, PAi =
number o f correctly classi f ied samples f or class i

number o f samples in re f erence data f or class i

Class User′s Accuracy, UAi =
number o f correctly classi f ied samples f or class i

number o f classi f ied samples f or class i ,

(3)

The F1 score is bounded between 0 and 1, with higher values suggesting a better
classification of class i. Nevertheless, a high F1 score may still be susceptible to commission
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errors, which happens with a high PAi and a low UAi, or omission errors, which is the
converse. As such, the study would also consider the difference in PAi and UAi when
understanding the possible errors in the resultant map.

3. Results

The classification with segmentation features achieved the best overall accuracies
between 69.7% and 75.7%. The corresponding parameters for the segmentation functions
are also reported in Table 2. The producer’s and user’s accuracy for the seagrass class in
the north is similar at 62.6% and 63.9%, respectively, suggesting a good balance between
sensitivity and specificity. In the two other regions, the producer’s accuracy of the seagrass
class is greater than the user’s accuracy by at least 5%, which would suggest a tendency for
commissioning errors and overestimation. Nonetheless, both regions had a better F1 score
for the seagrass class than for the north.

Table 2. Classification accuracies of the best segmentation parameters. The optimised parameters are
also given in this table.

North Central South

Overall Accuracy 69.7% 73.4% 75.7%
Producer’s Accuracy (seagrass) 62.6% 89.2% 86.9%

User’s Accuracy (seagrass) 63.9% 77.7% 81.5%
F1 score (seagrass) 63.3% 83.1% 84.1%

Seed Grid size 10 15 15
Compactness 0.6 0.6 0.8

Size for Reduce Connected Components 1000 100 1000

A total of 798.97 km2 of seagrasses were identified, whose bulk is in the central and
south regions. The north region had the least total predicted seagrass meadow at 39.41 km2,
while the central region had the most at 428.18 km2 (Table 3). Most of the predicted seagrass
areas in the north are located around the Inner Islands of Mahé, Praslin, and La Digue, as
well as at Denis and Bird Islands.

Table 3. Estimated seagrass extent in Seychelles by region based on this study, the Allen Coral Atlas,
and a combined approach using this study, Sentinel-2, expert knowledge, and other datasets [28].

Region
Total Predicted Seagrass Area (km2)

Planet NICFI Allen Coral Atlas Combined Approach

North 39.41 7.48 356.90
Central 428.18 24.72 725.82
South 331.38 174.63 337.93
Total 798.97 206.83 1420.65

Compared to the Allen Coral Atlas (ACA) project, which does not map deeper sea-
grasses (below 10 m) [50], more seagrasses were mapped in the deeper central region in
this study (Figure 4). More shallow seagrasses were predicted in the north and south
regions by this study as compared to the ACA. However, the deeper seagrasses could not
be mapped in the north, as there was confusion between the darker seagrass cover and
the dark optically deep waters owing to insufficient training data for seagrasses in those
deeper extents. There was also some misclassification by ACA at Cosmoledo in the south
(Figure 5), which was suppressed by the deep water mask in this study.
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4. Discussion

This study is the first to explore the suitability of the high spatial resolution NICFI
basemaps to map and estimate the national seagrass extent and optically shallow seabed of
a given country; in our case study, this of archipelagic Seychelles. A total of 798.97 km2 of
seagrass meadows was mapped to an accuracy between 69.7% and 75.7%. Such application
is beyond the intended use of these NICFI basemaps [26,43] and thereby expands the
applications of these basemaps. Furthermore, with the restricted options for benthic remote
sensing, the possibility of an alternative product or data source is helpful and broadens
the available options for the task. In this study, the insufficient coverage by Sentinel-2 over
the Seychelles would have meant that much of the central region of the Seychelles could
possibly not have been mapped (Figure 2). Beyond seagrasses, the NICFI basemaps could
also be used for other coastal, intertidal, and nearshore marine habitats, such as coral reefs
and algae. The increased spatial resolution of NICFI provides the potential for a finer-scaled
map than Sentinel-2 (Table 1). The use of reference data collected from accessible regions
allowed map-based estimates of seagrasses in less accessible islands, atolls, and offshore
banks. Without the judicious use of reference data, these less accessible places are unable to
be mapped, and their seagrass meadows could not be fully accounted for within the NDCs.

The mapped seagrasses in this study are substantially less than the seagrass extent
of 20,831.68 km2 reported in an earlier ecosystem services report [31], based on photoin-
terpretation of satellite imagery. In comparison, the use of a reproducible classification
model reduces the subjectivity that might be incurred during photointerpretation. By
leveraging the power of cloud computing and parallel processing [21–23], an area as large
as Seychelles can be quickly mapped over the required time and labour needed for the
photointerpretation approach. Meanwhile, version 7 of the UNEP-WCMC seagrass dataset
of the Seychellois seagrass contained only point and no polygon data in the region; hence,
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no meaningful comparisons could be made [63]. The Allen Coral Atlas Benthic Layer of
Seychelles mapped seagrasses only up to 10 m in depth, provided a national estimate
of 207.03 km2, and excluded the deeper reef seagrasses found in the central region. Fur-
thermore, the training dataset used in the present study is obtained by local experts and
collaborators. As such, these mapped areas provide a better estimate of the actual seagrass
distribution in the Seychelles currently and contribute to filling knowledge gaps in the
global seagrass extent [6]. Addressing these gaps will better inform scientific research and
management policies that rely on such data in turn.

