
Synthesizing FDIR Recovery Strategies
for Space Systems

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Sascha Müller
aus Bad Kreuznach, Deutschland

Berichter: apl. Prof. Dr. Thomas Noll
Prof. Dr. rer. nat. Andreas Gerndt
Prof. Dr. Ir. Dr. h.c. Joost-Pieter Katoen

Tag der mündlichen Prüfung: 12.01.2023

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online
verfügbar.

Synthesizing FDIR Recovery Strategies for Space Systems
Sascha Müller

orcid.org/0000-0002-1913-1719
Submitted: July, 2023

https://orcid.org/0000-0002-1913-1719

Abstract

Dynamic Fault Trees (DFTs) are powerful tools to drive the design of fault-
tolerant systems. However, semantic pitfalls limit their practical utility for
interconnected systems that require complex recovery strategies to maximize
their reliability.

This thesis discusses the shortcomings of DFTs in the context of analyzing
Fault Detection, Isolation and Recovery (FDIR) concepts with a particular focus
on the needs of space systems. To tackle these shortcomings, we introduce an
inherently non-deterministic model for DFTs. Deterministic recovery strategies
are synthesized by transforming these non-deterministic DFTs into Markov
automata that represent all possible choices between recovery actions. From
the corresponding scheduler, optimized to maximize a given RAMS (Reliability,
Availability, Maintainability and Safety) metric, an optimal recovery strategy
can then be derived and represented by a model we call recovery automaton.
We discuss dedicated techniques for reducing the state space of this recovery au-
tomaton and analyze their soundness and completeness. Moreover, modularized
approaches to handle the complexity added by the state-based transformation ap-
proach are discussed. Furthermore, we consider the non-deterministic approach
in a partially observable setting and propose an approach to lift the model for
the fully observable case. We give an implementation of our approach within
the Model-Based Systems Engineering (MBSE) framework Virtual Satellite.

Finally, the implementation is evaluated based on the FFORT benchmark.
The results show that basic non-deterministic DFTs generally scale well. However,
we also found that semantically enriched non-deterministic DFTs employing
repair or delayed observability mechanisms pose a challenge.

iii

Zusammenfassung

Dynamic Fault Trees (DFTs) sind wirkungsvolle Werkzeuge um fehlertolerante
Systeme zu designen. Allerdings limitieren semantische Fallstricke ihren prakti-
schen Nutzen bei eng verknüpften Systemen, welche komplexe Wiederherstel-
lungsstrategien benötigen um ihre Zuverlässigkeit zu maximieren.

Diese Arbeit diskutiert die Schwächen von DFTs in dem Kontext von Fault
Detection, Isolation and Recovery (FDIR) Konzeptanalysen mit einem Fokus
auf Raumfahrtsystemen. Als Ansatz führen wir ein nicht-deterministisches DFT
Modell ein. Durch eine Transformation in Markov-Automaten werden dann
Wiederherstellungstrategien synthetisiert. Für die Synthese wird hierzu der opti-
male Scheduler ermittelt, welcher eine gegebene RAMS (Reliability, Availability,
Maintainability and Safety) Metrik optimiert, und dieser dann in ein von uns
Recovery Automat genanntes Modell weitertransformiert.

Um den Zustandsraum des Recovery Automaten zu reduzieren, entwickeln
wir dedizierte Techniken und analysieren diese auf ihre Korrektheit. Außerderm
werden modulare Ansätze betrachtet um die Komplexitätszunahme durch den
Zustandsraumbasierten Ansatz zu handhaben. Weiterhin untersuchen wir den
nicht-deterministischen Ansatz in einem bedingt observierbaren Kontext. Für
den vorgeschlagenen Ansatz diskutieren wir eine von uns angefertigte Implemen-
tierung innerhalb des Virtual Satellite Frameworks.

Abschließend evaluieren wir die Implementierung mithilfe des FFORT Bench-
marks. Die Ergebnisse zeigen, dass nicht-deterministische DFTs im Allgemeinen
gut skalieren. Es lässt sich allerdings auch feststellen, dass semantisch erweiter-
te Versionen, welche zum Beispiel mit Reparaturmechanismen oder bedingter
Observierbarkeit ausgestattet sind, eine Herausforderung darstellen.

v

Acknowledgements

Although your journey as the reader is just beginning, mine as the author of this
dissertation has come to a close. And while I was the one to conduct the main
research and put it all into a final monolithic thesis, in the end, research is never
accomplished in a pure vacuum. Various people have given me invaluable help in
finishing the PhD journey and I would like to use this section to thank everyone
who supported me in the creation of this thesis. Some may have worked directly
together with me and authored some papers, others may have helped me by
contributing through meaningful discussions. First of all, I would like to extend
my gratitude to my two supervisors Thomas Noll and Andreas Gerndt, who
have patiently guided me along this long path. Then there are of course various
students without whom I would probably be working on this project for more
years to come. Thank you Andrey Larpin, Mikaelyan Liana, Adeline Jordon,
Alexandros Khan, and Yogeswari Renganathan for helping me push my research
forward! Finally, I would like to thank some of my colleagues for their helpful
discussions. Thank you Matthias Volk and Kilian Höflinger, your expertise on
fault trees and FDIR came to to good use in this dissertation! Thank you Philip
Fischer, for giving me various crazy ideas. And last but not least, thank you
all dear conference and journal reviewers who provided useful feedback to my
papers and my research!

vii

Contents

Acronyms xiii

1 Introduction 1
1.1 Publication List . 2
1.2 Thesis Structure . 4

2 State of the Art 5
2.1 FDIR . 5

2.1.1 Modular Hardware Redundancy 7
2.1.2 Spare Hardware Redundancy 7
2.1.3 Analytical Redundancy 8
2.1.4 Recovery Strategies for Space Systems 10
2.1.5 Hierarchical FDIR . 11

2.2 Robustness Measures . 12
2.3 Techniques For Fault Modeling and Analysis 12

2.3.1 Low-level Techniques . 14
2.3.2 Classical Techniques . 16
2.3.3 Model-Based Techniques 26

2.4 From Fault Model to Recovery Strategy 28
2.5 Partial Observability . 29

3 Preliminaries 31
3.1 Basic Notation . 31
3.2 Markovian Structures . 32

ix

CONTENTS

3.2.1 Markov Chains . 32
3.2.2 Markov Automata . 33

3.3 Dynamic Fault Trees . 34

4 Formalization of the FDIR Model 37
4.1 Rate Dependency Extension . 41
4.2 Non-Deterministic Fault Trees . 42
4.3 NdDFT with Repair . 47

4.3.1 FDEP with Repair . 49
4.3.2 Extended Notation with Repair 50

4.4 Markov Automaton Semantics . 51
4.4.1 Construction Examples 54
4.4.2 Repairable NdDFT to MA 58
4.4.3 Recovery Strategies and Automata 59

5 Synthesis of Recovery Strategies 65
5.1 Synthesis Methodology . 65

5.1.1 Extraction . 66
5.2 Examples . 67

5.2.1 Construction of an Adaptable Recovery Strategy 67
5.2.2 Optimized Spare Ordering 71

5.3 Further Optimization of Recovery Automata 73
5.3.1 Optimizing Orthogonal States 76
5.3.2 Optimizing the FAIL State 81
5.3.3 Completeness . 84

5.4 Modular Synthesis of Recovery Automata 91
5.4.1 Modular Workflow . 92
5.4.2 Modularization . 93

6 Partial Observability 97
6.1 Partially Observable Dynamic Fault Trees 98

6.1.1 MONITOR Gate . 99
6.1.2 Gate and Event Semantics 100

6.2 Belief Markov Automaton Semantics 102
6.3 Partially Observable Recovery Automaton 111
6.4 Synthesis Workflow . 114

6.4.1 PORA Extraction . 114
6.4.2 PORA and MA Synchronization 115
6.4.3 Orthogonality under Partial Observability 116

x

CONTENTS

6.4.4 Adapting Modularization 117
6.5 Synthesis Examples . 119

6.5.1 Probabilistic Claim Success 119
6.5.2 Delayed Monitor . 120
6.5.3 Failable Monitor . 122
6.5.4 Timeout Transitions . 124

7 Implementation 129
7.1 Virtual Satellite 4 Framework . 129
7.2 Generic Systems Engineering Language 131
7.3 Virtual Satellite 4 FDIR . 132

7.3.1 FDIR Conceptual Data Model 134
7.3.2 Analysis CDM . 137
7.3.3 Configuration Control . 137
7.3.4 Software Workflow for Synthesis 139

7.4 Implementation Details . 139
7.4.1 Preprocessing . 140
7.4.2 Representation of DFT states 140
7.4.3 Canonical States . 141
7.4.4 Optimization Workflow 141
7.4.5 Reducing the Number of Timeout States 142
7.4.6 Selecting Optimal Transitions on the Fly 142

8 Evaluation 145
8.1 Experiment Setup . 145
8.2 Fully Observable Scalability Experiments 147

8.2.1 NdDFT Experiments . 148
8.2.2 Repairable NdDFT Experiments 150

8.3 Recovery-Equivalence-Based State Space Reduction Experiments 154
8.4 Partially Observable Scalability Experiments 157

8.4.1 Configuration: PO . 158
8.4.2 Configuration: PO Delay 161
8.4.3 Configuration: PO Repair 164
8.4.4 Configuration: PO Delay Repair 167

8.5 Summary and Update of the NdDFT Hierarchy 170

9 Conclusion and Outlook 173

Bibliography 179

xi

Acronyms

BDD Binary Decision Diagram. 20

BE Basic Event. 18

BMA Belief Markov Automaton. 102

BN Bayesian (Belief) Network. 16

CDM Conceptual Data Model. 129

CTMC Continuous Time Markov Chain. 14

DDN Dynamic Decision Networks. 29

DFT Dynamic Fault Tree. 1

DRBD Dynamic RBD. 24

DTMC Discrete Time Markov Chain. 14

ESA European Space Agency. 25

FDD Fault Detection and Diagnosis. 6

FDEP Functional Dependency. 21

FDI Fault Detection and Isolation. 8

FDIR Fault Detection, Isolation and Recovery. 1

xiii

Acronyms

FFORT Fault tree FOResT. 145

FMEA Failure Modes and Effects Analysis. 17

FMECA Failure Modes, Effects, and Criticality Analysis. 17

FPG Fault Propagation Graphs. 25

FPTC Fault Propagation and Transformation Calculus. 27

FPTN Fault Propagation and Transformation Notation. 24

FT Fault Tree. 1

FTA Fault Tree Analysis. 1

GSEL Generic Systems Engineering Language. 129

HAZOP Hazard and Operability Studies. 26

I/O-IMC Input-Output Interactive Markov Chain. 28

IM Inspection Module. 30

MA Markov Automaton. 2

MC Markov Chain. 14

MCS Minimum Cut Set. 12

MDB Model-Based Diagnosis. 26

MDP Markov Decision Process. 15

MTTF Mean Time To Failure. 12

NdDFT Non-deterministic Dynamic Fault Tree. 2

PAND Priority AND. 20

PODFT Partially Observable Dynamic Fault Tree. 98

POMA Partially Observable Markov Automaton. 30

POMDP Partially Observable Markov Decision Processes. 30

POR Priority OR. 20

xiv

Acronyms

PORA Partially Observable Recovery Automaton. 113

PRA Probability Risk Assessment. 24

RA Recovery Automaton. 2

RAMS Reliability, Availability, Maintainability and Safety. 2

RBD Reliability Block Diagram. 23

RFT Repairable Fault Tree. 23

SFT Static Fault Tree. 18

SHARD Software Hazard Analysis and Resolution in Design. 26

SPN Stochastic Petri Net. 15

SSA Steady State Availability. 12

TFPG Timed FPG. 25

TLE Top-Level Event. 18

TMR Triple Modular Redundancy. 7

VirSat Virtual Satellite 4. 129

x-RDEP Rate Dependency. 41

xv

Chapter 1
Introduction

Reliability engineering is an important discipline in the design of any safety
critical system, in particular in the domain of aerospace systems and spacecraft.
No matter how well designed a system is, it still has to deal with the presence of
faults to some extent. Faults in this context can be events such as equipment
failures, wrong sensor readings, external interferences and many more. To raise
trust in handling system failures, reliability engineering tries to embed Fault
Detection, Isolation and Recovery (FDIR) concepts. These concepts are derived
using various tools and methodologies such as Fault Tree Analysis (FTA) [1].

FTA is a methodology commonly used in the industry for performing state-of-
the-art failure analysis [2]. The resulting Fault Trees (FTs) describe how faults
propagate through components and subsystems of a system and eventually lead
to a top-level system failure. Graphical representations of these trees are intuitive
and easy to understand. On the one hand, FTs can be used to analyze the system
qualitatively in terms of fault combinations that lead to system failure. On
the other hand, they also enable quantitative analysis of important computable
measures such as reliability. Dynamic Fault Trees (DFTs) are an extension
introducing temporal understanding and new features to analyze redundancy
concepts known as spare management. However, there are challenges arising
from non-deterministic DFT behavior such as spare races. An example for such
race behavior can be seen in a system of two operative memories together with a
pool of two spare memories. In case both operative memories fail simultaneously
it is unclear which backup memory takes over the role of which operational one.

1

CHAPTER 1. INTRODUCTION

To overcome this shortcoming, we present a new methodology in this thesis.
We introduce a model of Non-deterministic Dynamic Fault Trees (NdDFTs) as
an extension to DFTs. In contrast to the latter, the new NdDFT does not impose
a fixed, rigid order on the spares to be used. As next step, the methodology
foresees transforming this NdDFT model into a Markov Automaton (MA) which
is suitable for the computation of the aforementioned non-deterministic decisions
on spare activations. By optimizing the scheduling of the MA model in terms of
a given Reliability, Availability, Maintainability and Safety (RAMS) metric, a
deterministic recovery strategy for the NdDFT can be synthesized. This recovery
strategy is represented by an object we call a Recovery Automaton (RA), and
defines which spare has to be used in which failure state of the system.

1.1 Publication List
The following gives a list of publications created during the thesis creation.
Related publications contain direct contributions to the thesis as described in
the following Section 1.2. Further publications may have ties to the research
discussed in this thesis, but are generally not directly related.

Related publications

1. Sascha Müller, Andreas Gerndt, and Thomas Noll. Synthesizing FDIR
recovery strategies from non-deterministic dynamic fault trees. In 2017
AIAA SPACE Forum, volume AIAA 2017-5163. American Institute of
Aeronautics and Astronautics, 2017. doi:10.2514/6.2017-5163

2. Sascha Müller and Andreas Gerndt. Towards a conceptual data model for
fault detection, isolation and recovery in Virtual Satellite. In SECESA 2018.
European Space Agency, 2018. URL: https://elib.dlr.de/122061/

3. Liana Mikaelyan, Sascha Müller, Andreas Gerndt, and Thomas Noll. Syn-
thesizing and optimizing FDIR recovery strategies from fault trees. In
International Workshop on Formal Techniques for Safety-Critical Systems,
pages 37–54. Springer, 2018. doi:https://doi.org/10.1007/978-3-030-
12988-0_3

4. Sascha Müller, Andreas Gerndt, and Thomas Noll. Synthesizing failure
detection, isolation, and recovery strategies from nondeterministic dynamic
fault trees. Journal of Aerospace Information Systems, 16(2):52–60, 2019.
doi:https://doi.org/10.2514/1.I010669

2

1.1. PUBLICATION LIST

5. Sascha Müller, Liana Mikaelyan, Andreas Gerndt, and Thomas Noll. Syn-
thesizing and optimizing FDIR recovery strategies from fault trees. Science
of Computer Programming, 196:102478, 2020. doi:https://doi.org/10.
1016/j.scico.2020.102478

6. Sascha Müller, Adeline Jordon, Andreas Gerndt, and Thomas Noll. A mod-
ular approach to non-deterministic dynamic fault trees. In International
Conference on Computer Safety, Reliability, and Security, pages 243–257.
Springer, 2021. doi:10.1007/978-3-030-83903-1_16

Further Publications

1. Kilian Höflinger, Sascha Müller, Ting Peng, Moritz Ulmer, Daniel Lüdtke,
and Andreas Gerndt. Dynamic fault tree analysis for a distributed onboard
computer. In 2019 IEEE Aerospace Conference, pages 1–13, 2019. doi:
10.1109/AERO.2019.8742128

2. Sascha Müller, Kilian Höflinger, Michal Smisek, and Andreas Gerndt.
Towards an FDIR software fault tree library for onboard computers. In 2020
IEEE Aerospace Conference, pages 1–10, 2020. doi:10.1109/AERO47225.
2020.9172756

3. Emanuel Kopp, Sascha Mueller, Fabian Greif, and Anko Boerner. Towards
an H/W-S/W interface description for a comprehensive space systems
simulation environment. In 2020 IEEE Aerospace Conference, pages 1–14,
2020. doi:10.1109/AERO47225.2020.9172440

4. Philipp M Fischer, Caroline Lange, Volker Maiwald, Sascha Müller, Andrii
Kovalov, Janis Häseker, Thomas Gärtner, and Andreas Gerndt. Spacecraft
interface management in concurrent engineering sessions. In International
Conference on Cooperative Design, Visualization and Engineering, pages
54–63. Springer, 2019. doi:10.1007/978-3-030-30949-7

Supervised Theses

1. Yogeswari Renganathan. Semantics of non-deterministic repairable fault
trees. Master’s thesis, Technische Universität Darmstadt, 2019. URL:
https://elib.dlr.de/131219/

3

CHAPTER 1. INTRODUCTION

1.2 Thesis Structure
The following section gives an overview of the structure of the thesis. For
each chapter, we also describe contributions by third parties such as supervised
students and give references to prior publications where the results have been
pre-published.

Chapter 2 first gives an overview over the topic of FDIR, related analysis
methods, metrics, and formal mathematical models. The focus is on presenting
a qualitative overview without mathematical details. The chapter received
contributions by the student Andry Larpin, who created a survey over existing
fault tree dialects and the expressive power of their gates.

Chapter 3 then focuses on formalisms employed in the main chapters and
defines the necessary notation and formal definitions.

Chapter 4 presents the basic methodology by defining a formal NdDFT model
in terms of Markov Automaton semantics. The chapter is based on the paper [3]
and the later formalism refinement published in the journal [6]. Section 4.3 has
contributions from the master thesis by Yogeswari Renganathan [13].

Chapter 5 describes the core methodology for synthesizing recovery automata
from NdDFTs. The chapter is also partially based on the papers [3, 6]. Section 5.3
is based on the results of the supervised student Liana Mikaelyan and published
in [5]. Section 5.4 is based on the results from the supervised student Adeline
Jordon and has been partially published in [8].

Chapter 7 gives details on the implementation and describes the integration
of the methodology into the Virtual Satellite 4 framework. The FDIR conceptual
data model was partially presented in the paper [4].

Chapter 8 investigates the applicability of the synthesis methodology by
evaluating various NdDFT classes on the basis of the FFORT benchmark set.
Some of the results related to the evaluation of the modularization approach
were published in [8].

Chapter 9 gives a summary of the achieved results and outlines avenues for
future research.

4

Chapter 2
State of the Art

This chapter focuses on giving an overview of the state of the art regarding FDIR.
We discuss the core concepts that make up the operational procedure known as
FDIR and which mechanisms and strategies are commonly employed. Following
that, the analysis methods used to judge the quality of an FDIR concept, their
connection to formal methods, and analysis metrics are discussed. The main
focus lies on introducing important qualitative concepts and terms while leaving
the formal definitions this work builds up upon to the follow-up Chapter 3.

2.1 FDIR
To discuss the concepts behind FDIR, we first have to fix the understanding of the
word fault and how it relates to other terms that all describe that a component
or system is exhibiting abnormal behavior. To describe the different classes
of abnormal behavior, consequences, and causes, the classification introduced
in [14] will be applied.

While a fault abstractly describes the notion of some anomaly having occurred,
a failure, or in some literature also introduced as hazard, is a loss of system
performance ultimately caused by the occurrence of faults. A component failure
may thus be nothing more than a fault when viewed on a system-wide level.
Examples for faults include sensor malfunctioning, loss of some equipment,
memory corruption, and mechanical malfunctions. Finally, an error is a concrete,
physical manifestation of a fault.

5

CHAPTER 2. STATE OF THE ART

FDIR

Detection Isolation
Fault

System

Recovery
ActionEvent

Fig. 2.1. System-FDIR interaction. The FDIR observes events produced by the system
and if an event is identified as a fault, a corresponding recovery action is generated.

The goal of any FDIR system lies in the prevention of failure occurrence.
While many different strategies and techniques exist that aim to achieve this
result, most share a common procedural approach [15]:

1. Monitor the system to detect the occurrence of faults through observed
errors.

2. Identify the fault and localize it within the system.

3. Isolate the fault and prevent further propagation of the fault into other
parts of the system.

4. Perform counter-measures to recover the system and return it to a stable
state.

Some works also consider the notification of the ground segment as a central
function of FDIR [16]. Fig. 2.1 illustrates the interaction between the main
system and the FDIR.

There exists a wide range of FDIR strategies for creating fault-tolerant
systems. They can be mainly classified into two different types [17]: Strategies for
Fault Detection and Diagnosis (FDD) and Recovery Strategies or Reconfiguration
Strategies. The former deals with the first three steps of FDIR and the latter
is dedicated to handling the recovery aspect. While recovery strategies are
often kept relatively simple [16], sophisticated methods for fault detection and
localization have been developed over the last decades, as will be shown in the
following sections. As will be seen in the following, redundancies play an integral
role in performing FDD and recovery. These redundancies can be introduced
in two forms: In the simplest case as physical redundancies in the form of

6

2.1. FDIR

real, redundant hardware. Alternatively, they can be introduced as analytical
redundancies that exploit mathematical relations between the signals to detect
possible anomalies and possibly even substitute a failed sensor.

Furthermore, a more advanced notion of Health Management Systems, that
not only reactively monitor and recover failures but also attempt to avoid failures
preemptively, aiming to further increase the system dependability and also its
performance, has been developed [18]. Also in the domain of spacecraft, effort
has been put into hierarchically classifying faults to deal with them on a more
finely grained basis. Section 2.1.5 shows an example of such a hierarchy.

2.1.1 Modular Hardware Redundancy
The first step to FDIR lies in discovering faults and determining whether a unit
or some signal created by a unit is faulty. This can be achieved by introducing
the notion of voting mechanisms or also referred to as modular redundancy.
Having multiple redundant units employed in parallel gives rise to the question:
Which units actually computed the correct result? Initially introduced in [19]
by Von Neumann, voting mechanisms aim to tackle this problem by having the
units send their outputs not directly to the following computation unit but to
an intermediary voter instead. The voter then decides which result to forward
using one of the popular voting schemes such as majority voting which forwards
the most common input and generates an alarm for the incorrect voting inputs.
Since the alarm reveals the faulty units, modular redundancy can be used to
perform FDD.

Popular in industry practice is Triple Modular Redundancy (TMR). TMR
uses a majority voter, a configuration capable of dealing with single point unit
failures and extensively discussed in [20]. System-wide fault-tolerance can then
be drastically increased by chaining multiple such redundancies plus voting units
as depicted in Fig. 2.2 on the next page.

Moreover, multiple unit failure can also be handled by employing more
redundancies. In the case of majority voting, in order to obtain a majority of
the correct values in the presence of f faults, 2f + 1 redundancies are necessary.

2.1.2 Spare Hardware Redundancy
The standard for FDIR practice within the industry is the employment of
hardware redundancies in the form of spares. The use of duplicate hardware
provides spare units, which can be used if the currently used operational unit is
considered unrecoverable using other means. This approach has proven itself as

7

CHAPTER 2. STATE OF THE ART

Sensor1

Sensor2

Sensor3

V1

V2

V3

CPU1

CPU2

CPU3

V

Fig. 2.2. Example sequence of units employing TMR. TMR is applied on the sensor
level and then again on the CPU level.

robust and well-performing [21]. Since spare units can be used to recover the
system from the failure of individual units, strategies deciding when to activate a
spare are recovery strategies. These spares are further refined into three different
types:

• Hot redundant: Hot redundant units are active, just like the primary
unit. If the primary unit becomes faulty, switching to the hot redundant
unit is nearly instantaneous since no further boot-up sequence is needed.

• Cold redundant: Cold redundant units are dormant, and to activate
them in the case of a fault, they need to be booted up. This may make
the system vulnerable for the duration of the boot process.

• Warm redundant: Warm redundant units are a compromise between
hot and cold redundant. The unit is in a booted state but not actively
used. An example of such a state would be a standby state, which allows
for quick switching with a shorter boot-up time while not risking faster
unit degradation.

2.1.3 Analytical Redundancy
While modular hardware redundancies provide a high level of robustness, it
is also resource-intensive and sometimes simply not feasible due to increased
required mass and volume. Analytical redundancies, also called Fault Detection

8

2.1. FDIR

and Isolation (FDI), circumvent this issue by introducing redundancy using
mathematical models and estimation techniques, only requiring computational
resources. FDI forms a significant part of FDD, in fact so much that in some
literature, they are equated to being the same [17]. However, more recent
approaches also employ analytical redundancies outside of detection and isolation
to recover from lost sensor hardware [22]. The core approach for analytical
redundancy is displayed in Fig. 2.3.

System

Residual
Generator

Residual
Evaluation

Decision
Logic

inputs

outputs

alarms

Fig. 2.3. FDI unit using Analytical Redundancy. The expected output and the real
system output are compared to detect anomalies.

Here, additional knowledge of the system is leveraged, effectively introducing
another layer of redundancy for detecting abnormal behavior without introducing
new physical redundancies. For example, by measuring the current produced
by a solar array, which implies a certain orientation of a spacecraft towards the
sun, the expected outputs for a sun sensor can be restricted. In general, such an
FDIR system consists of the following main units [17]:

1. A Residual Generator computes the difference (residual) between the
measured feature and its expected value.

2. A Residual Evaluation determines whether a residual is considered large
enough to be an anomaly.

3. A Decision Logic performs the fault localization and diagnostic logic, finally
raising the necessary alarms to inform the system about a fault.

Kalman filters which attempt to estimate the next time step value of a time-
evolving variable while considering possible noise interference [23] can be seen
as a very early approach to such an analytical redundancy by using statistical
methods.

9

CHAPTER 2. STATE OF THE ART

However, while Model-based FDI has gathered quite some interest on the
scientific side - and some techniques such as Kalman filters have indeed impacted
modern industry practices - the approach itself has not received as much positive
reception in real-life industry applications. The authors of [24] credit this
to the lack of accuracy of Model-based FDI as many models heavily rely on
simplifications (such as assuming time linear kinematic models). A survey of
applied model-based FDIR, in particular in the area of aerospace, can be found
in [17].

2.1.4 Recovery Strategies for Space Systems
A first class of recovery strategies in the form of redundancy concepts has already
been covered in the previous section. In this section, further recovery strategies
that have emerged in the domain of space systems are discussed. Relevant
vocabulary for classifying recovery strategies are the notions of automatic and
autonomous processes. In [25] automatic processes are replacements of manual
operations that may still include human participation in addition to the automatic
execution of software or hardware procedures. Autonomous processes on the
other hand, are independent from any form of human interaction.

Half-Satellite Strategy A very conservative strategy that heavily depends
on human interaction but strongly guarantees the safety of the spacecraft is
reported in [16] as a Half-Satellite strategy. Here, whenever any fault is detected,
a complete reconfiguration is performed by switching all units to a redundancy,
and then the spacecraft waits for ground intervention. Since all units are switched
to a redundancy, this strategy guarantees that the faulty units are replaced, even
when lacking knowledge of the concrete type of the fault or further diagnosis
information. This strategy was also reported to be easy to verify due to its
simplicity.

Safe Mode A Safe Mode, also sometimes referred to as Survival mode, is a
system mode focusing on the spacecraft’s survival. The satellite is set to sun
pointing and all non-essential units (e.g., payload) are powered off to reduce
power consumption and to reduce the risk of interference with survival critical
units [26]. The spacecraft is expected to survive ideally for an indefinite amount
of time, or at least for a time period significantly longer than the expected
ground reaction time [27]. Usually, it is required that a spacecraft can reach the
Safe Mode autonomously [28].

10

2.1. FDIR

2.1.5 Hierarchical FDIR

Different faults may have varying impacts on the system performance and thus
may require more drastic or more immediate measures, such as switching to
redundant units or, in the extreme case, even relying on ground support inter-
vention. Meanwhile, faults that do not critically affect the system performance
should be recovered using less drastic recovery mechanisms such as reboots or
re-initializations. A strategy to deal with these different fault classes is the
categorization of faults into different impact levels. A fault on a lower level is
considered less critical and is usually also more likely to occur. If the FDIR
system cannot recover a unit on a lower level, the higher levels are notified via
alarms. These may then in return recover the fault using more powerful recovery
actions or continue to propagate the alarm to even higher levels. While different
hierarchy structures with varying degrees of detail exist for different systems
and application purposes, in the context of space systems, a rough hierarchical
categorization has been obtained in [15].

Level Faults Impact Fault Detection Recovery

0 Unit internal No impact on sys-
tem performance

Consistency checks,
Data transmission
checks

Retry, reboot,
reinitialize unit

1

Subsystem Software

Examples: Subsystem intercom-
munication failure, Subsystem
equipment failure

Subsystem perfor-
mance degraded

Limit checking of unit
parameters, Plausibility
checks

Switch to redundant
unit, retry, reboot

2

System Reconfiguration

Examples: Subsystem failures
not recoverable in level 1, Power
failures

Subsystem perfor-
mance loss

Alarms from lower levels
Consistency Checks

Platform level switch
to redundancy, retry

3
System Control Software

Examples: FDIR unit failure

Subsystem perfor-
mance loss FDIR Alarms Platform level switch

to redundancy, retry

4

Flight Operations System on
Ground

Examples: Major overall system
failure, deployment failure

System performa-
nce loss, mission
interruption

Multiple alarms from
lower levels, Hardware
alarms

Enter Safe mode and
wait for ground inter-
vention

Table 2.1: FDIR hierarchical levels for space systems.

While detection and recovery receive much attention in the FDIR design
of spacecraft, isolation is often at most performed at the unit level. Recovery
means of the different hierarchical impact levels should only be conducted if the
higher levels’ recovery actions to handle the fault are not hindered.

11

CHAPTER 2. STATE OF THE ART

2.2 Robustness Measures
Before diving into the actual techniques for Failure Analysis, we introduce
some notable measures that are interesting to obtain from the analysis. In
particular, we can distinguish two classes of such measures, namely qualitative
and quantitative measures.

Qualitative measures provide insight into the structure of fault relationships.
For example Minimum Cut Sets Minimum Cut Set (MCS) describe minimum sets
of faults whose occurrence lead to a system failure. On the side of quantitative
measures, we note four remarkable measures that can be found in many reliability
engineering-related literature [29, 30, 31]:

• Reliability after time t: Reliability describes the probability that a
system is still functional up to time t. In the literature, the reader will
find it often denoted by R(t). Failure models from which we can compute
reliability measures can answer questions such as “Is the probability of
experiencing no failure in a 10 year mission greater than 90%?”

• Mean Time To Failure: The Mean Time To Failure (MTTF) describes
the period of time that will pass on average until the first system-level
failure has occurred. Naturally, this measure aims to provide the expected
lifetime of the system. For repairable systems, where R(t) does not converge
towards 0, the MTTF is not a useful measure as it becomes infinite.

• Availability after time t: This measure describes the fraction of time the
system is functional after time t and is often denoted by A(t). In particular,
in repairable systems, the notion of availability is of high interest since it
can capture whether or not the system recovery mechanisms are effective
enough to deal with system-level failures.

• Steady State Availability: The Steady State Availability (SSA) describes
the long-term availability of a system. It corresponds to the converged
value of A(t) for t → ∞.

2.3 Techniques For Fault Modeling and Analysis
In order to construct effective FDIR systems, a clear understanding of the fault
behavior of the system under investigation is required. To this aim, several
approaches to analyzing fault behavior have been proposed and have already

12

2.3. TECHNIQUES FOR FAULT MODELING AND ANALYSIS

become deeply rooted in the process of safety and reliability engineering. Upon
review, we have derived that the techniques can be mostly categorized into the
following classes:

• Low-Level Techniques: We list here techniques for creating fault models
that involve the usage of very general-purpose formalisms, such as Markov
chains. These low-level techniques yield models that can be difficult to
comprehend and create by an engineer but are easy to evaluate due to
significant preexisting research.

• Classical Techniques: Here, classical failure analysis techniques are
listed, which require an engineer to manually perform a failure analysis
given an existing system model. An example of a classical technique is
the Fault Tree Analysis. To evaluate the models resulting from these
techniques, they are first transformed into a lower-level fault model, from
which the measures of interest are then computed.

• Model-Based Techniques: Model-based techniques abstract away the
manual creation of the full fault model. Here, approaches are listed which
allow generating a classic fault model (such as a fault tree) from given
system information and a simple basic fault model. It should be noted
that Model-Based Failure Analysis is not related to Model-Based FDD.

Fig. 2.4 gives an overview of the landscape of failure analysis techniques,
which will be introduced in the following part.

Model-Based
- MDB
- COMPASS
- AADL

Classical
- FTA
- FMECA
- RBDA
- FPGA
- HAZOP

Low-Level
- Markov Chains
- Markov Automata
- Petri Nets
- Bayes Networks

Generate Evaluate

Fig. 2.4. Landscape of failure analysis techniques. From general models describing
system architectures, classical fault models are derived and evaluated using low-level
mathematical models.

13

CHAPTER 2. STATE OF THE ART

2.3.1 Low-level Techniques
In this section, low-level techniques for fault modeling will be considered. While
they are not practical to use by hand, these low-level techniques can employ a
plethora of background theory and mathematical tools dedicated to evaluate
them. In the following sections, it will be seen that higher-level models are often
handled by transforming them into lower-level models such as the ones reviewed
in this section.

2.3.1.1 Markov Chains

Markov Chains (MCs) [32] are state-based systems with probabilistic transitions.
In contrast to standard finite automata, where the successor state is chosen based
on an input symbol, MCs choose the successor of a state based on a probability
distribution. There exist two main categories of MCs based on the handling of
time:

• Discrete Time Markov Chains (DTMCs): Here time is discretized. In
each discrete time step, a successor is chosen. To model this each transition
is equipped with a transition probability. The sum of all outgoing transition
probabilities has to sum to unity. Only one transition can be taken at each
time step.

• Continuous Time Markov Chains (CTMCs): In this model, time
is considered a continuous object. Within some time step, any arbitrary
amount of transitions can be taken. Since an arbitrary number of fired
transitions is allowed, the special case of no transition firing at all is also
possible. Self-loops for modeling remaining in a state are therefore not
necessary. Here, each transition is equipped with a transition rate dictating
the rate of transitioning to a successor state.

The following example illustrated in Fig. 2.5 on the following page showcases
how a failure model for the case of “Fail if faults A and B have occurred” would
be expressed in the Markov formalism.

If starting in s0 and considering s3 as the failed state, the faults A and B
have to occur for it to be reached. MCs do not possess a unique initial state;
instead, they can be equipped with an initial probability distribution. In this
example, the initial probability distribution would be P0(s0) = 1 and P0(s) = 0
for any other state s ∈ {s1, s2, s3}. By answering the question

“What is the probability of reaching some state s after some time t?”

14

2.3. TECHNIQUES FOR FAULT MODELING AND ANALYSIS

s0

s1

s2

s30.4

0.5

0.1

0.9

0.1

0.5

0.5

1

(a) DTMC with transition probabilites
P (A) = 0.5, P (B) = 0.1.

s0

s1

s2

s3

2

1

1

2

(b) CTMC with transition rates
R(A) = 2, R(B) = 1.

Fig. 2.5. Example DTMC and analog CTMC modeling “A and B”.

interesting properties for failure analysis, such as reliability, can be computed.
In the above example, s3 models the failed state where both A and B have
occurred. Computing the reliability of the system after time t thus reduces to
finding the answer to the question “What is the probability of reaching s3 after
time t?”.

2.3.1.2 Markov Automata

MCs have also been extended to incorporate immediate, non-deterministic
transitions. A Markov Decision Process (MDP) [32] is a structure extending
DTMCs in such a manner. For CTMCs, the model of Markov automata, which
additionally also extends the model with probabilistic transitions, has been
introduced in [33].

2.3.1.3 Petri Nets

Petri nets are graph-based structures for modeling concurrent processes, with
Stochastic Petri Nets (SPNs) being their stochastic generalization for the use of
concurrent, probabilistic processes [34]. Due to fault occurrence’s probabilistic
and concurrent nature, SPNs are well suited for fault modeling. A Petri net
contains two types of nodes:

15

CHAPTER 2. STATE OF THE ART

• Places which can contain an unconstrained number of tokens and

• Transitions which take one token from all incoming places and then put
one token on all outgoing places. In SPNs, each transition t is additionally
associated with a probability P (t) that determines that t fires during a
discrete time step.

tA

tB

tAB fail

Fig. 2.6. Example Petri net modeling “A and B”. In an SPN, the transitions tA, tB

may also be equipped with probability each.

An example Petri net is given in Fig. 2.6. Setting P (tA) = 0.5, P (tB) = 0.1
and P (tAB) = 1 yields an SPN that produces the same reliability as the DTMC
in Fig. 2.5a.

2.3.1.4 Bayesian Networks

A Bayesian (Belief) Network (BN) is yet again a graph-like structure that relates
observable variables (e.g., sensor values, watchdog alarms) to hidden variables
(e.g., whether a given sensor is faulty) [35, 36]. Each node in the network
represents a Boolean variable associated with a probability table conditioned on
the parent variables. A Bayesian network can then be fed with observed evidence,
and queries such as “What is the probability of fault A having occurred?” can
then be posed to the BN. In this sense, BNs focus on providing diagnostic
capabilities instead of the propagation-focused view underlying MC and SPN
models.

2.3.2 Classical Techniques
We review in this section classical techniques for failure analysis. That is,
techniques that allow experts to model faults using knowledge of the system
and domain knowledge about its basic failure behavior. These failure models
can be created without a formal system model but must be re-evaluated every
time a change to the system is done. In contrast, model-based approaches allow

16

2.3. TECHNIQUES FOR FAULT MODELING AND ANALYSIS

the generation of classical fault models from a system model and some basic
component fault models. Changing the system itself then requires a regeneration
instead of a hands-on manual re-evaluation.

2.3.2.1 FMECA

Classical approaches include the Failure Modes and Effects Analysis (FMEA),
which provides a structured technique to hierarchically decompose a system into
its basic components and then examine them for failures and their causes in
a bottom-up manner. This approach also refines the notion of fault to failure
modes, which does not just entail that a fault occurred but also in which way it
occurred. Typically, FMEA is also combined with a criticality analysis, creating
the Failure Modes, Effects, and Criticality Analysis (FMECA). The FMECA
also examines severity and probability of system failures [37] and computes a
criticality value based on them. An example FMECA is shown in Tab. 2.2.

Item Function Failure Mode Cause Effect Criticality
...
Power Energy Storage battery charge too low - - 3 - major
Software Surveillance no housekeeping data software task failed no detection of anomalies 3 - major
...

Table 2.2: Example entries of a simplified FMECA table. The criticality here is
derived qualitatively from the failure mode.

Further information regarding the detection and the handling of failures, that
is, the FDIR, is in many cases also directly embedded into the FMECA.

2.3.2.2 FTA

Another popular technique, employed in state-of-the-art failure analysis, is the
FTA [1]. Since we also employ the fault tree analysis approach as our fault model
of choice, we will review this particular manner of failure analysis more in-depth.
In this technique, individual system failures are examined by considering them as
the root of a tree and recursively examining combinations of faults that may lead
to a higher level failure. In this manner, fault tree analysis models how faults of
components propagate through the system and eventually cause a system failure.
The approach itself is graphical and similar to modeling logical circuits, making
it easy to visualize and intuitive to work with. Also, while they are qualitative
models, they can be easily extended to include quantitative information. Most
commonly, components are associated with failure probabilities to compute the

17

CHAPTER 2. STATE OF THE ART

overall system failure probability. In many extensions, components are associated
with a failure rate instead of a probability, which allows analyzing reliability
metrics such as system reliability over time.

Syntactically, a fault tree is made up of events and gates. Events include the
Top-Level Event (TLE), usually modeling system failure, intermediate events,
and finally, the Basic Events (BEs), which form the leaves of a fault tree.
Typically, BEs describe elementary faults on the component level that may occur
at any time and intermediate events faults on a subsystem level. In the following,
all non-basic events will also just be called faults. If a fault has multiple inputs,
such as multiple basic events, propagation is interpreted with an OR logic. This
ensures that a fault can have multiple reasons to occur, while also allowing to
directly associate a basic event to the triggered fault. Gates then employ simple
Boolean Logic to combine lower-level faults to higher-level ones. With this,
statements such as “The system C fails if component A and component B fail”
can be modeled and refined to arbitrary levels of precision.

Static Fault Trees (SFTs) The most basic case of a fault tree is known as
a static fault tree, as it models no notions of timed dynamics or change and
mainly employs the standard Boolean operators as gates.

SFTs use Boolean operations represented by AND and OR gates. Other
gates exist, such as the k-VOTE gate, which propagates if at least k inputs have
failed. Observe that a 1-VOTE gate corresponds to an OR gate and a k-VOTE
gate with k inputs to an AND gate. Implementation-wise, all gates can therefore
be considered as k-VOTE gates for some fitting k. Some other extensions also
introduce a NOT gate. However, this allows the construction of fault trees where
the TLE can go from having failed to operational again as new failures occur.
These fault trees are known as non-coherent fault trees and have been dismissed
as being a sign for modeling errors [38]. Fig. 2.7 shows the gates and events used
in the SFT notation.

(a) BE

Non-Basic
Event

(b) Non-basic
event (Fault)

(c) OR (d) AND

k

(e) k-VOTE

Fig. 2.7. Gates and events in a static fault tree.

18

2.3. TECHNIQUES FOR FAULT MODELING AND ANALYSIS

The reader may also be familiar with many more fault tree elements from the
literature, such as the INHIBIT gate or the TRANSFER gates. Many syntactic
propositions for improving fault tree modeling have been made, but we will
restrict ourselves to the depicted gates and events for the examples used in this
work.

To illustrate fault modeling with fault trees in general and static fault trees
in particular, we consider the example fault tree depicted in Fig. 2.8. Here, we
have a simple power system consisting of two hot redundant batteries and some
cable connecting them to the main system. A battery can die if it is either no
longer charged or damaged. Similarly, the power cable may rupture and lead to
a loss of power. B1-B5 are the basic events that may fail at any time and lead
to the intermediate faults described in the fault tree.