4.1. Challenges

Despite its potential, the NICFI basemaps face challenges with their four-band spectral
resolution. Furthermore, the lack of reference data designed for remote sensing research
would introduce more uncertainties in the results [49]. In conjunction, it would naturally
stress the image processing, which again leads to more uncertainties.

Owing to the physics of light travelling through a water column [64], the suitable
range of optical wavelengths is generally restricted to the visible spectrum [51]. Seagrass
may have similar spectral profiles as certain greener macroalgae species or appear brown
in different conditions that confuse it instead with brown macroalgae [41,42,65]. This was
partly mitigated with the addition of features [43,44,56]. Although the derived features
would have some correlation with its source band(s), the improved quantitative and
qualitative results demonstrate their use to alleviate the low spectral feature space of the
NICFI basemaps while not substantially under or overestimating the seagrass meadows.
Similarly, Vizzari et al. [43] achieved better results with an object-based Random Forest
classification on NICFI basemaps over the Sentinel-2 images for terrestrial forest detection,
thereby further enforcing the use of feature generation to improve the classification.

Uncertainties may also arise from the reference dataset. An ideal dataset for remote
sensing should be balanced and representative of the whole image [52]. Unfortunately, the
inaccessibility to the banks around the northern plateau and many Outer Islands compared
to the inhabited areas of the Inner Islands would naturally bias the collected data to the
areas of easy access [29]. It is costly to organise field surveys in less accessible places, and
even citizen science is susceptible to spatio-temporal clustering bias related to accessibility
or popularity [66]. To illustrate, the low availability of deeper seagrass spatial data came
from a reuse of data designed for other purposes, such as coring at deeper depths [49].
Processing the reference data to fit remote sensing research introduces its own uncertainties,
even as it alleviates other issues, such as anomalous values or comparability between
different classes [21].

While PlanetScope had normalised and harmonised their NICFI basemaps using
Landsat data with the purpose of detecting deforestation, these basemaps are not a product
of a radiative transfer model [26]. This aligns with a recommendation to correct the images
with a data fusion approach made by Frazier and Hemingway on some of the shortcomings
of PlanetScope images [67]. Additionally, the multitemporal composite of the composites
leverages a statistical approach to further reduce possible anomalies [54]. Although a
region of the Seychelles was not captured by Sentinel-2 until mid-2021, this is unlikely for
other sites globally. As such, future alternatives include data harmonisation and/or fusion
with Sentinel-2 to improve its image quality while retaining its high spatial resolution [68].

Ultimately, the NICFI basemaps are terrestrially focused [26]; thus, there is a limit to
its coastal buffer. For offshore shallow reefs that are substantial and still visible via satellite
imagery, some of these reefs and seagrass meadows lie outside of the NICFI basemaps. As
such, supplementary datasets, such as Sentinel-2, had to be included to fully comprise the
national extent of the Seychellois seagrass meadows [28].

4.2. Transferability

So long as the shortfalls of the NICFI basemaps are both considered and managed,
NICFI is easily incorporated into GEE workflows to create seagrass maps of better spatial
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resolution than other publicly available satellite imagery such as Sentinel-2 and Land-
sat 8. The ability to transfer methods across multiple data sources is also well demon-
strated by this study, as much of the framework was originally developed on Sentinel-2
imagery [16,22]. Owing to spectral and spatial resolution differences as well as the nature
of the NICFI basemaps as image composites (Table 1), some adaptations and finetuning of
processing workflows are to be expected. The workflow identified here can, however, be
easily transferred to other sites. It is highly accessible to aspiring researchers or managers
and has a relatively low barrier of knowledge to entry [16]. The resulting spatially explicit
maps and estimates are expected to aid blue carbon accounting efforts, such as for the
Seychelles’ Blue Economy [40], in order to achieve a tangible outcome for the conservation
and management of seagrasses based on data-driven Earth Observation science.

4.3. Beyond PlanetScope

This study showcases the potential for broader use of NICFI basemaps for seagrass
and other benthic seafloor mapping at scale. The scope of this study is strictly the analysis
of NICFI basemaps for mapping seagrasses. As such, it is not recommended to quote
the area estimates by the NICFI basemap in this study (Table 3) and to instead refer to
Rowlands et al. [28] for the best seagrass estimates based on the combined results of this
study, Sentinel-2, and other datasets. Nevertheless, this successful use of NICFI basemaps
suggests that it might be premature to discount NICFI basemaps or any other imagery for
the use of aquatic applications, especially if more broadly applied options are not feasible
or available for a specific application or area.

5. Conclusions

The NICFI basemap composite based on an interval mean of 10 and 50 percentiles
was able to classify seagrasses in Seychelles to a high level of accuracy. Not only does it
showcase that the NICFI basemaps could be applied beyond the original scope of terrestrial
applications (forest and NDVI monitoring) originally envisaged, but the ability to map
out some of the deeper seagrass meadows compared to its contemporaries suggests a
multisensory approach may be required to deliver seagrass mapping and monitoring
objectives at national to global scales. While challenges remain, this blueprint project and
mapping endeavour demonstrate the potential of the NICFI basemaps on GEE to contribute
to seagrass mapping, climate change agendas, national blue carbon accounting, and the
conservation of seagrasses across national scales.
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