No Power

Cable
ruptured

Hot re-
dundant
batteries

dead

Battery2
dead

DamagedNot charged

Battery1
dead

DamagedNot charged

10%

B1
B2 B3 B4

B5

Fig. 2.8. Example of a (Static) Fault Tree. For B1 a failure probability of 10% has
been specified, for the other BEs the failure probability has been omitted.

From this example, it can also be seen how one can obtain quantitative
information such as the system reliability from a given fault tree model. Given

19

CHAPTER 2. STATE OF THE ART

the failure probabilities of the basic events B1-B5, one can calculate the likelihood
of top-level event using standard combinatorial techniques. However, applying
simple combinatorial approaches can perform poorly for larger fault trees as the
number of fault combinations increases exponentially with the number of faults.
Efficiently evaluating static fault trees can therefore require more sophisticated
methods. The most common method is to transform them into Binary Decision
Diagrams (BDDs) [39].

Dynamic Fault Trees While static fault trees allow for modeling simple
Boolean relations between faults, they cannot handle faults whose behavior may
change over time, depending on previously occurred faults. This, however, can
be problematic and has led research to introduce the notion of time dynamic
behavior into fault trees by extending the model of static fault trees. Dynamic
fault trees can model temporal behavior, allowing for example to model that
a set of faults is only malicious if they occur in a specific order. Furthermore,
DFTs introduce the notion of spare management. In a static fault tree, only hot
redundancy can be modeled, as all basic events can occur at all points in time.
However, for cold or warm spares, this does not apply. As they are not in active
use, or in the case of a cold spare, maybe even wholly dormant, their failure
probability should lower while being in the dormant state. Furthermore, if a
primary unit fails and has to activate a spare, then the failure rate should be
employed as usual. DFTs enable modeling such temporal effects by extending
static fault trees with additional temporal gates. Fig. 2.9 depicts the notation to
extend SFTs to DFTs introducing new gates POR, PAND, SPARE, and FDEP.

The Priority AND (PAND) gate propagates if all inputs fail in sequence
from left to right. It does not propagate the failure in case the sequence is not
obeyed. The Priority OR (POR) gate propagates in case the leftmost input
occurs before all other inputs [40]. Priority gates may usually come in two
flavors: exclusive or inclusive. The inclusive PAND gate also propagates if the
inputs occur simultaneously. On the other hand, the exclusive PAND gate only

(a) POR (b) PAND (c) SPARE (d) FDEP

Fig. 2.9. Standard dynamic gates.

20

2.3. TECHNIQUES FOR FAULT MODELING AND ANALYSIS

propagates if all inputs occur strictly after each other. Similarly, the exclusive
POR gate only propagates if the leftmost input occurs strictly before all other
inputs. It is shown in [41] that exclusive POR gates are expressive enough
to model all priority gates. In this work, priority gates are considered to be
exclusive.

The SPARE gate propagates a failure if the primary input failed and all
spares are either claimed or failed themselves. The SPARE gate is connected
to a primary event and a set of spare events. The spare events can be shared
with another SPARE gate; therefore, a spare can be claimed by either the one
or the other SPARE gate. However, there may be no shared elements between
the primary input and any spare. We also allow for spares’ nesting, e.g., SPARE
gates can be spares.

The Functional Dependency (FDEP) gate has a trigger event on the left-
hand side and any number of dependent events functionally dependent on the
triggering event. When the trigger event occurs, the dependent events are also
set to fail. The output of an FDEP gate only indicates to which tree it belongs
and has no further semantic meaning.

A node is considered active iff there is either no SPARE gate on each path
from the node to the TLE or if any SPARE gate on the path claims this node.

To avoid semantic problems, several additional syntactical restrictions to the
fault tree structure are imposed. We say that a fault tree is well-formed iff:

• It has exactly one root element, the top-level event.

• Spares may be shared but their subtrees may not have common child nodes
with other subtrees. FDEPs, however, may have dependent events across
different spare subtrees.

• FDEPs may have any event as a trigger event but may not induce loops
through dependent events.

The Priority AND (PAND) gate is similar to the AND gate but dictates
that the input fault events must occur in the order from left to right. The
SPARE gate allows the modeling of spares as described above. The first input is
always the primary unit and active per default, that is, all faults in the subtree
of the primary fault input can occur as before. The other fault inputs are
considered spares and may be dormant. In DFTs, basic events are usually no
longer assigned just a failure rate but also a dormancy value ranging between 0
and 1. Multiplying dormancy and failure rate then gives the reduced failure rate
for an inactive spare. For DFTs, many other gates have been introduced, such as

21

CHAPTER 2. STATE OF THE ART

the SEQ gate, which enforces fault events to occur in a specific order. Also, other
types of spare gates such as hot spare gates, warm spare gates, and cold spare
gates have been considered, allowing to determine the dormancy in dependency
of the overlying spare gate. For further reading on the rich extensions DFTs
provide and also the semantic problems these entail for evaluating them, we refer
the reader to [41].

In the following, only well-formed fault trees are considered. To illustrate the
DFT notation, an example DFT will be considered now. Fig. 2.10a shows a use
case for the PAND gate. The system itself is depicted in Fig. 2.10b and consists
of some primary equipment, a cold spare unit, and a switch that switches to
the cold spare should the primary unit fail. According to DFT semantics, the
system is non-failing if the switch fails after the primary component. However,
should the switch fail before the primary, then we are unable to switch to the
redundancy.

System

SPARE

Redundancy

PAND

PrimarySwitch

b1 b2 b3

(a) Spare with switch. If the switch
fails before the primary, the system
fails.

Switch

Primary

Redundancy

(b) A physical system with a cold
spare and a switch.

Fig. 2.10. (a) shows an example DFT with a PAND gate; (b) is the system represented
by (a)

As with SFTs, it is also possible to quantitatively evaluate DFTs, but this
requires more involved techniques. Standard approaches include the transfor-
mation of a DFT into a Markov chain and then computing the probability of
reaching a state where the top-level event occurs [42]. We will also see later
that Markov chains are insufficient models when we consider DFTs with shared
spares and spare races become a possibility.

22

2.3. TECHNIQUES FOR FAULT MODELING AND ANALYSIS

Repairable Fault Trees We finally consider one more interesting extension
to fault trees, namely the notion of repairability. In standard fault trees, fault
events may only occur, but there is no notion of repairing faults. This makes it
challenging to model recovery mechanisms in a fault tree. While SPARE gates
in a DFT allow very simple recovery by replacement, recovery utilizing repair
is outside the scope of classical fault trees. Repairable Fault Trees (RFTs) aim
to fill this gap. If the on-board computer receives too much faulty data for the
voter to mask, the sensors providing the data will be repaired (for example, by
restarting the sensor). For a survey giving further insight into the state-of-the-art
techniques and model extensions for fault trees, we refer the interested reader
to [2]. Repair also has consequences on the semantics of the priority gates, as it
is not clear what the semantical behavior is when a child of a priority gate is
repaired.

System

On-Board
Computer

wrong data

Sensor3Sensor2Sensor1

2

B1 B2 B3

R

Fig. 2.11. Example of a Repairable Fault Tree using a Repair Box R. If more than
one sensor fails, R will decide based on some internal logic which sensor needs to be
prioritized.

2.3.2.3 Reliability Block Diagram Method

The Reliability Block Diagram (RBD) method [43] functions very similar to fault
tree analysis, but instead of forming a graph modeling the fault propagation in
a tree-like fashion, RBDs model paths of errors in a fashion based on resistors

23

CHAPTER 2. STATE OF THE ART

in electrical circuits. Each block in an RBD models a fault-tolerant unit that
must fail for the entire system to fail. The blocks can be arranged serially, thus
enabling RBDs to model temporal behavior. In a parallel configuration, all
parallel paths have to fail for the entire parallel composition to fail, enabling the
modeling of hot spares.

Fig. 2.12 shows an example RBD modeling a system with a primary unit
that switches to a cold spare if it fails. Should the first cold spare fail, it switches
to a system of two hot spares. Should both of these fail as well, the system uses
another cold spare unit. Should this unit fail as well, then the system fails.

Primary ColdSpare1

HotSpare1

HotSpare2

ColdSpare2

Fig. 2.12. Example Reliability Block Diagram. In order for the system to fail, the
primary must fail, then ColdSpare1, then either HotSpare1 or HotSpare2 and finally
ColdSpare2.

An extension of RBDs to Dynamic RBDs (DRBDs) is given in [44]. DRBDs
function in a similar way to DFTs by also providing features such as spare
management with shared pool. Using a switching mechanism, the spares can be
switched from one RBD into another RBD.

2.3.2.4 Combined Techniques

Combinations of these techniques such as FTA and FMECA to form higher-level
analysis methods closing the gap between bottom-up and top-to-bottom analysis,
such as the Probability Risk Assessment (PRA) have also been considered
and accepted by the industry [45]. Also, a more component-oriented approach
for combining FTA and FMECA, the Fault Propagation and Transformation
Notation (FPTN), has been proposed in [46].

24

2.3. TECHNIQUES FOR FAULT MODELING AND ANALYSIS

2.3.2.5 FPG

Modern research has put significant effort into improving these basic methods to
incorporate additional phenomena relevant to the failure behavior. In particular,
a major concern is time. In a system that may eventually fail, it is not only
of interest how it may fail but also after what time span. Techniques aiming
towards providing an answer to this issue have also been developed. The basis for
many such state-of-the-art approaches are Fault Propagation Graphss (FPGs),
which attempt to provide a graph theoretic approach to modeling fault behavior
by focusing on the description of the fault propagation. In this setting, the nodes
are failure modes (sometimes also extended by other system modes, basic fault
events, and more), and edges between nodes represent the fault propagation
from the source to the destination node [47].

An extension of this formalism to also include timing aspects, called Timed
FPG (TFPG), has been presented in [48] and has been successfully applied in the
European Space Agency (ESA) project FAME, not only to analyze failures but
also to synthesize appropriate FDIR components to combat them [49]. Fig. 2.13
shows an example of a TFPG. Circled nodes are basic fault events, while
others are failure modes. Edges are labeled with the minimum and maximum
propagation time.

Not
charging

Battery
critical

[50, 100]

Battery
dead

[2, 10] Sensor
dead

[0, 1]

Sensor
stuck
at 0

Wrong
value

[0, 0]

[0, 0]

System
dead

[30, 200]

Fig. 2.13. Example of a simple TFPG. After 50 to 100 time units the Not charging
fault will occur and propagate through the graph.

25

CHAPTER 2. STATE OF THE ART

2.3.2.6 HAZOP

These approaches share the common trait of requiring domain knowledge about
basic fault events. However, how does the reliability engineer identify a basic
fault event and that he has covered the relevant ones? An industry-accepted
technique for this is the Hazard and Operability Studies (HAZOP), for which an
overview can be found in [50]. HAZOP is a means of imaginative anticipation
of hazards. A standard set of guide words is defined based on past experiences,
prompting analysts to consider how these guide words might manifest themselves
on a basic level. Originally hailing from the field of chemistry, HAZOP has
been implemented in many other safety-critical fields such as the development of
nuclear power plants and has also been adapted to be employed in hardware and
software systems [51], where it is called Software Hazard Analysis and Resolution
in Design (SHARD). The following is a possible example of a set of guide words
and is employed by FPTN:

• Omission: A message was expected but not delivered.

• Commission: A message that should not have been delivered has been
delivered.

• Value: An incorrect value has been computed/received/sent.

• Timing: A message is too early, too late.

To obtain more detailed analysis results, the guide words may be further
refined (e.g., value subtle incorrect and value coarse incorrect).

These manual approaches, however, are labor-intensive and often not incre-
mental. In fact, slight changes to the system model may invalidate them entirely,
requiring them to be redone from the ground up. As such, they are unsuitable
to be used in the early stages of spacecraft design, where many components
are still subject to change. Many modern approaches have therefore adopted a
model-based direction so that not only the system is represented with a formal
model but also its erroneous behavior, thus allowing for failure analysis and
validation of system models to be performed automatically.

2.3.3 Model-Based Techniques
Early pioneers of this approach come from the field of artificial intelligence, who
developed the framework of Model-Based Diagnosis (MDB) [52] to create FDIR
systems capable of performing on-line diagnosis using logical inference methods.

26

2.3. TECHNIQUES FOR FAULT MODELING AND ANALYSIS

In MBD, a faulty state is represented by an ”abnormal” predicate encoded
by an equation system of analytical redundancies. The fault behavior is then
analyzed on a component level and given to the MBD engine via logical formula.
System-wide failure behavior can then be automatically diagnosed (or at least
attempted) by employing the MBD as the Decision Logic in a model-based FDIR
system.

This approach of modeling faulty behavior on a component-wide level and
leveraging the knowledge to compute the failure behavior on the system level
has also continued into modern failure analysis methods.

Of particular note is the FPTN based Fault Propagation and Transformation
Calculus (FPTC) introduced in [53]. Here, an architectural system model is
taken, and each component is annotated with its local failure behavior expressed
by local transformation rules. These rules map combinations of incoming faults
together with internal faults to fault propagations into other components. The
basic workflow is to consider each component in isolation and then use a set of
guide words as in HAZOP to create the local transformation rules. As usual,
the system-wide failure behavior can then be automatically calculated. The
following demonstrates a simple set of transformation rules for a sensor similar
to the one from the TFPG example.

∗ → output.value.stuckAt0
power.omission → output.omission

The wildcard * indicates that a fault is generated from this component and
may model a component facing an internal failure. FPTC itself is originally a
qualitative method, but quantitative extensions have also been proposed. For
example, in [54] a probabilistic extension to the FPTC framework is proposed,
enabling the analysis also to determine system-wide failure probabilities.

However, while these methods all enjoy the benefit of being employable while
the system design is still in its early phase, its heavy focus on explicitly modeling
the failure processes while treating the components as black boxes makes them
heavily reliant on the domain experts operating them and providing their domain
knowledge of the failure behavior. More comprehensive approaches employing
state-of-the-art model checking techniques to determine precise system-wide error
behavior from a (possibly) complex system model while relying only on a simple
error model have also been developed. For example, in the COMPASS toolset,
very detailed system models can be considered, taking into account not only the
basic system architecture but also the components implementation in software
and hardware [55]. The drawback of this approach is that its feasibility requires

27

CHAPTER 2. STATE OF THE ART

a mature system model, which may only be available at a later design stage. The
FAME toolset building onto COMPASS attempts to overcome this limitation
by starting with black-box components for its initial analysis and generating a
COMPASS model when the design has reached the necessary maturity status.

2.4 From Fault Model to Recovery Strategy

Computing strategies for recovery purposes from a given fault model has been
researched in other contexts. The original authors of the DFT model recognized
the issue of spare races and extended their original proposition [42] by randomly
resolving the race using a uniform distribution.

In [62], the authors encode the non-determinism into the failure propagation
of FDEP gates. By resolving the FDEP gate triggers sequentially, spare gates do
not truly fail simultaneously and can thus claim according to their deterministic
semantics. The non-determinism is then resolved by computing the worst-
case order of failure propagation. The core difference between the approach
proposed by the authors and the approach proposed in this work lies in the
non-determinism here being applied to the spare gate claiming.

An approach similar to ours is taken in [56], which focuses on repairable
fault trees. The authors consider non-deterministic repair policies where the
order of repair operations is not fixed. Repairable fault trees are an extension to
fault trees where faults can be transient or repaired. In their work, the repair
process is realized with a new gate type called repair boxes. Repair boxes are
equipped with a repair policy that states which resources are required for the
repair process, in which order the faults should be repaired, the repair rate, and
so on. By then converting a repairable fault tree to a Markov decision process,
an optimal repair policy (with respect to the steady state availability metric)
can be computed. However, the authors do not consider DFT models.

Also focusing on repair policies and in addition on maintenance policies,
[57] introduces a model of fault maintenance trees, aiming to identify optimal
repair and maintenance strategies. The model supports inspection boxes, which
can be equipped with an inspection policy, such as checking the observation
state after certain time intervals. Repair policies can be modeled free-form
using Input-Output Interactive Markov Chains (I/O-IMCs). The semantics
are defined compositionally by starting with elementary I/O-IMCs for every
gate and proceeding in a bottom-up direction by combining these elementary
I/O-IMCs. Recovery strategies for resolving spare races can also be given on the

28

2.5. PARTIAL OBSERVABILITY

Markovian level. The strategies must be chosen manually and then compared
using a testing-based approach based on model simulation.

Dynamic Decision Networks (DDN) are employed in [58], and their inference
capabilities are exploited to create autonomous on-board FDIR systems for
spacecraft that can select reactive and preventive recovery actions during run-
time. The authors further consider in [59] how DDNs can be generated from an
extended DFT model. Instead of off-line computing a recovery strategy with
globally optimal reliability, the approach focuses on providing locally optimal
(in terms of some externally provided heuristic utility functions) on-line decision
making.

Building upon the COMPASS [60] toolset, the FAME [49] process uses Timed
Failure Propagation Graphs to synthesize FDIR components. These components
are monitors for fault detection and fault recovery units that implement recov-
ery plans for each specified combination of fault and spacecraft mode. Here,
planning-based approaches with predefined actions are employed to create the
recovery components. For the detection synthesis, the FAME process provides
an algorithm that generates a set of alarms necessary to distinguish different
faulty states. These alarms are then fed into the synthesized recovery plans.
The generated components are then transformed into a COMPASS compatible
representation in the form of SLIM [60] models. A developed understanding of
the system implementation is needed to provide the required timing information.
Many FDIR concepts such as redundancy features, however, are ideally already
finalized at this stage.

For aircraft systems, the authors of [61] model loss-of-control scenarios using
MDPs. They synthesize optimal strategies but report on struggles to represent
the resulting policies due to large state spaces.

The problem of failure rates sometimes not being known a priori is tackled
in [62]. The authors consider fault trees with symbolic failure rates and synthesize
upper failure rate bounds for meeting reliability thresholds.

2.5 Partial Observability

Most previously considered models and techniques share the common trait of
focusing on fully observable models. Models where it is not always known that
an event, such as a fault, has occurred and first needs to be observed to gain
that knowledge, are called partially observable. Likewise, this also gives us the
information on which fault is responsible for causing a failure and thus helps in

29

CHAPTER 2. STATE OF THE ART

deciding which recovery action should be taken to return into an operational
state, or if that is not possible.

Bayesian-based models natively support such inference and can be employed
to deduct possible fault causes as shown in the DDN approach from [58]. Par-
tially Observable Markov Decision Processess (POMDPs) [63] extend MDPs by
introducing partially observable states by allowing each state to be assigned
a set of observations. Based on this, there exists also the notion of a Belief
MDP where each state models the belief of being in a certain state of a POMDP.
Usually, this is achieved by equipping a belief state with a mapping assigning each
POMDP state a probability value (the belief). However, computing properties
such as total long-term reachability necessary to derive interesting metrics such
as MTTF is known to be undecidable [64]. Intuitively, this stems from the belief
MDP being potentially infinite and optimal policies requiring infinite histories
to decide the optimal action.

The idea of a continuous-time extension of a POMDP to a Partially Observ-
able Markov Automaton (POMA) has to the best of our knowledge not been
successfully formalized.

On the level of fault trees, the authors of in [56] propose the idea of a partially
observable, non-deterministic repairable fault tree on the basis of POMDPs in
their future work section. To the best of our knowledge, however, this idea has
not received a follow-up in subsequent papers.

The authors of [57] propose the introduction of an Inspection Module (IM),
which marks an event as observed after a certain time period and only permits
actions to be taken on observed events. Beliefs are not taken into account,
therefore, the decision process does not change when a fault is very likely to
have occurred, even if it has not been observed.

Overall, the literature suggests that while certain aspects of partial observ-
ability have been handled, there is in particular a gap in defining semantics for
claim actions on SPARE gates under uncertainty.

30

Chapter 3
Preliminaries

In this chapter, we introduce the formal notations and definitions relevant to the
thesis. We focus mostly on the mathematical nomenclature required for proofs
and the formal definitions for Markov structures and Fault Trees.

3.1 Basic Notation
In most cases, single elements are denoted with lowercase and sets with a capital
letter. The set operations ∪ (union of sets), ∩ (intersection of sets), \ (set
exclusion), and × (cross product of sets) are defined as usual. The special union
symbol ⊎ denotes the union of disjoint sets. The power set 2A denotes the set
containing all subsets of A. The empty set is denoted as usual by ∅.

N and R denote the natural and the real numbers, respectively. With R≥0
we denote the set of non-negative real numbers and likewise with R>0 the set
of positive real numbers without 0. An interval [x, y] defines the usual subset
of numbers over R. A mapping f between sets A, B is written as usual as
f : A → B. A is then called the domain and B the codomain. To access the
codomain of a mapping f , we employ the usual notation Codomain(f) := B. We
also sometimes use the notation f : a 7→ b to write mappings where we omit the
domains. A tuple t = (a, b) denotes as usual an element from A × B. For such a
tuple we sometimes also write a(t) := a or b(t) := b to access the tuple elements.
For mappings defined on tuples such as (a, b) we simply write f((a, b)) = f(a, b).

31

CHAPTER 3. PRELIMINARIES

The Boolean operations ∧ (logical and), ∨ (logical or), and ¬ (logical negation)
are also defined as usual. The quantor ∃a ∈ A : φ denotes as usual that an
element a ∈ A must exist to satisfy φ. Likewise, the quantor ∀a ∈ A : φ denotes
that φ must be satisfied for any a ∈ A.

A total, or linear, order denotes an ordering that relates all elements in a set
by a < relation. Formally:

Definition 3.1 (Total Order). A total order is a tuple (A, ≤) with ≤⊆ A × A
such that for any a, b, c ∈ A:

• a ≤ a (Reflexivity),

• a ≤ b and b ≤ a then a = b (Antisymmetry),

• if a ≤ b and b ≤ c then a ≤ c (Transitive), and

• if a ̸= b then a ≤ b or b ≤ a (Totality).

Sometimes elements from a set are also called words. In this case, the set is
also referred to as a language. The concatenation of words u, v is denoted as usual
by u · v = uv. Similarly, the concatenation of all words between two languages
A, B is denoted as AB. The set containing all finite word concatenations over
a language A is denoted as Kleene Closure A∗ :=

⋃
i∈N Ai with A0 = {ϵ}. The

special character ϵ is also called the empty word with u · ϵ = u for any word u.
A (probability) distribution d over a set A is a mapping d : A → R≥0 such

that Σa∈Ad(a) = 1. We denote the set of all probability distributions over A
with Dist(A).

3.2 Markovian Structures
In this work, we will only require CTMCs and Markov Automata. Further
Markovian structures such as DTMCs or MDPs are omitted here.

3.2.1 Markov Chains
We mostly rely on the common definition for Markov Chains, extended with an
initial distribution and a labeling function:

Definition 3.2. A (Continuous Time) Markov Chain (MC) is a 5-tuple (S, T, I, L, R)
where:

32

3.2. MARKOVIAN STRUCTURES

• S is a set of states.

• T ⊆ S × S is a set of transitions.

• I is the initial probability distribution over S.

• L : S → 2D is a labeling function over S over a domain of labels D.

• R : T → R>0 is the transition rate function.

The exit rate of a state s of a Markov Chain C is denoted as exitC(s) =
Σ(s,s′)∈T R(s, s′). If the context is clear, we drop the subscript C. As we only
employ CTMCs, we will abbreviate them simply as MCs.

3.2.2 Markov Automata
The formal definition of a Markov Automaton is based on [33]. In the original
definition, non-deterministic and probabilistic transitions are captured in one
relation. For the later constructions it will be convenient to distinguish between
states with only non-deterministic transitions, Markovian states, and probabilistic
states. We therefore split the relation for the purpose of this work into two.
In addition, we also add a labeling function in the style of MCs. Overall, we
capture it by the following definition:

Definition 3.3. A Markov Automaton (MA) is a 7-tuple (S, L, A, N, C, P, s0)
where:

• S is a set of states.

• L : S → 2D is a labeling function over S over a domain of labels D.

• A is a set of actions.

• N ⊆ S × A × S is a set of non-deterministic immediate transitions.

• C ⊆ S × R>0 × S is a set of exponentially delayed transitions. We restrict
C such that if (s, λ, s′) ∈ C, then (s, λ′, s′) /∈ C for any λ′. (There is at
most one exponentially delayed transition to the same state.)

• P ⊆ S × Dist(S) is a set of probabilistic immediate transitions.

• s0 ∈ S is the initial state.

33

CHAPTER 3. PRELIMINARIES

If a state has non-deterministic transitions, we call it a non-deterministic
state, a state with exponential delayed transitions is a continuous state, and a
state with probabilistic transitions is a probabilistic state. Hybrid states that
combine different transition types are not allowed. Note that for a Markov
Automaton, a fixed initial state s0 is sufficient as an initial distribution can be
modeled by adding corresponding probabilistic transitions from s0.

3.3 Dynamic Fault Trees
Since the syntactic difference between Dynamic Fault Trees and classic Static
Fault Trees lies in the addition of new gates, we first formalize a general notion
of a fault tree that does not depend on the used gate types. Following the
definitions of [2, 56], a fault tree is formalized as follows:

Definition 3.4. (Fault Tree) A Fault Tree (FT) T = (F, B, G, T, P, D) is a
structure with the following constituents:

• F is a set of faults.

• B is a set of basic events.

• G is a set of gates.

• T : G → GateTypes is a mapping assigning each gate a type.

• P ⊆ (F ∪ B ∪ G) × (F ∪ G) describes the propagations within the fault tree.

• D : B → (R>0 × [0, 1] × EXP) ∪ ([0, 1] × DISCRETE}) is a function assigning
a basic event its failure distribution. This can be either

– continuous-time exponential (λ, d, EXP) with rate λ and dormancy d,
or a

– discrete probabilistic (p, DISCRETE) with probability p.

Furthermore, the induced graph (F ∪ B ∪ G, P) must

• be acyclic,

• follow the individual syntactical restrictions for each given gate type,

• and must have a unique root, the TLE e ∈ F .

34

3.3. DYNAMIC FAULT TREES

Generally, basic events will be denoted by b1, b2, . . ., sets of basic events by
B1, B2, . . . and failure rates by λ1, λ2, As for the association of failure rates
with basic events, in the following, for any basic event b with an exponential
distribution, the active failure rate will be denoted by FA(b) and the dormant
failure rate by FD(b) := FA(b) · d where d is the dormancy of b. In the case of
FA(b) = FD(b), the subscripts will be dropped, and the simplified notation F (b)
will be used to denote the failure rate.

When given an FT T we also write F (T), B(T), G(T), T (T), P (T), D(T)
to identify the associated elements in the tuple. To identify the unique root of
an FT, we also write TLE(T). The set of all nodes in the tree is denoted by
N(T) := F ∪ B ∪ G.

For a DFT, we consider the gate types introduced in Section 2.3.2.2. This
gives us the following set:

DFTGates = {OR, AND}∪{k-VOTE | k ≥ 1}∪{POR, PAND, SPARE, FDEP}

For the priority gates POR and PAND, we pick a repair semantics where
repair events act as a general inverse to a fault event, that is, the occurrence of
a repair event puts the gate into a state as if the original failure event had never
occurred. Or in other words: Priority gates do not have to be repaired in order.
We pick this semantics as we will later track the occurrence of events in a history
variable and allowing said history variable to remember all repair events, would
lead to an infinite state space. By employing the set DFTGates as the gate types
in the FT definition, we now obtain the formal definition of a standard DFT:

Definition 3.5. (Dynamic Fault Tree) A (standard) Dynamic Fault Tree (DFT)
T is an FT with GateTypes = DFTGates.

Since the semantics of DFTs are a subject of research of this thesis, different
perspectives for defining them are discussed in the main Chapter 4.

35

Chapter 4
Formalization of the FDIR Model

In this chapter, we discuss important features the FDIR model needs to possess
in order to deal with FDIR scenarios for space systems, and what weaknesses
DFTs have to capture them. We then formalize an extension to the DFT model
to deal with these weaknesses.

While systems are growing in complexity, they are at the same time decreasing
in size. There is an increasing demand for low-cost space missions, mostly carried
out using the popular small satellite CubeSat architecture [65]. These CubeSats,
however, face enormous challenges regarding reliability. The authors of [65]
report that the average mission success chance of a CubeSat mission as in 2018
was 65%, as opposed to a mission success chance of 85% for large-scale satellite
missions. The low-cost requirements and lack of space make it difficult to deal
with this deficit in reliability using traditional engineering techniques such as
redundancies. This gives rise to a need for more complex FDIR strategies that
better exploit existing resources.

Examples of such advanced FDIR strategies are sharing redundancies, reusing
measurement outputs of sensor units for constructing analytical redundancies
and integrating repair mechanisms. Accompanying the need for such complex
FDIR strategies also comes the need to verify and validate their correctness
before mission start. Both to potentially find design problems and to raise trust
in the FDIR system despite its increase in complexity. A suitable FDIR model
for space missions would need to be able to deal at minimum with the following
scenarios:

37

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

• Redundancies, including sharing of redundancies

• Repair mechanisms (e.g., patching software bugs)

• Transient faults (e.g., transient bitflips)

• Limited information, dealing with only partial information

As shown in Section 2.3, there exists a wide range of techniques for modeling
and analyzing FDIR. With their ability to naturally model redundancies, existing
extensions for repair, and their intrinsic support for Boolean and Temporal
connections, DFTs give us a suitable range of features needed to cover the needs
of modeling FDIR for spacecraft.

However, when it comes to modeling more complex relations between com-
ponents, default fault tree semantics quickly become too rigid. DFTs impose
a fixed and rigid order in which spares are activated. They do not allow to
adapt the order depending on the history of occurred faults. This may lead to
semantically undesirable consequences:

• A SPARE gate might claim a spare from a spare pool, despite having
an already failed parent. This might deny a necessary resource to other
SPARE gates that urgently require the spare to recover.

• In the event of spare races, it is not semantically clear which SPARE gate
may claim a spare.

• The optimal order for spares has to be known at design time.

......

...... ...

(a) Rigid semantics

......

... ...

(b) Spare races

...

...

(c) Spare ordering

Fig. 4.1. Example configurations of problematic DFTs. Red indicates an incoming
failure propagation. Spare claims are marked with thick, black lines.

38

Fig. 4.1 on the previous page visualizes possible fragments of DFT config-
urations exhibiting the described semantic complications. A simple, but full
example where different resolutions of spare races lead to different behavior with
different MTTFs can be found later in Fig. 4.6 on page 46

The problem cases induced by the rigid standard fault tree semantics have
been considered in other works. The authors of [41] tackle the issue of spare
races by employing non-determinism in the propagation semantics of functional
dependency gates while allowing only functional dependencies to cause spare
races. The study of the interaction of this approach with spare gates reveals
various yet sensible ways in which the resulting semantics can be interpreted.
They conclude that there is no “correct” one-fits-all interpretation and that
the fitting variant has to be chosen on a case-by-case basis. This is a concern
regarding the applicability of fault trees, as experts in system design are not
necessarily experts in fault tree semantics.

This conflict between the applicability of different fault tree semantics leads
to the following proposition: Instead of indirectly encoding the recovery behavior
via the semantics into the fault tree model, we explicitly describe the recovery
behavior within a special recovery model.

However, this now implies that the engineering expert needs to model not only
the fault tree but also the recovery model. This in return demands knowledge
about which actions are indeed the most suitable ones. This gives us the core
question of this work:

Question: Can we obtain an “optimal” recovery strategy from a
non-deterministic DFT?

The term optimal has been put into quotation marks here since it warrants
some discussions to define what it means for a recovery strategy to be optimal.
The main goal is to increase metrics used to measure system reliability and
availability, but we will see in the following that the different metrics may cause
undesirable behavior or make the approach non-tractable.

In order to systematically tackle this question, this chapter focuses on es-
tablishing a suitable formalized framework that allows deriving the optimal
Recovery Automaton using model checking techniques. To simplify the definition
process, the following chapters first operate under assumption of full observabil-
ity. An extension of the formal concepts, including partial observability, is then
constructed from this basis.

The overall strategy is to define an inherently non-deterministic DFT seman-
tics using Markov Automata, which then yields optimal schedulers that in return

39

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

NdDFT
System

SparePrimary

b1 b2

Markov automaton

FAIL
{b1} : λ []

CLAIM(System, Spare)
{b2} : µ

Target RAMS
optimization metric

Recovery automaton
q0start q1

{b1} : CLAIM(System, Spare)

Reduced recovery automaton
q0start {b1} : CLAIM(System, Spare)

Markov chain

FAIL
λ µ

RAMS metrics

Fig. 4.2. Transformation road map. From the NdDFT model, a deterministic recovery
model is derived. The composition of the recovery and the NdDFT model then gives a
traditional Markov chain. Note that we have one fixed target RAMS metric, but may
also want to evaluate the resulting Markov chan with other RAMS metrics different
from the optimization target.

can be transformed into the desired Recovery Automaton. A road map that
sketches the objects and transformations involved in the entire process is given
in Fig. 4.2.

To build the formal basis of this transformation road map, we define the
necessary semantics of the objects and the involved composition semantics in the
following. E.g., we define what it formally means to use a Recovery Automaton
conjunction with a DFT. Further processing of these objects and putting them
together to achieve the desired framework is then done in the following chapter.

40

4.1. RATE DEPENDENCY EXTENSION

4.1 Rate Dependency Extension

The standard gates used in DFTs lack convenient tools for modeling dynamic
failure rates. Due to various effects, such as degradation over time, failure rates
are not always constant. We introduce the Rate Dependency (x-RDEP) gate
depicted in Fig. 4.3 to provide some basic handling for modeling event-based
failure rate increases.

x

Fig. 4.3. Rate Dependency Gate. When a left-hand side input occurs, then the failure
rate of all right-hand side basic events is multiplied by x.

The x-RDEP, based on [57], is structured similarly to the FDEP gate. When
the triggering event on the left-hand side occurs, the dependent events have
their failure rates multiplied by the rate dependency x ∈ R≥0. The RDEP gate
also has a dummy output indicating to which tree it belongs. Like the FDEP
gate, the output gate has no further semantic meaning. Using the RDEP gate,
degeneration of components can be modeled. In reality, components do not have
constant failure rates. Instead, the failure rate might increase with time due to
wear and damaging influences. An RDEP can be a simple means to model such
an increase. A second use case for the RDEP gate is modeling load-sharing of
components. For example, if a system is powered by two batteries and a battery
fails, then the system may continue operation, but the increased load on the
remaining battery might increase its likelihood to fail. The two use cases are
illustrated in the examples of Fig. 4.4 on the next page.

In the first example, an equipment has its failure rate doubled when the
Wear event fires. In the second example, two hot redundant batteries are used
to power a system. If one of them fails, the system is still operational, but due
to the increased load, the failure rate of the remaining battery is doubled.

To avoid semantic issues of giving immediate events an occurrence probability
of > 1, RDEPs may only trigger basic events with exponential distributions.
Updating the common DFT gate type definition with the family of RDEPs yields
the following set:

41

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

System

EquipmentRDEPDegeneration

Wear
2

(a) Simple degeneration. The event Wear
causes the failure rate of Equipment to double.

System

Battery2:Battery1

Fail Fail

RDEP1 RDEP2

2 2

(b) Load Sharing. When any of the
batteries fail, the failure rate of the
remaining battery is doubled.

Fig. 4.4. Example of two use cases of RDEPs.

DFTGates :={OR, AND} ∪ {k-VOTE | k ≥ 1}
∪ {POR, PAND, SPARE, FDEP}
∪ {x-RDEP | x ∈ R, x > 0}

4.2 Non-Deterministic Fault Trees
As described in the previous sections, DFTs require that spares are activated
in a fixed and rigid order. This order cannot be adapted depending on faults
that have previously occurred. Additionally, in cases of spare races, it is not
semantically clear which SPARE gate claims the actual redundancy. To relax
on this semantic restriction of the DFT model, an inherently Non-deterministic
Dynamic Fault Tree (NdDFT), following the naming in [56], needs to be defined.
This definition introduces a recovery strategy that can be optimized by first
transforming the NdDFT into an MA. Computing an optimal scheduler for this
MA using standard algorithms allows deriving a so-called Recovery Automaton
(RA). This recovery automaton provides the optimal strategy to react to failures
in the NdDFT. The interaction between the NdDFT and the recovery automaton
is depicted in Fig. 4.5 on the following page.

On the one hand, the NdDFT models the non-deterministic fault behavior of
the system. On the other hand, the RA corresponds to an abstraction of the

42

4.2. NON-DETERMINISTIC FAULT TREES

start

Recovery ActionFault Event

Fig. 4.5. Abstraction of System-FDIR interaction by FT-RA interaction.

FDIR logic. Interaction between the two is carried out via listening to events
and firing recovery actions.

The NdDFT defined here is based on the same semantics as a DFT, except
for the activation conditions of spares. The NdDFT drops the requirement
that spares are always activated from left to right. The new non-deterministic
semantics allow for a SPARE gate to not claim any of the attached spares,
thus leaving it available for more critical SPARE gates that may also require a
spare. The syntax and notation of the NdDFT is wholly adopted from the DFT.
Whenever a fault event, or more precisely a BE, occurs in an NdDFT, the new
semantics allow performing any valid recovery action of the following form:

Definition 4.1 (Recovery Action). A recovery action r in an NdDFT T is an
action of the form

• [] (empty action),

• CLAIM(G, S) (SPARE gate G claims spare S) with (S, G) ∈ P (T), or

• FREE(S) (all claims on spare S are removed) with S ∈ N(T).

The recovery automaton will trigger these recovery actions upon receiving
a set of basic events as input. Here, sets of basic events rather than single
basic events are considered since FDEPs may cause several basic events to fail

43

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

simultaneously. As a helpful notation, define the set of all non-empty basic event
sets as:

BES(T) = {B ⊆ B(T) | B ̸= ∅}

Likewise, define the set of all recovery actions possible in an NdDFT by R(T).
To define the semantics of an NdDFT in terms of Markov Automata, we first
need to formalize the necessary components making up a state of the NdDFT.
In order to uniquely identify a state, we memorize the following information:

• A history of the occurred basic event sets, and

• a spare to SPARE gate mapping to memorize claims.

Note that it would also be possible to memorize the fail state of each node
rather than the event history. However, since dynamic gates are allowed to
consider the occurrence order of events to decide whether they propagate or not,
this information may not be sufficient. For the introduced POR and PAND gates,
it would be possible to discard the history as it is only necessary to memorize
whether the occurred events are still in order. In order to free the formalization
from these implementation details, we use the more powerful history information.
Formalizing the above gives us the definition of a DFT state:

Definition 4.2 (DFT State). A DFT state is a tuple s = (history, claims)
with:

• history ∈ BES(T)∗

• claims ⊆ G(T) × N(T) a set of claims.

For a given state s = (history, claims) we also define history(s) := history
and claims(s) := claims. The set of all DFT states in a DFT T is then denoted
by S(T). We also denote the empty history with (). To extend a history, we use
the notation history|B := history ·B. Introducing a separate operator to extend
a history will prove helpful later when we need to consider handling repair events.
Furthermore, we define the mapping failed : S(T) → 2N(T) giving the set of all
failed nodes in a given DFT state. In the same vein, define active : S(T) → 2N(T)

to be a mapping giving the set of all active nodes. Furthermore, given a basic
event b we let cl(s, b) ∈ BES(T) denote the transitive closure of all simultaneously
failed basic events due to the failure of b and the propagation of FDEPs while
being in state s. Note that the dependence of the state s is necessary since
certain elements of the closure might have already failed.

44

4.2. NON-DETERMINISTIC FAULT TREES

Let enabledM (s) ⊆ BES(T) further denote the set of Markovian basic events
that can occur in a DFT state s. That is, b ∈ enabled(s) iff:

• D(b) = (λ, d, EXP) (Markovian event),

• b /∈ failed(s) (Not failed),

• λ > 0 (Can fail), and

• b ∈ active(s) or d > 0 (Active or can fail dormantly).

For the transition rate of a basic event b with D(b) = (λ, d, EXP) in state s, we
need to consider the activation state and R-DEPs influences on the occurrence
rate of b. For this we define state-dependent failure rate λ(b, s) := λ · d′ · y with:

• d′ := 1 iff b ∈ active(s) and otherwise d′ := d.

• Let R := {r ∈ G(T) | failed(r), T (T , r) = x−RDEP} denote the set of
failed RDEPs. Then y is the total rate factor y := Σ{x|T (T ,r)=x−RDEP}x.

From the formal definition of a DFT state, it is also straightforward to
formalize the effect of applying a recovery action to a DFT state.

Definition 4.3 (Recovery Action Semantics). Let r be a recovery action, and
s = (history, claims) a DFT state of a DFT T . Then the application of r to a
DFT state s = (history, claims) is defined as the state JrKs with:

• J[]Ks := s,

• JCLAIM(G, S)Ks := (history, claims ∪ {(G, S)}}), and

• JFREE(S)Ks := (history, claims \ {(G, S) | G ∈ G(T)}).

Ultimately, our goal is to define the semantics of a DFT in terms of Markov
Chains to compute meaningful metrics using model checking techniques. That
is, a semantics for DFTs is a mapping from a DFT to a Markov Chain.

Definition 4.4 (DFT Semantics). A DFT semantics is a mapping JK from a
DFT T to an MC C = (S, T, I, L, R) = JT K such that:

• Codomain(L) ⊆ 2{OP,FAIL},

• FAIL ∈ L(s) iff TLE(T) ∈ failed(s) for any state s ∈ S, and

• OP ∈ L(s) otherwise.

45

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

Before moving on to the NdDFT semantics, we briefly revisit the claim that
merely restricting SPARE gates from claiming from left to right is not sufficient
to uniquely define a unique DFT semantics. We further show that this lack of
uniqueness is not merely syntactical but also has consequences for the metrics.

Proposition 4.1. Let JKDET informally denote the standard deterministic DFT
to MC transformation. Then:

• JKDET is not a proper DFT semantic, and

• the MTTF metrics of the Markov Chains compatible with JKDET are not
equal.

Proof. To prove the claim, we give a concrete example of a fault tree with a
spare race as depicted in Fig. 4.1 on page 38 where the spare race can be resolved
with two equally valid Markov chains. Further, these Markov chains will have
different MTTFs. Consider a DFT T combining the memory system running
example and the switch running example as depicted in Fig. 4.6.

System

SPARE2

Memory2

OR

SPARE1

Memory1

PAND

Switch

0 b1

0 b2

b4

Memory3

b3

Power1

b5

FDEP1

Fig. 4.6. Spare memory system variation with a switch. Different ways of resolving
the spare race yield different MTTFs.

46

4.3. NDDFT WITH REPAIR

If the BE b5 fails, a spare race occurs. Should the BE b4 occur before b5,
then resolving the spare race by claiming Memory3 with SPARE1 leads to a
failure. Claiming Memory3 with SPARE2, however, does not lead to a failure.
To keep the order in which the BEs can occur simple, let F (b1) = F (b2) = 0.
Two possible Markov chains for resolving the spare race are given in Fig. 4.7.

b4 : 1 b5 : 1

b5 : 1 b3 : 1

(a) CTMC resolving spare race by
always claiming with SPARE1.

b4 : 1

b5 : 1

b3 : 1

b5 : 1 b3 : 1

(b) CTMC resolving spare race by always
claiming with SPARE2.

Fig. 4.7. Two CTMC options to resolve the spare race. Either by claiming with
Memory1 or with Memory2. Edges are also labeled with the corresponding failed basic
event.

Since both Markov chains comply to JKDET, it follows that JKDET is not a
unique mapping and therefore not a proper DFT semantics by Def. 4.4. Finally,
calculating the MTTFs gives:

MTTF (C2) = 2 > 1.5 = MTTF (C1)

As was shown in the previous examples, the standard DFT semantics allows
for the production of Markov chains that not only differ in their structure but
also in essential metrics, such as the MTTF. In the NdDFT with the Markov
Automaton, we will aim to obtain a proper DFT semantics that is always unique
and optimal with respect to a target metric, for example, MTTF.

4.3 NdDFT with Repair
To move onto the NdDFT semantics, we need one more ingredient: To handle
the ability of repair. Until now, basic events are assumed to persist permanently.

47

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

However, even when it is impossible to replace broken hardware, this assumption
is not necessarily valid. Software can be reset, malfunctions caused by radiation
may be transient, and operator errors might be fixed. An interesting semantic
feature is therefore the introduction of repair semantics. Here, a basic event
b can also be equipped with a repair rate r(b), modeling repair processes and
transient failure.

Formally, to incorporate the repair rate, we update the definition of an
NdDFT with an additional distribution.

Definition 4.5. (Repairable Fault Tree) A Repairable Fault Tree (RFT) T =
(F, B, G, T, P, D, r) is a tuple such that:

• (F, B, G, T, P, D) is a fault tree, and

• r : B → R≥0 assigns each basic event a repair rate.

If no further specifics are given in the following, we assume all NdDFTs to
be RFTs. Note that any RFT with r(b) = 0 for any basic event b is semantically
equivalent to an FT. However, the introduction of repair events raise new
semantic questions, particularly regarding SPARE gates:

• When the primary unit is repaired, should a SPARE gate switch back?

• Or should it remain with its current claim?

One deterministic approach would be to treat repair events as an inverse to
failure events, canceling each other out. In this approach, a SPARE gate would
therefore always revert to its original state after the prime has been repaired.
However, there are many cases where this is undesirable in realistic scenarios.

For example, consider a spacecraft system with units that may suffer from
wear at each activation. An example of this could be thrusters that only
guarantee to operate for a limited number of activations. Consider an FDIR
dependent on the temperature of the primary thruster branch that switches
to the redundant unit in case of low temperature of the primary unit. In this
scenario, an autonomous switch back to the primary unit once its temperature is
back in the operational range is not desired, as in the case of multiple switches,
it increases wear of the redundant unit, leading to its permanent failure.

A simple example fault tree illustrating the described scenario is given in
Fig. 4.8 on the following page. The basic events Fail1, Fail2 are transient with a
repair rate > 0, whereas Wear1, Wear2 follow a discrete distribution. Whenever

48

4.3. NDDFT WITH REPAIR

SPARE

RedundancyPrimary

Fail1 Fail2

(a) System without wear.

SPARE

RedundancyPrimary

Fail1 Fail2Wear1 Wear2

(b) System with wear. Every time
a unit is activated the discrete Wear
event can fire.

Fig. 4.8. Spare system without wear versus system with wear. Due to the Wear events,
it is optimal to reduce the amount of switching between Primary and Redundancy.

primary or redundancy is activated, Wear1 or Wear2 may fire, respectively. To
maximize the MTTF, it would therefore be desirable not to switch back.

These issues with deterministic repair semantics in DFTs are reminiscent of
the known problems in deterministic DFTs, such as SPARE races. We therefore
propose to resolve them similarly by introducing non-determinism into the repair
semantics. By resolving the non-determinism against a desired RAMS metric, a
recovery strategy describing the optimal recovery behavior with respect to the
given metric can then be obtained using the previous workflow for synthesizing
recovery automata.

4.3.1 FDEP with Repair
There exists, however, one type of gate that requires further special attention:
The FDEP gate. Here, the following special scenarios have to be considered:

1. The trigger event fails, and the dependent event is repairable. In this case,
the dependent event cannot be repaired as long as the triggering event
persists.

2. The trigger event fails first and is then repaired. Then the dependent event
should also be repaired.

3. The dependent event fails first, then the trigger event fails, and then the
trigger event is repaired. In this case, the repair of the trigger event,
contrary to the prior case, should not transitively propagate.

Taking these together, the state space semantic of a basic repair event requires
taking the history into account. In the following section, this will be achieved by

49

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

defining the closure operation of repairing a basic event. The situation in Fig. 4.9
illustrates a simple power system exhibiting the different FDEP interactions.
Should a transient outage occur, then we expect the system to be back online
again after the outage is fixed. Should a short circuit event occur, then the
system stays down permanently. The system itself has a self-repair functionality.
In case it fails due to its own basic event, but during some power loss, the system
cannot go back online utilizing its self-repair.

Outage

b1

FDEP1

ShortCircuit

b2

FDEP2

System

b3

Fig. 4.9. Example constellations involving FDEP gates. The outage is transient but
the short circuit is permanent. Repair rates r(b1) = r(b3) = 1, r(b2) = 0.

4.3.2 Extended Notation with Repair
We extend the previously introduced notation to be able to also deal with
repair events. For a given DFT T , we extend the notation by the following
symbols: For every basic event b, we introduce the respective repair event br.
Correspondingly, for a basic event set B = {b1, ..., bn}, we introduce the repair
event set Br := {br

1, ..., br
n}. The set of all non-empty repair event sets is given

by RES(T), which mirrors the set of all non-empty basic event sets BES(T).
Likewise, cl(s, br) ∈ RES(T) denotes the transitive closure of all basic events that
are simultaneously repaired through the repair of br according to the conditions
of Section 4.3.1 given the current DFT state s. Note that we prohibit in (1) that
dependent events can be repaired if they have a failed triggering event. This
guarantees cl(s, br) ̸= ∅ for all other cases. The new set of all possible event sets
is then obtained as:

50

4.4. MARKOV AUTOMATON SEMANTICS

ES(T) := BES(T) ∪ RES(T)

Event sets for which we disregard whether they are repair events or not, we
simply denote by E ∈ ES(T). To extend a history history = (B1, ..., Bn) with
a repair event, we define:

history|Br := (B′
1, ..., B′

m)

with B′
i := B′ \ Br for any 1 ≤ i ≤ n and m ≤ n, filtering out basic event

sets that are empty after removing the events of Br.
For the enabled Markovian repair events in a given DFT state s, define

analogously to enabledM (s) the set enabledr
M (s) ⊆ RES(T). That is, b ∈

enabledr
M (s) iff:

• b ∈ failed(s) (Only repair failed BEs),

• r(b) > 0 (BE is repairable),

• ¬∃g ∈ G(T) : T (g) = FDEP ∧ g ∈ failed(s)) ∧ (g, b) ∈ P (T)
(Cannot repair when FDEP triggered),

4.4 Markov Automaton Semantics
With the preparational work out of the way, we can now define the semantics
of an NdDFT. As discussed previously, to define the semantics, we will employ
Markov automata, and in the following, we discuss how to construct an MA
from an NdDFT concretely.

Note that as sketched in the transformation road map, the MA is still a
non-deterministic object that will, for any fault occurrence, contain transitions
for all applicable recovery actions. It only becomes possible to determinize the
MA and get the final deterministic DFT semantics after an (optimal) scheduler
has been computed.

Definition 4.6 (NdDFT-MA Semantics). An NdDFT-MA semantics is a map-
ping from an NdDFT T to an MA A = MAJT K.

Transforming an NdDFT T = (F, B, G, T, P, D) into a Markov automaton

MAJT K := A = (S, L, A, N, C, P, s0)

51

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

can be done by adapting traditional state space generation algorithms for
transforming DFTs to CTMCs. As a base algorithm, we use the one given in [42].
The adapted algorithm will produce three types of states:

• Markovian states where outgoing transitions represent the occurrence of
an exponentially distributed basic event set.

• Non-deterministic states where outgoing transitions represent the applica-
tion of a recovery action.

• Probabilistic states where outgoing transitions represent the occurrence of
an immediate basic event set.

The state space S will memorize the reachable DFT state information. In
other words, S ⊆ S(T). For the labeling function, we memorize the state type
designation and whether a state is a fail state (top-level event has occurred).
Formally, the labeling function is therefore of the form:

L : S → 2{M,N,P}∪{FAIL,OP}

As initial state, the algorithm generates the state with an empty history and
no claims, i.e., s0 := ((), ∅). If there exists at least one basic event b ∈ active(s0)
with D(b) = (p, DISCRETE) for some p, then mark s0 as a probabilistic state,
that is, L(s0) := {P}. Otherwise mark it as Markovian, that is, L(s0) := {M}.

Let s = (history, claims) be a generated state. Add the label FAIL to L(s)
iff tle(T) ∈ failed(s). Produce the successors according to the following rules:

Markovian state successors Let s be a Markovian state with M ∈ L(s). First,
we process the fault events; afterward, the repair events. Let b ∈ enabledM (s) be
an enabled Markovian basic event failure. The basic event set B incorporating
transitive failure from FDEPs is then B := cl(s, b). Generate the successor:

s′ := (history|B, claims)

Finally, add the Markovian transition s
B:λ(b,s)→ s′ to C. For the repair case,

proceed similarly to the fault case. For any br ∈ enabledr
M , let Br = cl(s, br).

Generate the successor:

s′ := (history|Br, claims)

52

4.4. MARKOV AUTOMATON SEMANTICS

and add the transition s
Br:r(b)→ s′ to C. In case for any b′r ∈ Br it holds that

D(b′) = (p, DISCRETE) for some p, then set b′ /∈ L(s′). In both cases mark the
generated state as non-deterministic by adding L(s′) := L(s′) ∪ {N}.

Non-deterministic state successors Let s be non-deterministic with N ∈
L(s). Then let m be the Markovian successor state reachable with a minimal
number of transitions, or s0 if it does not exist. Let enabled(s) denote the set of
recovery actions, that are enabled in s. That is the following conditions hold:

• [] ∈ enabled(s) (Empty recovery action is always enabled).

• CLAIM(G, S) ∈ enabled(s) iff S /∈ failed(s), ¬∃G : (G, S) ∈ claims
(Cannot claim a failed or already claimed spare).

• Let m
E→ s1

r1→ ...
rn→ s be a path from m to s. The following conditions

need to hold for the recovery action sequence r1...rn:

– If ri = CLAIM(G, S) for some G, S, i, then FREE(S) /∈ enabled(s)
for any S. Allow CLAIM actions to be generated only after FREE
actions.

– If ri = FREE(S) for some S, i and for some SPARE gate G it holds
that (S, G) ∈ claims(m), then CLAIM(G, S) /∈ enabled(s). Prohibit
a spare claimed in m to be freed and then claimed again by the same
SPARE gate.

Furthermore, require the NdDFT gate semantic of the SPARE gate to
uphold, that is, that CLAIM and FREE actions are only enabled if a spare
gate was affected through an event. Formally, let G be a claiming spare
gate if r = CLAIM(G, S), or (G, S) ∈ claims(s) and r = FREE(S). Then
there must exist a child c of G with: It either holds c ∈ failed(m) and
c /∈ failed(s), or c /∈ failed(m) and c ∈ failed(s).

Let r ∈ enabled(s), then generate the successor:

s′ := JrKs

and add the non-deterministic transition s
r→ s′ to N . If r = [] or

enabled(s′) = ∅, then mark s′ as probabilistic by adding L(s′) := L(s′) ∪ {P}.

53

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

Probabilistic state successors Let s be probabilistic with P ∈ L(s). Then
define enabled(s) to be the set of enabled probabilistic events. That is:

• D(b) = (p, DISCRETE) (Immediate event),

• b ∈ active(s) (Active),

• b /∈ failed(s) (Not failed), and

• s is the initial state or let u be the predecessor state of s, then b /∈ active(u)
(Immediate event was activated through a preceding recovery action, or, if
none exist, then this is the initial state).

Then, generate a successor s′ for any subset B ⊆ enabled(s). Let B′ = cl(B) be
the set of failed basic events under closure of FDEPs. The probability for B′ to
occur is pB = Πb∈Bp(D(b)). Define

s′ := (history|B′, claims)

and add the transition s
B′:pB→ s′ to P . Mark s′ as non-deterministic by setting

L(s′) := L(s′) ∪ {N}.
Finally, generate the successor state s′′ = s for no probabilistic event trig-

gering. For the transition probability, let p′′ = Πb∈B(1 − p(D(b))), and add the
transition s

∅:p′′

→ s′′. Mark s′′ as Markovian by adding L(s′′) := L(s′′) ∪ {M}.
This yields an MA with alternating sequences starting with a Markovian,

being followed by a non-deterministic state, and finally being finished by a
probabilistic state. The exception is the initial state, which may have initially
active immediate basic events. The transitions are respectively labeled by the
failure or repair rates of the basic events, the recovery actions, or the total
occurrence probability of an immediate basic event set.

For performance purposes and to obtain a unique, minimal Markov chain,
the procedure is also extended to additionally check for each generated state if
there is an equivalent (i.e., probabilistically bisimilar [32]) state and reduces the
state space accordingly.

4.4.1 Construction Examples
The following considers some example constructions to illustrate various cases
of the Markov automaton semantics. Further examples resulting in larger state
spaces can be found in Section 5.2.

54

4.4. MARKOV AUTOMATON SEMANTICS

SPARE

RedundancyPrimary

b1 b2

Fig. 4.10. NdDFT consisting of a SPARE gate with a primary and a redundant unit.
Failure rates FA(b1) = FA(b2) = 1, FD(b1) = FD(b2) = 0.

4.4.1.1 Simple NdDFT to MA

As a simple example, we consider transforming the very simple NdDFT shown
in Fig. 4.10 to a Markov automaton. The resulting MA is given in Fig. 4.11.
The active failure rates of the basic events are assumed to be 1 for b1 and b2.
The dormant failure rates are 0 for both events.

() ({b1}) FAIL

({b1}), CLAIM(SPARE, Redundancy)

{b1} : 1 []

CLAIM(SPARE, Redundancy)

{b2} : 1

Event Transition rate

FAIL labeled state

Action

Fig. 4.11. Example transformation of an NdDFT to the corresponding MA. Markovian
transitions are represented with solid edges and dotted edges represent non-deterministic
transitions. Since b2 has a dormant failure rate of 0, it can only start failing after being
claimed.

55

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

After the basic event set {b1} fails, there are two possible recovery actions:

• the empty action ([]), or

• the activation of the spare redundancy (Claim(SPARE, Redundancy)).

Note that b2 is initially dormant. Hence, the initial state ((), ∅) has only one
successor, which is reachable by a transition labeled with {b1} : 1. If the set
of claims is empty we also simplify writing the state by dropping the set of
claims and only writing the history, giving the simple initial () state in the
figure. Dotted edges represent the non-deterministic transitions, and solid lines
represent the Markovian transitions. B : λ denotes that the basic event set B
occurs (actively or dormant) with rate λ. In this simple example, it is evident
that immediately activating the redundancy upon observing {b1} is the correct
course of action. For the FAIL labeled states, to simplify the visual depiction,
we merge them into one state simply called FAIL.

4.4.1.2 NdDFT With Discrete Event to MA

We consider the effects of discrete failure events in the example NdDFT shown
in Fig. 4.12.

SPARE

RedundancyPrimary

EndOfLifeDefective

b1 b2

b3

Fig. 4.12. NdDFT variation with a discrete probabilistic event. The BE b1 models a
probabilistic manufacturing failure of the Primary.

The NdDFT further breaks down the cause of failure for the Primary. The
basiv event b1 models the probabilistic, discrete, and immediate failure of the
Primary. On the other hand, the events b2, b3 model the usual exponentially
distributed fault occurrence. We assume the following values:

56

4.4. MARKOV AUTOMATON SEMANTICS

• D(b1) = (50%, DISCRETE)

• D(b2) = (1, EXP)

• D(b3) = (1, EXP)

The resulting MA is given in Fig. 4.13. The initial state is a probabilistic state
with one enabled immediate event b1. Since the probability of b1 occurring is
50%, the probability of no basic event occurring is 50%, hence giving the ∅ : 50%
transition. Note that if no event occurs, the history remains as (), however, the
successor state is labeled as a Markovian state.

()

() ({b1})

{b1} : 50%∅ : 50%

({b2})

{b2} : 1

FAIL
[]

[]

({b2})CLAIM(SPARE, Redundancy)

CLAIM(SPARE,
Redundancy)

({b1})CLAIM(SPARE, Redundancy)

CLAIM(SPARE,
Redundancy)

{b3} : 1{b3} : 1

Fig. 4.13. Example transformation of an NdDFT with a discrete event to the
corresponding MA. The left path from the initial state represents the discrete event
not occurring, the right path represents its occurrence.

The states with a FAIL label have been immediately merged into one single
state called FAIL for improved visual clarity. Note that ({b2}) and ({b1}), as well
as ({b2})CLAIM(SPARE, Redundancy) and ({b1})CLAIM(SPARE, Redundancy)
are bisimilar. While the formal semantics produces them as distinct states, an
implementation merging bisimilar states would merge them.

57

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

4.4.2 Repairable NdDFT to MA

For a repairable example, we reconsider the simple DFT from Fig. 4.10 on page 55
but equip the basic event b1 with a repair rate r(b1) = 1. The basic event b2, on
the other hand, remains non-repairable. Even though we only employ a single
repair rate, we will see in this example how the repair process can significantly
blow-up the MA state space. In the following, the name of the node SPARE is
abbreviated with S and the name of the node Redundancy by R. The resulting
MA is shown in Fig. 4.14.

()

({b1})

({b1})CLAIM(S, R) ({b1})

{b1} : 1

[]
CLAIM(S, R)

()CLAIM(S, R)

()CLAIM(S, R)

({b2})CLAIM(S, R)

()

CLAIM(S, R)

{b2} : 1

{br
1} : 1

[]

FREE(R)

{br
1} : 1

[]

({b2})
FREE(R)

({b2}{b1})

{b1} : 1

({b2}{b1})

[]

({b1}{b2})CLAIM(S, R)

{b2} : 1

({b1}{b2})CLAIM(S, R)

[]

{br
1} : 1

FREE(R)

CLAIM(S, R)

({b2})

[]

{br
1} : 1

({b2})CLAIM(S, R)
CLAIM(S, R)

[]

Fig. 4.14. Example transformation of a repairable NdDFT to the corresponding MA.
The basic event b1 is repairable while b2 is non-repairable.

58

4.4. MARKOV AUTOMATON SEMANTICS

Symmetric states of the form ({b1}, {b2}) and ({b2}, {b1}) have already been
merged to simplify the visual depiction. Once b1 has failed, the Markovian
repair event {br

1} becomes enabled. Due to b1 being repairable, new, previously
unreachable states, such as ({b2})CLAIM(S, R) become reachable, which then
cascade into further newly reachable successor states.

4.4.3 Recovery Strategies and Automata
To resolve the non-determinism present in NdDFTs, the actual recovery actions
to be applied in failure cases are given by recovery strategies implemented by
recovery automata. In the following, transitions of recovery automata are labeled
by a triggering set of basic events - either denoting failure or repair - and a
recovery action sequence. The elements of the triggering set are also called
guards. Moreover, we extend the definition of recovery actions to the set of
recovery action sequences by

RS(T) = (R(T) \ {[]})∗

For recovery action sequences, the empty action is ignored and considered as
the empty word ϵ. Given the observed basic events, a recovery strategy is
then a mapping that returns the recovery action sequence that should be taken
accordingly.

The NdDFT considers recovery strategies that are composed of recovery
actions as given in Def. 4.1. They are defined as follows:

Definition 4.7 (Recovery Strategy). A recovery strategy for an NdDFT T is a
mapping Recovery : ES(T)∗ → RS(T)∗ such that

• Recovery(ε) = ε and

• Recovery(E1, . . . , En) = Recovery(E1, . . . , En−1), rsn with rsn ∈ RS(T).

A recovery strategy that could be synthesized for the example MA depicted
in Fig. 4.11 on page 55 in this example would thus yield Recovery({b1}) =
Claim(SPARE, Redundancy).

To represent recovery strategies, we will use automata. A finite automaton
that represents a recovery strategy will be called recovery automaton. Formally,
a recovery automaton is a Mealy machine [66] having the event sets ES(T) as
the input alphabet and the set of recovery action sequences RS(T) as the output
alphabet. This concept is formalized in the following:

59

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

Definition 4.8 (Recovery Automaton). A Recovery Automaton (RA) RT =
(Q, δ, q0) of an NdDFT T is an automaton where

• Q is a finite set of states,

• q0 ∈ Q is the initial state, and

• δ : Q × ES(T) → Q × RS(T) is a deterministic transition function that
maps the current state and an observed set of faults, or repairs, to the
successor state and a recovery action sequence.

The transition function δ is extended to δ∗ : Q×ES(T)∗ → RS(T)∗ by letting

δ∗(q, ϵ) := ϵ

δ∗(q, E · w) := rs · δ∗(q′, w) with δ(q, E) = (q′, rs)

for any q ∈ Q, E ∈ ES(T) and w ∈ ES(T)∗. The recovery strategy induced
by a recovery automaton R, RecoveryR : ES(T)∗ → RS(T)∗, is given by
RecoveryR(w) := δ∗(q0, w).

Note that the set of states, Q, is not further specified in our formal definition
of RA. In Chapter 5, we will see how it can be obtained from the Markov
automaton of an NdDFT after computing an optimal scheduler. As the internal
structure of those states (which record the history of error events that occurred
and the assignment of spare components) is not relevant for further optimizations,
we will use symbolic states of the form qi in our examples. In the RAs depicted
in the following, if no transition is explicitly defined for some state q and some
input E, then it is assumed to be an ϵ-loop transition, i.e., δ(q, E) = (q, ϵ).

An example of a recovery automaton for a simple fault tree consisting of a
SPARE gate with a cold redundant spare is given in Fig. 4.15. If the primary
unit fails, the SPARE gate switches to the redundancy unit by claiming it.

q0start q1 q2
{b1} : CLAIM(SPARE, Redundancy) {b2} : ϵ

Fig. 4.15. Example RA for the simple NdDFT from Fig. 4.10 on page 55. When b1
occurs, the Redundancy is claimed. When b2 occurs, the recovery strategy is empty.

By composing the semantics of the recovery automaton with the Markov
automaton semantics of an NdDFT, we can now formally define the deterministic

60

4.4. MARKOV AUTOMATON SEMANTICS

DFT semantics of an NdDFT by means of Markov chains. The construction
involves some formal detail but is straightforward. The key idea is to synchronize
the non-deterministic transitions in the MA with the deterministic transitions in
the RA. There is one technical issue that complicates the composition: Encoding
the probabilistic transitions of the Markov automaton in the Markov chain.
Markov chains only possess one type of transitions, in this case, as we are
employing continuous-time Markov chains, these are transitions with exponential
distributions. However, we also need to encode the Markov automaton’s discrete,
probabilistic transitions. While not demanding in terms of algorithmic complexity,
this causes some notational blowup as the Markov automaton may contain several
subsequent paths with immediate events.
Definition 4.9 (NdDFT-RA Composition). An NdDFT-RA composition is a
function ∥ that maps an NdDFT T and an RA RT to a Markov chain

C := T ∥ RT

Let MAJT K = (S, L, A, N, C, P, s0) be the Markov automaton of T . Further,
let RT = (Q, δ, q0) be a recovery automaton. Then construct the continuous
time Markov chain T ∥ R := C = (S′, T ′, I ′, L′, R′) as follows.

We encode the current state of the recovery automaton in the state space,
that is, S′ ⊆ S × Q. For the labeling function L choose:

L′ : S → 2{OP,F AIL}

If s0 is a Markovian state with M ∈ L(s0), then generate the initial state
s′

0 := (s0, q0) by setting I ′(s′
0) = 1 and I ′(s′) = 0 for any other state s′. An

immediate probabilistic transition occurring in the initial state s0 can be encoded
in the initial distribution I ′ as follows. If s0 is probabilistic, then consider any
maximal path

s0
E0:p0

→ s0
1

r0
1→ s0

2...
r0

n0→ s0
n0

E1:p1

→ s1
1

r1
1→ s1

2...
rm

nm→ sm
nm

in A such that for any M ∈ L(sm
nm

) and P ∈ L(sj
ik

) for any other state sj
ik

. If
there is a path

q0
E0:r0

1 ...r0
n0→ q1...

Em:rm
1 ...rmnm

→ qm

in the recovery automaton R, then generate the state (sm
nm

, qm) with I((sm
nm

, qm)) =
Πm

i=1pi. Also, if Em = ∅ and there is a path

q0
E0:r0

1 ...r0
n→ q1...

Em−1:rm−1
1 ...r

m−1nm−1

→ qm−1

61

CHAPTER 4. FORMALIZATION OF THE FDIR MODEL

generate the state (sm−1
nm−1

, qm−1) with I ′((sm−1
nm−1

, qm−1)) = Πm−1
i=1 pi.

Let (s, q) be a generated state. Define:

L(s) := (L(s) ∩ {OP, FAIL})
Then generate the successors as follows. In order to encode the probabilistic
transitions in the exponential ones, proceed similarly to the construction of the
initial states. Consider any maximal paths of the form

s
E:λ→ s1

r1→ s2...
rn→ sn

E0:p0

→ s0
1

r0
1→ s0

2...
r0

n0→ s0
n0

E1:p1

→ s1
1

r1
1→ s1

2...
rm

nm→ sm
nm

in A such that for any M ∈ L(sm
nm

), P ∈ L(sj
ik

) for any state sj
ik

, and N ∈ L(si)
for any state si. If there is a path

q0
E:r1...rn

→ q′ E0:r0
1 ...r0

n0→ q′1...
Em:rm

1 ...rmnm

→ q′m

in the recovery automaton R, then generate the state (sm
nm

, q′m). Also, let
p = Πm

i=1pi and generate the transition (s, q) λ·p→ (sm
nm

, q′m) in T ′. Also, if
Em = ∅ and there is a path

q0
E0:r0

1 ...r0
n→ q1...

Em−1:rm−1
1 ...r

m−1nm−1

→ qm−1

generate the state (sm−1
nm−1

, qm−1). Also, let p = Πm−1
i=1 pi and generate the

transition (s, q) λ·p→ (sm−1
nm−1

, q′m−1) in T ′.
We now have a transformation from NdDFT to Markov automata and an

operator to synchronize a recovery automaton with a Markov automaton to
a Markov chain. In order to define a direct semantics of an NdDFT, the
remaining ingredient is a criterion to select the appropriate recovery automaton
to synchronize with. The core idea of NdDFTs was to use a recovery automaton
that maximizes a given RAMS metric. Therefore, the desired semantics will
depend on a given evaluation metric M : C 7→ R>0 that maps an MC C to a
non-negative, real value of R>0.

Definition 4.10 (NdDFT-MC Semantics). Let M be a metric. An NdDFT-MC
semantics is a mapping MCJKM that maps an NdDFT T to a Markov chain
C := MCJT KM := T ∥ RT ,max with:

RT ,max = argmax
RT

{M(T ∥ RT)}

62

4.4. MARKOV AUTOMATON SEMANTICS

Furthermore, we limit ourselves to positionally determined metrics M on a
Markov Automaton. A metric M is said to be positionally determined iff the
metric can be purely determined by the current state. In other words, if S is
the state space, then a positional metric on the state level can be expressed as
a mapping M : S 7→ R>0 assigning each state its metrical value. Examples for
such metrics are long-run properties such as MTTF or SSA. Not positionally
determined is for example the “reliability after time t” metric, which can yield
optimal strategies that depend not only on the current state but also on the
current point in time. In order to obtain a unique mapping, we also need to
deal with the possibility of multiple recovery automata with different recovery
behavior but yielding the same metrical evaluation. Consider for example a
simple NdDFT with a SPARE gate and two redundancies with the same failure
rates. Picking either results in a different recovery automaton but yields the
same MTTF. Likewise, consider an NdDFT with a SPARE gate where the spare
has dormant failure; switching to the spare upon the primary failure or not both
result in a fail state. We therefore introduce the constraint of action minimality
to ensure the uniqueness of our NdDFT semantics.

Definition 4.11 (Action Minimality). Define the total order <⊆ RS(T)×RS(T)
over recovery action sequences such that:

• |rs1| < |rs2 | =⇒ rs1 < rs2 , and

• if |rs1| = |rs2 | then rs1 < rs2 iff rs1 is smaller than rs2 according to the
alphabetical order over the names of the recovery actions.

If M is positional, then there exists one unique strategy where for each DFT
state, we take the action minimal recovery action to maximize the positional
metric M . Hence, RT ,max is guaranteed to be unique, and therefore MCJT KM is
a proper mapping and therefore overall a DFT semantics according to Def. 4.4.
Formally, we obtain:

Proposition 4.2. Let M be a positional metric. Then MCJKM is a DFT
semantics.

63

Chapter 5
Synthesis of Recovery Strategies

The previous chapter established the necessary semantics for defining the Markov
automaton for an NdDFT and synchronizing an RA with a Markov automaton.
In this chapter, the focal point will be on the missing piece: Automatically
generating a recovery automaton from a Markov automaton, which we refer to
as the synthesis process. As for the actual optimization procedure for obtaining
the optimal decision process in a Markov automaton, due to the established
foundations, we will be able to leave the actual optimization process to a model
checker. However, to extract the results, make them more usable for practical
purposes, and enhance scalability, the simple previously presented workflow will
be extended by several building blocks. Besides the actual synthesis, in this
chapter, we discuss techniques for reducing the state space of synthesized recovery
automata, going beyond commonly known reduction techniques for deterministic
finite automata. Furthermore, we discuss a modularization technique to mitigate
the state space explosion problem in the Markov automaton generation.

5.1 Synthesis Methodology

Using existing techniques for optimizing the scheduling of a Markov automaton,
the choice of non-deterministic transitions that maximize system reliability can
be computed. The recovery automata model is then used to represent the
underlying decision process of the scheduler.

65

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

While the concrete metric itself is interchangeable, we focus on optimizing
with regard to quantitative metrics in this work. In particular, we concentrate
on the MTTF. Compared to the “reliability after time t” metric, which is not
positionally determined, the long-run MTTF metric gives the advantage of
dropping the time parameter t and allows us to base the optimal scheduler purely
on the current state.

More formally, as already established in the previous chapter, we limit
ourselves to positionally determined metrics on a Markov automaton. Given
the state space S, the optimal scheduler can then be represented as a mapping
σ : S → S, assigning the optimal successor state to each state in the state space.

For the Markov automaton, maximizing the MTTF corresponds to maximiz-
ing the expected long-term reachability property of a FAIL labeled state.

5.1.1 Extraction
With the established foundations, the actual extraction process of the recovery
automaton is straightforward. The key idea is to use a scheduler provided by
a model checker to resolve the non-deterministic transitions. Transitions that
do not match with the scheduler are discarded. The individual recovery actions
are contracted into a recovery sequence, and the labels on the Markovian and
probabilistic transitions are used as the guards. Formalizing this process gives
us the following:

Definition 5.1. Define the RA RT extracted from an MA MAJT K as

RT := R(MAJT K)

Let A := MAJT K be a Markov automaton for an NdDFT and have state
space S. Let further σ : S → S be the optimal scheduler. Then, extracting a
recovery automaton R := (Q, δ, q0) = R(MAJT K) from the scheduler σ and the
Markov automaton A is achieved by considering sequences of transitions for
states s0, s1, . . . , sn of the form:

s0
E:λ−→ s1

r1−→ s2
r2−→ . . . sn−1

rn−1−→ sn,

where E is an event set, λ a failure rate and r1, . . . , rn are recovery actions.
If σ(si) ̸= si+1, for some 1 ≤ i ≤ n, then the transition sequence is not optimal
and thus discard it. Otherwise, the transition sequence is optimal and therefore
generate the transition:

δ(s0, E) := (sn, r1 . . . rn),

66

5.2. EXAMPLES

where empty recovery actions are ignored. Observe that multiple recovery actions
from the Markov automaton are combined into one recovery action sequence
in the recovery automaton. This applies to all transitions where s1, . . . , sn are
the successors computed by the optimized schedule of the Markov automaton.
If a state s in the MA does not define a transition for some input E, then in
the recovery automaton generate the transition δ(s, E) := (s, ϵ). Finally, the
algorithm discards all unreachable states.

5.2 Examples
In the following, we consider some examples to illustrate the Markov automaton
construction and recovery automaton synthesis. To this end, we give some
example NdDFTs, a fragment of the Markov automaton, the synthesized RA,
and some data on the reliability of the NdDFT changes through the usage of an
optimized RA.

5.2.1 Construction of an Adaptable Recovery Strategy
As the first example NdDFT, we consider a model where the recovery strategy
can be improved by adapting to the occurrence of some basic events. Consider
the model shown in Fig. 5.1 on the next page, which is similar to the one depicted
in Fig. 2.10a on page 22. Except, in this case, the NdDFT has been copied, and
now two equipment are dependent on respective switches activating one shared
spare. The spare Redundancy is shared among the two spare gates, SPARE1
and SPARE2. Should both subsystems fail, then the entire system fails.

For the failure rates, we consider the (unitless) values:

• F (b2) = F (b5) = FA(b3) = 5 (equal active failure rates for all equipments),

• FD(b3) = 0 (the spare is a cold redundancy) and

• F (b1) = F (b4) = 0.1 (low switch failure rate).

Fig. 5.2 on page 69 showcases a small excerpt of the constructed Markov
Automaton limited to the fault sequence ({b1}, {b2}, {b5}), and the enabled
recovery actions. Since the switch b1 is not a child of a spare gate, the only
available recovery action is []. After the occurrence of the primary b2, the
MA faces two possible decisions: claiming the redundancy or not performing
a recovery action. In the case of the chosen fault sequence ({b1}, {b2}, {b5}),
claiming will lead to the FAIL state.

67

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

System

OR2

SPARE2PAND2

Primary2Switch2

OR1

SPARE1PAND1

Primary1Switch1

Redundancy

b3

b1 b2 b4 b5

Fig. 5.1. DFT with a shared redundancy and two switches. Assigning the Redundancy
to a SPARE gate after the associated Switch event occurred, does not recover the
sub-tree. However, the Redundancy is then unavailable for the other SPARE gate.

Fig. 5.3 on the following page depicts the synthesized recovery automaton.
We can find the corresponding fragment in the state sequence q0, q1, q3. Note
that q2 only has a non-empty recovery action defined for the occurrence of b2.
This reflects the optimality of choosing the empty recovery action [] in order to
avoid the FAIL state from the earlier discussed MA fragment. In essence, the
synthesized recovery Automaton states that the spare gates SPARE1, SPARE2
should not allocate the redundancy if the respective switch has already failed.

Fig. 5.4 on page 70 shows the reliability curves for the two semantics. The
x-marked line shows the reliability curve when considering the fault tree in
Fig. 5.1 using the default DFT semantics, i.e., always claim. The circle-marked
line shows the reliability when using the NdDFT semantics while employing the
recovery automaton from Fig. 5.3 on the following page. For the time frame, a
unitless mission time of 1 has been chosen. We can see that the reliability curves
of both fault trees converge towards 0. However, employing an adaptive strategy

68

5.2. EXAMPLES

() ({b1}) ({b1}) ({b1}, {b2})

({b1}, {b2})({b1}, {b2}), CLAIM(SPARE1, Redundancy)

({b1}, {b2}, {b5})({b1}, {b2}, {b5}), CLAIM(SPARE1, Redundancy)

FAIL

({b1}, {b2}, {b5}), CLAIM(SPARE2, Redundancy)

{b1} : 0.1 [] {b2} : 5

[]CLAIM(SPARE1, Redundancy)

{b5} : 5 {b5} : 5

[] []

CLAIM(SPARE2, Redundancy)

Fig. 5.2. Excerpt from the Markov Automaton for the double switch NdDFT for the
fault sequence ({b1}, {b2}, {b5}). The correct action is to not claim after b2 occurs to
preserve the spare.

q0start

q1

q2

q3

{b1} : ε

{b4} : ε

{b2} : CLAIM(SPARE1, Redundancy)
{b5} : CLAIM(SPARE2, Redundancy)

{b2} : CLAIM(SPARE1, Redundancy)

{b5} : CLAIM(SPARE2, Redundancy)

Fig. 5.3. Synthesized recovery automaton for the switch system. The occurrence of b1
or b4 change the recovery behavior.

69

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Time

R
el

ia
bi

lit
y

[%
]

Reliability of DFT
Reliability of NdDFT with Recovery Automaton

Fig. 5.4. Reliability of DFT vs. reliability of NdDFT with Recovery Automaton

Metric DFT NdDFT Factor
MTTF 0.38 0.47 1.24
#States 109 149 1.43
#Transitions 146 226 1.55

Table 5.1: DFT vs. NdDFT with Recovery Automaton

for activating spares yields a reliability curve that is consistently better than the
fixed order strategy of standard DFT.

Further data on the difference between the two semantics is given in Table 5.1.
The improvement in reliability prolongs the mean time to failure by about 24%.
On the other hand, applying the NdDFT semantics increases state space size
and transition count of the corresponding MA by 43% and 55%, respectively.

70

5.2. EXAMPLES

5.2.2 Optimized Spare Ordering
As a second example use case, we reconsider the redundant memory system
shown in Fig. 5.5.

System

SPARE2

Memory2

SPARE1

Memory1

b1 b2

Memory3

b3

Memory4

b4

Power1

b5

FDEP1

Power2

b6

FDEP2

Fig. 5.5. NdDFT memory system with two spares in the pool.

With the default DFT semantics, Memory3 would always be employed before
Memory4. However, as will be shown in the following, depending on the failure
rates, this might yield a sub-optimal strategy. Consider for example as failure
rates:

• F (b1) = F (b2) = 1,

• FA(b3) = 5 (modeling a low quality spare),

• FA(b4) = 0.5 (modeling a high quality spare),

• FD(b3) = FD(b4) = 0 (the spares are cold redundancies), and

• F (b5) = F (b6) = 0.1 (modeling always active power sources with low
failure rate).

71

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

q0start

q1 q2

q3

{b1} : CLAIM(S1, M4)

{b5, b1, b2} : CLAIM(S2, M4)CLAIM(S1, M3)

{b2} : CLAIM(S2, M4)

{b6, b3, b4} : ε

{b2} : CLAIM(S2, M3)
{b4} : CLAIM(S1, M3)

{b5, b1} : CLAIM(S2, M3)

{b4} : CLAIM(S2, M3)
{b1} : CLAIM(S1, M3)

{b5, b2} : CLAIM(S1, M3)

Fig. 5.6. Synthesized Recovery Automaton for memory system

Hence, according to DFT semantics, the low-quality spare will always be
activated first.

For improved readability, in the following figures, the items SPARE1, SPARE2,
and Memory1, . . . , Memory4 will be abbreviated by S1, S2, and M1, . . . , M4
respectively. The synthesized Recovery Automaton is depicted in Fig. 5.6.

It basically states that the system should always first activate Memory4, that
is, the high-quality spare, before the low-quality spare Memory3. To evaluate
the recovery strategy induced by the Recovery Automaton, the reliability curves
of the fault tree models are plotted in Fig. 5.7 on the following page.

It can be seen that employing the strategy proposed by the synthesized
Recovery Automaton yields a slight edge over the reliability curve of the standard
DFT. In this simple example, the deterministic DFT model could yield the same
performance by correcting the spare ordering. However, determining the optimal
spare ordering can become exceedingly difficult as the complexity of spares,
which may also be modeled by complex fault trees, increases. Additional data
on the details is given in Table 5.2.

The improvement of the reliability curve yields a slight prolongation of mean
time to failure by about 9%. The transition count suffers a significant increase
by about 80%.

72

5.3. FURTHER OPTIMIZATION OF RECOVERY AUTOMATA

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Time

R
el

ia
bi

lit
y

[%
]

Reliability of DFT
Reliability of NdDFT with Recovery Automaton

Fig. 5.7. Reliability of DFT vs. reliability of NdDFT with recovery automaton for
memory system.

Metric DFT NdDFT Factor
MTTF 1.09 1.19 1.09
#States 18 24 1.33
#Transitions 54 97 1.8

Table 5.2: DFT vs. NdDFT with Recovery Automaton for memory system.

5.3 Further Optimization of Recovery Automata
Complex systems usually exhibit a large number of faults that may occur, see
Sec. 8.3 on page 154. This means that NdDFTs describing such systems may be
very large. In this section, we refine the given synthesis procedure by discussing
further techniques for reducing the state space and the transition count of a
synthesized recovery automaton. This leads to the task of finding an automaton
with the same “behavior” that exhibits a smaller number of states.

73

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

In the following, we will exploit the property that non-repairable faults can
only occur at most once to perform a state space reduction procedure that goes
further than standard automaton minimization techniques. We express a fault
only occurring once in a sequence of basic event sets B1, . . . , Bn through the
condition Bi ∩ Bj = ∅ for any i ̸= j, which prevents a basic event from occurring
in multiple basic event sets. Since the technique only applies to non-repairable
events, we therefore restrict ourselves in this section to only non-repairable
NdDFTs.

To capture the notion of two recovery automata exhibiting the same behavior,
we introduce the concept of recovery equivalence between recovery automata as
follows:

Definition 5.2 (RA Recovery Equivalence). Let R1 = (Q1, δ1, q01) and R2 =
(Q2, δ2, q02) be two RAs. We define a binary relation ∼R such that it holds
true that R1 ∼R R2 iff for any sequence of sets of basic events B1, . . . , Bn with
Bi ∩ Bj = ∅ for any i ̸= j it holds that:

RecoveryR1(B1, . . . , Bn) = RecoveryR2(B1, . . . , Bn).

Given a recovery automaton as an input, the task of minimization means to
compute an equivalent recovery automaton with as few states as possible. The
standard problem of automata minimization is well-known and has been studied
extensively. In this work, we apply the usual definition of trace equivalence and
lift it to states of recovery automata:

Definition 5.3 (Trace Equivalence). Let RT = (Q, δ, q0) be an RA. A trace
equivalence ≈ ⊆ Q × Q is a maximal binary relation such that it holds for any
states q1, q2 ∈ Q that q1 ≈ q2 iff for any B ∈ BES(T) it holds that:

δ(q1, B) = (q′
1, rs1) and δ(q2, B) = (q′

2, rs2) with q′
1 ≈ q′

2 and rs1 = rs2

Equivalent states in an automaton can be computed using a partition re-
finement algorithm [67]. It operates by iteratively partitioning states so that
states in different partitions are guaranteed to be inequivalent. On automata
with acceptance conditions, this is usually achieved by using final and non-final
states as the initial partitions. In this setting, the initial partitions are created
by grouping states with the same input-output mappings into a partition. The
algorithm then refines the partitions by identifying sub-partitions with different

74

5.3. FURTHER OPTIMIZATION OF RECOVERY AUTOMATA

output behavior. When the algorithm terminates, each partition contains equiv-
alent states only. A minimized automaton can then be obtained by merging all
equivalent states. In the setting of recovery automata, we can go even further
and merge pairs of states that are not trace-equivalent as long as the behavior
of the automaton does not change. A simple example for a case where merging
non-equivalent states yields a recovery automaton that induces an equivalent
recovery strategy can be seen in Fig. 5.8.

q0start q1
B : r

B : ϵ

(a) Initial RA R.

q0start

B : r

(b) Minimized RA Rmin.

Fig. 5.8. Example for merging non-trace-equivalent states. Since B can only occur
once, the transition B : ϵ can never be taken.

In the example, the states q0 and q1 are clearly not trace-equivalent since
q0 outputs r upon reading B whereas q1 outputs ϵ upon reading B. However,
it can be shown that the two automata are recovery-equivalent: Since B is
the only input, the traces fulfilling the condition of having no input repetition
according to Def. 5.2, i.e., B1, . . . , Bn with Bi ∩ Bj = ∅ for any i ≠ j, are exactly
B and ϵ. Furthermore, it holds that RecoveryR(ϵ) = ϵ = RecoveryRmin(ϵ) and
RecoveryR(B) = r = RecoveryRmin(B) by Def. 4.8. The equivalence of the two
recovery automata then follows by Def. 5.2. Intuitively, the transition B : ϵ in
the initial RA can never be taken due to B being disabled, as it must have
already occurred. In the following, we present the main contribution of this
section: Rules that optimize the state space beyond merging trace-equivalent
states yet yield implementations of equivalent recovery strategies. We identify
two cases where we can optimize the state space without affecting the induced
recovery strategy.

• Case 1: Optimizing Orthogonal States.

• Case 2: Optimizing the FAIL state.

In both cases, the key to minimization that we exploit is that a non-repairable
FT produces the inputs of the automaton. Hence, non-repairable basic events
can only occur at most once. This leads to the effect that certain traces in
the RA are invalid inputs for the induced recovery strategy. Therefore, this

75

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

restriction gives us additional freedom to merge states that would not be merged
in a standard automata model. The updated workflow with the integrated state
space reduction for the recovery automaton is given in Fig. 5.9.

NdDFT Markov automaton Recovery automaton

Reduced recovery automaton

Markov chain Reliability measures

Fig. 5.9. Updated transformation workflow. Before composing NdDFT and RA, we
first compute a reduced recovery automaton.

5.3.1 Optimizing Orthogonal States
In the first rule, the goal is to identify states that may have transitions with
disagreeing outputs but where we can guarantee that conflicts are excluded, as
their necessary inputs can no longer be produced. The key to this idea lies in
exploiting the property that basic events can only occur at most once in an
FT. This leads to the following observation: If a basic event occurs on every
path leading to a state in an RA, then it is guaranteed that in the future, no
transition listing this basic event in its guards can be taken. Note that since
recovery automata are deterministic, they always have a transition defined for
every possible input. Fig. 5.10 on the following page abstractly illustrates how
this observation can be exploited to merge non-trace-equivalent states.

In order to reach q1, the event set B2 must occur. Therefore, upon reaching
q1, the transition B′

2 : z2 can no longer be taken. Similarly, the transition B′
1 : z1

cannot be taken in q2. Hence, the states q1 and q2 can be safely merged without
changing the recovery-equivalence of the automaton. We now introduce the
concept of orthogonal states to formalize this notion. To capture the basic event
sets that can no longer be produced by an FT, we define the set of disabled
inputs of a state q as a function DI : Q → 2BES(T) with:

DI (q) := {B ∈ BES(T) | for all paths q0
B0 : rs0−→ q1

B1 : rs1−→ . . . qn−1
Bn−1 : rsn−1−→ q

∃i : Bi ∩ B ̸= ∅}

76

5.3. FURTHER OPTIMIZATION OF RECOVERY AUTOMATA

q1

q2

B2 : x2

B1 : x1

B1 : y1

B′
2 : z2

B2 : y2

B′
1 : z1

(a) Initial RA.

q12

B2 : x2

B1 : x1

B2 : y2

B1 : y1

(b) RA after merging states q1 and q2.

Fig. 5.10. Abstract depiction of merging orthogonal states with B1 ∩B′
1 ̸= ∅ ̸= B2 ∩B′

2.
The merged state q12 only has the transitions of q1 and q2 whose guards are not
guaranteed to occur on the respective paths to q1, q2.

Notice that the intersection operation in this definition suffices, since if along
every path to a state q at least one basic event b ∈ B happens, then the event
set B as a whole cannot happen after visiting q. In order to compute the set
of disabled inputs, we perform a data flow analysis. For this, we apply the
worklist algorithm [68], which operates by propagating data flow information
along the edges of a graph structure. For each node, the data flow information
is combined using a transfer function. For computing the disabled inputs, the
following transfer functions are employed:

DI (q0) := ∅

DI (q) :=
⋂

(p,B)∈pred(q)

(DI (p) ∪ {B})

with pred(q) := {(p, B) | δ(p, B) = (q, rs) for some rs, p ̸= q} denoting the
set of predecessor transitions of a state q. Having set up these preliminary
definitions, the concept of orthogonality between states can now be formalized
with the following definition:

Definition 5.4 (Orthogonal States). Let RT = (Q, δ, q0) be an RA. Let further
p, q ∈ Q be two non-initial distinct states and B ∈ BES(T). Then p, q are
orthogonal with respect to B iff B ∈ DI (p) ∪ DI (q).

77

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

If upon reaching a state p it is guaranteed that an event in B has occurred,
then it is guaranteed that B will not happen starting from state p. Therefore,
it does not matter which recovery action will be defined for B in state p since
the recovery action will never be applied. Thus, if in state q a specific recovery
action has to be performed for B, then we can choose the same recovery action
for B in the combined state. Informally, if this holds for all event sets B, then
we can think of states p and q as equivalent since their behavior, in terms of
recovery actions, is the same, and therefore such states can be merged.

q0start

q1

q2

q3

B2 : r2

B1 : r1

B2 : ϵ

B1 : r1

B1 : ϵ

B2 : r2

(a) Initial RA.

q0start q12 q3

B2 : r2

B1 : r1

B2 : r2

B1 : r1

(b) RA R2 after merging states q1 and q2.

Fig. 5.11. Example merge of orthogonal states.

To illustrate the optimization rule based on the definition of orthogonality, we
consider as an example the recovery automaton depicted in Fig. 5.11. This RA
reacts to two distinct basic event sets B1 and B2 and performs a corresponding
recovery action r1 or r2 accordingly. An NdDFT that would produce such an RA
would be, for example, a system consisting of two parallel spare gates running
independently from each other. For the disabled inputs we have:

• DI (q0) = ∅,

• DI (q1) = DI (q0) ∪ {B2} = {B2},

• DI (q2) = DI (q0) ∪ {B1} = {B1} and

• DI (q3) = (DI (q1) ∪ {B1}) ∩ (DI (q2) ∪ {B2}) = {B1, B2}.

78

5.3. FURTHER OPTIMIZATION OF RECOVERY AUTOMATA

Thus, by Def. 5.4 it holds that q1 and q2 are orthogonal with respect to basic
event sets B1 and B2. Observe that q1 has an outgoing loop labeled with B2 : ϵ
that is disabled. Similarly, q2 has an outgoing loop labeled by B1 : ϵ that cannot
occur. In the merged RA, these transitions are eliminated, and all the other
incoming and outgoing transitions are redirected to start and end at the merged
state, respectively.

We are now ready to incorporate the concept of orthogonality into an equiva-
lence definition for states of recovery automata. For this purpose, we enrich the
basic trace equivalence definition from Def. 5.3 as follows:

Definition 5.5 (Syntactical State Recovery Equivalence). Let RT = (Q, δ, q0)
be an RA. A state-based recovery equivalence ≈R ⊆ Q × Q is a maximal relation
such that it holds for any states q1, q2 ∈ Q that q1 ≈R q2 iff for any B ∈ BES(T)
it holds that either:

• δ(q1, B) = (q′
1, rs1), δ(q2, B) = (q′

2, rs2) with q′
1 ≈R q′

2, rs1 = rs2 or

• q1, q2 are orthogonal with respect to B.

Note that all conditions are syntactical, and we have introduced the necessary
means to check them. Next, we aim to formalize the merging procedure for
obtaining a new recovery automaton given two recovery-equivalent states. For
this we define an orthogonal merge operation. Following the process described in
the previous example yields the following formal definition, which is visualized
by Fig. 5.10 on page 77:

Definition 5.6 (Orthogonal Merge). Let RT = (Q, δ, q0) be an RA. The or-
thogonal merge of recovery-equivalent states q1, q2 ∈ Q is defined by the function
OM (R, q1, q2) := (Q′, δ′, q′

0) with:

• Q′ := Q \ {q1, q2} ⊎ {q12},

• for all B ∈ BES(T),

– δ′(q12, B) := δ(q2, B) if B ∈ DI (q1) and
– δ′(q12, B) := δ(q1, B) otherwise,

• δ′(p, B) = (q12, rs) for any B ∈ BES(T) and p such that δ(p, B) = (q1, rs)
or δ(p, B) = (q2, rs) and

• q′
0 := q0 if q1 ̸= q0 and q2 ̸= q0, and q′

0 = q12 otherwise.

79

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

Intuitively, the operation replaces the states to be merged by a new combined
state, adjusting the transition function accordingly. The initial state is updated
if one of the states is also the initial state. Transitions with enabled guards
are copied (where the result is guaranteed to be unique). On the other hand,
transitions with disabled guards are discarded. We now prove the soundness
of the orthogonal merge. The following theorem states under which conditions
merging two recovery-equivalent states yields a recovery-equivalent recovery
automaton.

Theorem 5.1. Let R1 = (Q1, δ1, q01) be an RA and q1, q2 ∈ Q such that
q1 ≈R q2 and for any B /∈ DI (q1) ∪ DI (q2), it holds for all q′

1, q′
2 such that

δ(q1, B) = (q′
1, rs) and δ(q2, B) = (q′

2, rs), we have q′
1 ≈R q′

2 implies q′
1 =

q′
2. That is, all equivalent successors have already been merged. Let further

OM (R1, q1, q2) = R2 = (Q2, δ2, q02) be an RA resulting from the orthogonal
merge of q1 and q2. Then R1 ≈R R2.

Proof. Let β := B1, . . . , Bn ∈ BES(T)∗ be a sequence of basic event sets
produced by an NdDFT. Then Bi ∩ Bj = ∅ for any i ̸= j. We distinguish two
cases:

• Assume R1 never visits q1 or q2. By definition of R2 we then have that also
R2 does not visit q12. And by definition of R2 again we thus immediately
have that RecoveryR1(β) = RecoveryR2(β).

• Assume R1 visits q1 (the case of visiting q2 is analogous) upon reading Bi

for some i < n. Now consider Bi+1. Let q′
1, q′

12 and rs1, rs12 be such that:

δ1(q1, Bi+1) = (q′
1, rs1) and

δ2(q12, Bi+1) = (q′
12, rs12).

By Def. 5.5 this means that we have either:

– q1, q2 are orthogonal with respect to Bi+1. Then by Def. 5.4 it holds
that:

Bi+1 ∈ DI (q1) ∪ DI (q2)

Assume Bi+1 ∈ DI (q1). Then there exists by construction of DI an
index j < i+1 such that Bi+1∩Bj ̸= ∅. Contradiction to the definition
of β. Hence Bi+1 /∈ DI (q1). But since Bi+1 ∈ DI (q1) ∪ DI (q2), this
implies Bi+1 ∈ DI (q2). Note that DI (q2) ⊊ DI (q1) or otherwise we

80

5.3. FURTHER OPTIMIZATION OF RECOVERY AUTOMATA

obtain again a contradiction to the construction of β. By construction
of R2 and Def. 5.6 this implies that:

(q′
12, rs12) = δ2(q12, Bi+1) = δ1(q1, Bi+1) = (q′

1, rs1)

Hence we can conclude RecoveryR1(β) = RecoveryR2(β).
– q1, q2 are not orthogonal with respect to Bi+1. Then Bi+1 /∈ DI (q1) ∪

DI (q2) and rs1 = rs12 and q′
1 ≈R q′

12. But then by assumption we
get q′

1 = q′
12. We hence obtain RecoveryR1(β) = RecoveryR2(β).

In all cases we have RecoveryR1(β) = RecoveryR2(β) and thus R1 ≈R R2
by Def. 5.2.

5.3.2 Optimizing the FAIL State
The idea of the second case is to identify FAIL states that do not contribute
to new recovery action sequences when a set of faults occurs. If a state only
leads to a FAIL state, the transition can be turned into a self-loop. Moreover,
should the FAIL state no longer be reachable, it can be eliminated. This rule is
abstractly illustrated in Fig. 5.12. We further introduce the concept of a FAIL
state for recovery automata.

q1 q2
B : r

B : ϵ

(a) Initial RA with FAIL state q2.

q1 q2

B : r B : ϵ

(b) RA after FAIL optimization.

Fig. 5.12. Application of FAIL optimization. The transition B : r can be removed.

Definition 5.7 (FAIL State). Let RT = (Q, δ, q0) be an RA and q ∈ Q a state.
Then q is a FAIL state iff for any B ∈ BES(T), all transitions from q are of the
form δ(q, B) = (q, ϵ).

A FAIL state is thus simply a sink state with only ϵ-loop transitions. With
the definition of the FAIL state, we can now also formally define an optimization
operation similar to the orthogonal merge operation.

81

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

Definition 5.8 (FAIL Optimization). Let RT = (Q, δ, q0) be an RA. The FAIL
optimization of a state q1 ∈ Q with respect to a FAIL state q2 ∈ Q is given by
the function FO(R, q1, q2) := (Q′, δ′, q0) with:

• Q′ := Q \ {q2 | ¬∃p ∈ Q \ {q2}, B ∈ BES(T) : δ(p, B) = (q2, rs)} and

• δ′(q1, B) := (q1, rs) if δ(q1, B) = (q2, rs) for all B ∈ BES(T).

Note that the FAIL optimization does not apply to all pairs of states and
FAIL states. We show this property in the following lemma. Intuitively, the
FAIL rule cannot be applied when a state has multiple non-ϵ transitions.

Lemma 5.1. There exists a recovery automaton R = (Q, δ, q0) with state p ∈ Q
and FAIL state q ∈ Q such that R is not recovery-equivalent to FO(R, p, q).

Proof. Consider the recovery automaton R := (Q, δ, q0) and states q0, q1 as
given in Fig. 5.13a. We show that R and the states q0, q1 fulfill the conditions.
Let further R′ := FO(R, q0, q1) be the recovery automaton obtained through
the FAIL optimization of q0 with respect to the FAIL state q1, as depicted in
Fig. 5.13b. For the input sequence β := B1B2 we now have:

RecoveryR(β) = r1 ̸= r1r2 = RecoveryR′(β)

By Def. 5.5 we thus obtain that R and R′ are not recovery-equivalent.

q0start q1
B1 : r1

B2 : r2

B1, B2 : ϵ

(a) Initial RA.

q0start

B1 : r1, B2 : r2

(b) Non-equivalent RA.

Fig. 5.13. RA where the FAIL rule is not applicable. In the original automaton, only
one of the event sets B1 or B2 can trigger a recovery action. The FAIL optimized RA,
however, allows for both B1 and B2 to trigger a recovery action.

Next, we show soundness of the FAIL optimization. The following theorem
can capture the conditions for soundness of the formalized optimization operation:

Theorem 5.2. Let R1 = (Q1, δ1, q01) be an RA with a pair of states q1 and q2
such that q2 is a FAIL state and all transitions of q1 are ϵ-loops except for one

82

5.3. FURTHER OPTIMIZATION OF RECOVERY AUTOMATA

transition being of the form δ1(q1, B) = (q2, rs), such that rs ̸= ϵ. Let further
FO(R, q1, q2) = R2 = (Q2, δ2, q02) be the FAIL-optimized RA. Then R1 ≈R R2.

Proof. Let β := B1, . . . , Bn ∈ BES(T)∗ be a sequence of basic event sets
produced by an NdDFT. Then Bi ∩ Bj = ∅ for any i ̸= j. We distinguish two
cases:

• Assume R1 never visits q1. Then by definition of R2, it also never visits q1.
As both automata are defined to be equal otherwise, we then immediately
have that RecoveryR1(β) = RecoveryR2(β).

• Assume R1 visits q1 upon reading Bi for some i < n. Then by definition,
R2 also visits q1 upon reading Bi. Now consider Bi+1. By the construction
of R2, it holds that δ1(q1, Bi+1) = (q2, rs) and δ2(q1, Bi+1) = (q1, rs) for
some recovery action sequence rs (I). Since q2 is a FAIL state, we obtain
from Def. 5.7 that δ1(q2, Bj) = (q2, ϵ) for any j > i + 1 (II). Moreover,
since also Bj ∩ Bi+1 = ∅ for any j > i + 1 we also have by definition of q1
and R2 that δ2(q1, Bj) = (q1, ϵ) (III). In total, we can therefore conclude
that:

RecoveryR1(β) = RecoveryR1(B1, . . . , Bn) (Def. β)
= RecoveryR1(B1, . . . , Bi, Bi+1) (II)
= RecoveryR2(B1, . . . , Bi, Bi+1) (I)
= RecoveryR2(B1, . . . , Bn) (III)
= RecoveryR2(β) (Def. β)

In all cases RecoveryR1(β) = RecoveryR2(β). Hence, R1 ≈R R2 by Def. 5.2.

To conclude on the FAIL rule, we prove that the orthogonal merge rule does
not cover the FAIL optimization rule. This is done by giving a concrete example
where the orthogonal merge cannot remove any states, yet a smaller recovery
automaton can be obtained by applying the FAIL rule.

Lemma 5.2. There exists a recovery automaton R = (Q, δ, q0) such that:

• for any states p, q ∈ Q with p ̸= q it holds that p ̸≈R q and

• there exists a recovery-equivalent recovery automaton with fewer states that
can be obtained through the FAIL optimization rule.

83

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

Proof. Consider the following recovery automaton R := (Q, δ, q0) as illustrated
in Fig. 5.14a. We show in the following that R fulfills the desired conditions.
First of all, it holds that:

B3, B4 /∈ DI (q1) ∪ DI (q2) = {B1} ∪ {B2}

Furthermore, for any states p, q ∈ Q with p ̸= q, there exists a B such that
δ(q, B) = (r, q′), δ(p, B) = (r′, p′) with r ̸= r′. Taking these two together,
we directly obtain p ̸≈R q for any states p ̸= q ∈ Q by Def. 5.5. On the
other hand, q3 is a FAIL state. Also, both pairs q1, q3 and q2, q3 fulfill the
conditions for sound application of the FAIL rule according to Theorem 5.2, as
they possess exactly one non-ϵ transition leading into a FAIL state. The reduced
RA R′ := FO(FO(R, q1, q3), q2, q3) with the FAIL state eliminated is illustrated
in Fig. 5.14b.

q0start

q1

q2

q3

B1 : r1

B2 : r2

B3 : r3

B4 : r4

(a) Initial RA.

q0start

q1

q2

B1 : r1

B2 : r2

B3 : r3

B4 : r4

(b) RA after FAIL optimization.

Fig. 5.14. RA that requires FAIL rule for optimization. The orthogonal merge is
not applicable to the original automaton. The FAIL optimization, however, can be
performed to obtain a smaller automaton.

5.3.3 Completeness
Having established two optimization rules, the question arises if these rules are
now complete. That is, if we consider an arbitrary recovery automaton, do the
optimization rules yield a minimal recovery automaton at all times? This question
is investigated in this section. The investigation is carried out roughly according
to the following steps: First, we define the recovery equivalence relation on the
state level to allow for comparison with the state-based syntactical recovery
equivalence. Using this, we show that the optimization rules we provided
are indeed generally not sufficient to characterize recovery equivalence. In

84

5.3. FURTHER OPTIMIZATION OF RECOVERY AUTOMATA

the following, we then define a class of recovery automata that excludes the
problematic instances and for which we can thus prove the completeness of our
approach.

Definition 5.9 (Semantic State Recovery Equivalence). Semantic state-based
recovery equivalence ∼R ⊆ Q × Q is a maximal relation such that it holds for any
states q1, q2 ∈ Q that q1 ∼R q2 iff δ∗(q1, w) = δ∗(q2, w) for any w = B1, . . . , Bn

with:

• Bi ∩ Bj = ∅ for any i ̸= j and

• Bi /∈ DI (q1) ∪ DI (q2) for all i.

The definitions of state-based and semantic recovery equivalence are nearly
identical, except that the latter disregards basic event sets that are excluded
by disabled inputs. This additional property ensures that we can only continue
from a given state using basic event sets that are not disabled due to having
already occurred. The connection between both concepts is given through the
recovery equivalence of the initial states. The following lemma captures this
property.

Lemma 5.3. Let R1 = (Q1, δ1, q01) and R2 = (Q2, δ2, q02) then R1 ≈R R2 iff
q01 ∼R q02.

Proof. We have DI (q01) = DI (q02) = ∅ due to q01, q02 being initial states.
Furthermore, it holds that:

• δ∗(q01, B1 . . . Bn) = RecoveryR1(B1, . . . , Bn) and

• δ∗(q02, B1 . . . Bn) = RecoveryR2(B1, . . . , Bn).

for any sequence B1, . . . , Bn by definition of δ∗. Hence we obtain the equiva-
lence by Def. 5.9 and Def. 5.2.

5.3.3.1 General Incompleteness

We now show that our approach is generally not optimal. This is achieved by
constructing a recovery automaton that cannot be optimized further by any
of the provided optimization rules but still contains recovery-equivalent states.
We also show that by exploiting these recovery-equivalent states, it is indeed
possible to obtain a smaller recovery-equivalent recovery automaton.

85

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

Lemma 5.4. There exists a recovery automaton R such that:

• ∼R ̸⊆ ≈R,

• the FAIL rule cannot be applied and

• there exists a recovery-equivalent recovery automaton with fewer states.

Proof. Consider the recovery automaton R := (Q, δ, q0) as illustrated in Fig. 5.15a
on the following page. We show in the following that R fulfills all listed conditions.
Consider further the states q1 and q2. We have the following two properties:

• Both q1 and q2 yield the recovery action r0 upon reading B and ϵ for any
other input.

• In the successors p1 and p2, the input B can no longer be read if reached
via q1 or q2, respectively.

Hence q1 ∼R q2 by Def. 5.9. Furthermore, since p1 and p2 yield r1 ̸= r2
respectively upon reading B, it also holds that p1 ̸∼R p2. We also have that
DI (p1) = ∅ and DI (p2) = ∅ and thus in particular B /∈ DI (p1) ∪ DI (p2). Hence
p1 and p2 are not orthogonal with respect to B. In total we also obtain p1 ̸≈R p2
by Def. 5.4. Furthermore, we also have:

B /∈ DI (q1) ∪ DI (q2) = {B1} ∪ {B2}

Thus again by Def. 5.4, we finally obtain q1 ̸≈R q2, which implies ∼R ̸⊆ ≈R. As
for the FAIL rule, clearly there exists no FAIL state, therefore, it cannot be
applied. Fig. 5.15 on the following page shows the optimized counterexample
RA with fewer states.

5.3.3.2 Restricted Completeness

The key issue leading to incompleteness using a merging-based approach lies in
the property that it is generally possible for two states to be recovery-equivalent
but to have non-recovery-equivalent successors. This property was also present
in the counterexample of Lemma 5.4. However, requiring equivalent successors
is an intrinsic part of the definition of ≈R. The only exceptions are successors
that cannot be reached due to the respective guards being in the set of disabled
inputs.

86

5.3. FURTHER OPTIMIZATION OF RECOVERY AUTOMATA

q0start

q1

q2

p1

p2

B1 : ϵ

B2 : ϵ

B : r0

B : r0

B : r1

B3 : ϵ

B4 : ϵ

B : r2

(a) Completeness counterexample.

q0start q12

p1

p2

B1 : ϵ

B2 : ϵ
B : r0

B : r1

B3 : ϵ

B4 : ϵ

B : r2

(b) Counterexample with reduced states.

Fig. 5.15. Completeness counterexample that cannot be obtained with optimization
rules. Neither the orthogonal merge, nor the FAIL optimization can be applied tot he
original automaton. However, a smaller recovery equivalent automaton exists.

Definition 5.10. (Successor Consistency) An RA is consistent with respect to
∼R iff for any p, q with p ∼R q it holds for any B /∈ DI (p) ∪ DI (q) and p′, q′

successors of p, q that p′ ∼R q′. The class of RAs consistent with respect to ∼R

is defined as

C := {R | R is consistent with respect to ∼R}

Under which conditions the synthesized recovery automata are guaranteed to
be in this class is not clear and a problem for future investigation. In addition to
being a member of the class C, to simplify the proofs, we also introduce a normal
form for recovery automata in the following. This normal form will guarantee
later on that it is possible to reach each state backwards from a sink state.

Definition 5.11 (Normal form). A recovery automaton R is in normal form
iff there exist no cycles, except for loop transitions.

A recovery automaton can be easily transformed into normal form. The idea
is to exploit again the property that every basic event set can occur at most
once.

Lemma 5.5. Each RA R can be transformed into a recovery-equivalent RA in
normal form.

87

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

Proof. Since every input can occur at most once, an equivalent RA can be gained
by loop unrolling and by removing disabled transitions.

However, unrolling an RA may lead to the introduction of new states. Since
the goal is the reduction of states, this is undesirable. In the special case of
recovery automata synthesized from an FT, according to the given construction,
however, no additional states need to be introduced. This is due to the fact that
these recovery automata are already in normal form.
Lemma 5.6. If R is an RA synthesized from an FT, then R is already in
normal form.
Proof. Since faults are permanent, the given state space generation for trans-
forming an NdDFT to a MA creates successor states with strictly monotonically
increasing failed events. Hence, the algorithm does not add any cycles. The
extraction process of an RA from an MA chiefly involves removing nodes and
edges and only introduces new edges of the form δ(q, B) = (q, ϵ), i.e, self-loops.
Therefore, the RA also remains free of cycles except for self-loops.

As stated earlier, the primary purpose of the normal form is to ensure that
any state can be reached backwards from a sink state. This property is captured
in the following lemma.
Lemma 5.7. Let R be an RA be in normal form, then for any state q, there
exists a path q, ..., qsink such that qsink is a sink state.
Proof. Since the state space of R is finite, and there exist no cycles except for
self-loops, every state must have a path to a sink state.

The proof strategy is now as follows: In order to show completeness on the
restricted class C, we first provide a fixpoint characterization of the semantic state-
based recovery equivalence. We show the correctness of the characterization by
proving that the fixpoint is indeed the semantic state-based recovery equivalence.
Using this characterization, we can then show the main claim by showing that
the syntactical state-based recovery equivalence captures each iteration.
Definition 5.12 (Fixpoint Characterization). Define the fixpoint iteration
F : N → (Q × Q) with

F0 := {(q, q) | q ∈ Q} ∪ {(p, q) | p, q ∈ Q, p, q sink states with p ∼R q}
Fn := Fn−1 ∪ {(q1, q2) | q1 ∼R q2, ∀B /∈ DI (q1) ∪ DI (q2) :

∃q′
1, q′

2 : δ(q1, B) = (q′
1, rs), δ(q2, B) = (q′

2, rs),
(q′

1, q′
2) ∈ Fn−1 or q′

1 = q1 and q′
2 = q2}

88

5.3. FURTHER OPTIMIZATION OF RECOVERY AUTOMATA

Let Fix(F) := Fn denote the fixpoint of F such that Fn = Fn+1.

Note that since F is monotonic by definition, and the state space Q is finite,
Fix(F) is guaranteed to exist. Intuitively, the iteration function F initially
contains all pairs of directly equivalent states, either because they are equal or
because they have no successors. That is, they are sink states. In each following
iteration, pairs of states are then added so that all reachable successors of these
pairs are already equivalent. The notion of reachability here also considers
orthogonality, only considering transitions that are not disabled due to their
guards being in the set of disabled inputs. If no further pairs of states can be
added, then the fixpoint Fix(F) is reached. We prove with the following lemma
for the class of recovery automata consistent with respect to ∼R, that are also
in normal form, that the fixpoint characterization indeed captures the recovery
equivalence ∼R.

Lemma 5.8. If R is an RA in normal form and R ∈ C, then Fix(F) = ∼R.

Proof. It holds that Fn ⊆ ∼R for any n by definition of Fn. We now show that
∼R ⊆ Fn for some n. Let qn denote a state such that any path of length at
least n ends in a sink state. The existence of the sink state is guaranteed by
Lemma 5.7 since R is in normal form by assumption. Proof by induction over n.

• Consider n = 0. Then q0 and p0 are sink states. If q0 ∼R p0, then in total
(q0, p0) ∈ F0 by definition.

• Now assume if pi ∼R pj then (pi, qj) ∈ Fk for some k for any i, j < n
(I). Consider some pn ∼R qm with m ≤ n. Let B /∈ DI (pn) ∪ DI (qm).
Consider the following cases:

– δ(qm, B) = (qm, rs) and δ(pn, B) = (pn, rs). Then by Def. 5.12,
(qm, pn) ∈ Fj is not required for any j.

– δ(qm, B) = (qm−1, rs) and δ(pn, B) = (pn−1, rs). Since R ∈ C, it
holds by Def. 5.10 that pn−1 ∼R qm−1. Hence by induction hypothesis
(I) (pn−1, qm−1) ∈ Fj for some j.

In the following, we consider the cases where there is a single state change.
Proof by induction over m.

– Consider m = 0. Then δ(qm, B) = (qm, rs) and δ(pn, B) = (pn−1, rs).
Since R ∈ C it holds by Def. 5.10 that pn−1 ∼R qm. Hence by
induction hypothesis (I) (pn−1, qm) ∈ Fj for some j.

89

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

– Consider m > 0. Assume if pn ∼R pi then (pn, qi) ∈ Fj for some j for
any i < m (II). Assume without loss of generality that the state change
occurs in qm, otherwise swap p and q. Then δ(qm, B) = (qm−1, rs)
and δ(pn, B) = (pn, rs). Since R ∈ C, it holds by Def. 5.10 that
pn ∼R qm−1. Hence, by induction hypothesis (II) (pn, qm−1) ∈ Fj for
some j.

In all cases, this yields in total (pn, qm) ∈ Fj+1 for some j by Def. 5.12.

By induction principle this yields in total that if p ∼R q then (p, q) ∈ Fn for
some n. Since further by definition Fn ⊆ Fn+1 for any n, we hence obtain in
total that there exists some n such that for any p ∼R q we have (p, q) ∈ Fn.

Using the fixpoint characterization, it is now easier to show what kind of
states are recovery-equivalent by considering the individual fixpoint iterations
and the pairs of equivalent states added in them, respectively. With this, it is
now possible to move toward the main equivalence theorem. To this aim, we
first show that generally, any recovery-equivalent pair of states discovered by
the fixpoint iteration is also discovered by the syntactical recovery equivalence.

Lemma 5.9. For any n it holds that Fn ⊆ ≈R.

Proof. Proof by induction over n.

• For n = 0 we have F0 ⊆ ≈R.

• Assume the hypothesis holds for some n. Let (q1, q2) ∈ Fn+1. If (q1, q2) ∈
Fn then by induction hypothesis also q1 ≈R q2. Now consider the case
(q1, q2) /∈ Fn. Since (q1, q2) ∈ Fn+1 we have q1 ∼R q2 (I). Assume q1 ̸≈R q2.
Then there exists B with δ(q1, B) = (q′

1, rs1), δ(q2, B) = (q′
2, rs2), q1, q2

not orthogonal with respect to B and rs1 ̸= rs2 or q′
1 ̸≈R q′

2.

– Assume rs1 ̸= rs2. Then δ∗(q1, B) ̸= δ∗(q2, B). Since q1, q2 are not
orthogonal with respect to B, it holds that B /∈ DI (q1) ∪ DI (q2). In
total, this gives q1 ̸∼R q2. Contradiction to (I).

– Assume rs1 = rs2. Then q′
1 ̸≈R q′

2. By definition of Fn, we also
have (q′

1, q′
2) ∈ Fn. Hence by induction hypothesis, it also holds that

q′
1 ≈R q′

2. Contradiction.

In total, we thus obtain q1 ≈R q2.

90

5.4. MODULAR SYNTHESIS OF RECOVERY AUTOMATA

By combining the individual preliminary results, the desired main result now
follows.

Theorem 5.3. If R is an RA in normal form and R ∈ C, then ∼R ⊆ ≈R.

Proof. Since R is in normal form and R ∈ C it holds that:

∼R = Fix(F) (Lemma 5.8)
⊆ ≈R (Lemma 5.9)

5.4 Modular Synthesis of Recovery Automata
The Markovian state space generated from a fault tree can be massive. In general,
the corresponding state space size can grow exponentially with the number of
nodes in a fault tree. The problem of an exponentially increasing state space is
commonly known as the state space explosion problem. In conventional dynamic
fault trees, the blow-up can be mainly attributed to the interleaving occurrence
of basic events. In the case of non-deterministic DFTs, the state space explosion
problem gains an additional dimension: The non-determinism caused by selecting
an appropriate recovery action generates an additional source of exponential blow-
up. Finally, when considering repair events, both exponential blow-up sources
become even worse. As failed events can now be repaired, additional interleavings
in the occurrence of basic events become possible. Likewise, repaired spares
or primaries increase the number of selectable recovery actions generated by
SPARE gates. The presence of repair actions also disables useful techniques for
state space reduction. Consider, for example, a simple static fault tree consisting
of just one OR gate with n basic events as inputs. In the non-repairable case,
the Markovian state space can be represented with just two states, as every
occurrence of a basic event leads directly into the FAIL state. In the repairable
case, however, the state must concretely remember the failed basic event, leading
to the necessity of introducing n new states.

The varying sources of and issues amplifying the state space explosion problem
make it abundantly clear: Ensuring scalability while synthesizing recovery
strategies for large fault trees with hundreds of basic events is nearly impossible
using the previous, naive workflow. In the following, we consider how existing
modular approaches for deterministic DFTs can be leveraged to solve the synthesis
problem.

91

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

5.4.1 Modular Workflow
Previous works have considered employing modularization techniques to tackle
the state space explosion problem for calculating RAMS metrics on deterministic
DFTs. These primarily involve detecting independent sub-trees in a fault tree
– referred to as modules –, evaluating the metrics on the individual modules,
and then composing them into the total metric for the original fault tree. For
example, the total reliability after a certain time span for two modules connected
via an AND gate can be obtained through multiplication.

Commonly, this approach faces a significant issue: Not all metrics can be
computed compositionally but instead require the full state space for computation.
In particular, essential metrics such as the MTTF are not compositional [62].
However, in the context of the recovery strategy synthesis problem, the problem
of compositionality changes. Even though the metric to be optimized may not
be compositional, for computing the recovery automaton, it is fortunately not
necessary to compose the actual metric for the complete tree. Instead, the objects
that require composition are the already optimized recovery automata. Automata
composition in turn is a common problem that can be solved using standard
techniques. We therefore exploit a two-stage approach by first synthesizing
recovery automata in a modular fashion and then employing them during the
computation of the actual metrics. In this manner, the non-determinism can be
resolved modularly during the synthesis step. In greater detail, we apply the
following approach:

1. Modularization: determine the modules in the fault tree.

2. Trimming: discard modules without non-determinism.

3. Synthesis: compute the optimal RA for each module, and reduce it.

4. Composition: assemble the overall recovery automaton from the modular
RA.

As noted previously, basic events are a significant driver for exponential blow-
up. Therefore, events that do not affect the resolution of the non-determinism
are taken out of the equation. Finally, as the non-determinism has already
been resolved before the evaluation step, this particular source of exponential
blow-up is absent during the computation of the metrics. The new workflow
incorporating modularization is visualized in Fig. 5.16 on the following page.

Note that there is no additional RA reduction step after the composition as
the experiments in Sec. 8.3 on page 154 revealed that a final reduction does not
yield any notable improvements.

92

5.4. MODULAR SYNTHESIS OF RECOVERY AUTOMATA

NdDFT

Module1

Modulei

Modulen

Discarded

MA1

MAn

RA1

RAn

Reduced RA1

Reduced RAn

RA

MC Reliability Measures

Fig. 5.16. Transformation road map with modularization. Modules without SPARE
gates are discarded.

5.4.2 Modularization

We base our modularization approach on the pre-existing algorithm given in [69].
It applies a depth-first search on the fault tree, traversing all nodes while keeping
track of each node’s first and last visiting time. These visiting times are then
used to identify the modules using the following criterion: Given a node that is
suspected of being the root of a module, if its descendants’ visit dates - both
first and last - all lie within the first and last visit dates of that node, then the
node and all of its descendants form a module. In addition to this basic rule,
further restrictions have to be applied to obtain the desired compositionality
property for the recovery automata.

Two special cases have to be considered: SPARE gates and all types of
priority gates. Priority gates are road blockers to the desired compositionality
property, as they may change the optimization direction. Consider, for example,
a POR gate. In the case of the first input being a SPARE gate, the optimal
strategy for maximizing the MTTF would also be to maximize the MTTF of
the SPARE gate. In other words, claiming its available spares is the best course
of action. On the other hand, if the SPARE gate were the second input to a
POR gate, then suddenly this simple relationship changes: Now minimizing the
MTTF of the SPARE gate will lead to a scenario where the POR gate is more
inclined to become fail-safe. The two scenarios are visualized in Fig. 5.17 on the
next page.

93

CHAPTER 5. SYNTHESIS OF RECOVERY STRATEGIES

POR

CSPARE

BA

(a) SPARE gate first

POR

SPARE

BA

C

(b) SPARE gate second

Fig. 5.17. Non-compositionality of priority gates as they change optimization direction.

Therefore, given recovery automata for two modules connected by a POR
node, we cannot obtain the overall recovery automaton utilizing composition. In
addition to priority gates, SPARE gates also prohibit further modularization
of their sub-trees. Due to the semantic definition of a SPARE gate, any basic
event contained in a sub-tree may trigger a recovery action and thus requires a
representation within the Markovian state space. Bundling these observations,
we obtain the following restrictions of the modularization rules:

• A SPARE gate that is a descendant of a priority gate cannot be the
module’s root.

• A node that has a SPARE gate as a descendant and that is a descendant
of a priority gate cannot be the root of a module.

• A descendant of a SPARE gate cannot be the root of a module.

Finally, an example application of the algorithm with the additional rules is
given in Fig. 5.18 on the following page. The algorithm proceeds in a leftmost
order. Each node is labeled by the first and last visiting time, and dotted boxes
indicate the computed modules. All modules without SPARE gates can be
trimmed, leaving only the bottom-right module for the actual synthesis.

94

5.4. MODULAR SYNTHESIS OF RECOVERY AUTOMATA

System

POR

SPARE

FE

D

OR

AND2

C

AND1

BA

first_visit: 0
last_visit: 44

first_visit: 1
last_visit: 43

first_visit: 2
last_visit: 25

first_visit: 3
last_visit: 24

first_visit: 4
last_visit: 13

first_visit: 5
last_visit: 12

first_visit: 6
last_visit: 8

first_visit: 7
last_visit: 7

first_visit: 9
last_visit: 18

first_visit: 10
last_visit: 17

first_visit: 14
last_visit: 23

first_visit: 15
last_visit: 22

first_visit: 19
last_visit: 21

first_visit: 20
last_visit: 20

first_visit: 26
last_visit: 42

first_visit: 27
last_visit: 41

first_visit: 28
last_visit: 30

first_visit: 29
last_visit: 29

first_visit: 31
last_visit: 40

first_visit: 32
last_visit: 39

first_visit: 33
last_visit: 35

first_visit: 34
last_visit: 34

first_visit: 36
last_visit: 38

first_visit: 37
last_visit: 37

Fig. 5.18. Example application of the modularization algorithm. All modules except
for the bottom-right module can be discarded.

95

Chapter 6
Partial Observability

All events in a fault tree are fully observable. All previous considerations have
been considered under this premise. In reality, however, faults are not always
fully observable at all times, or in other words, these faults are only partially
observable. In this chapter, we consider what limitations and challenges partial
observability impose on DFTs and investigate how we can lift the NdDFT
approach to deal with them. Partial observability can take on several forms.
Some examples include:

• Faults might be noticed with some time delay. For example, a watchdog
that checks for faulty behavior at some defined time interval can only
report a fault during those timed checks. Until the watchdog reveals the
fault, it can freely propagate in the system.

• Faults might only be noticed at a higher system level. For example,
equipment malfunctions, but this malfunction is not observed directly
due to a lack of monitoring. Only the propagated fault is then indirectly
observed through the malfunction of a higher-level system function.

• Monitoring processes or equipment can fail. A fault might not be observed
because the monitor responsible for reporting on the fault suffered a critical
failure and is not working.

When viewed together with SPARE gates, these effects have dire consequences:
If a fault is not observed - or alternatively observed with a time delay - then the

97

CHAPTER 6. PARTIAL OBSERVABILITY

FDIR must perform recovery with only the given limited knowledge. Consider,
for example, a system with two SPARE gates, which share a common spare.
However, only the system failure can be observed. From this information, how
should the FDIR proceed in order to recover?

This question leads back to the previous approach: Non-determinism. The
following considers a further extension that incorporates observability constraints
into the decision-making of the recovery automaton. Several challenges need
to be addressed: First of all, to model the observability constraints, a new
fault tree element is needed. It will mark which events can be observed and
the expected observation delay. Furthermore, since it can now be unknown
whether a event has occurred but not been observed, the Markovian state space
construction needs to be adapted. The states need to represent this uncertainty
in knowledge. The recovery automaton model also requires adjustments to its
input language. Previously it was defined to consume inputs of basic event sets.
Now it has to react to observations, which might again occur simultaneously.
Also, since observation delays might occur, the recovery automaton also needs
to be extended with some notion of timed behavior. Finally, topics such as
modularization have to be revisited in order to lift the observable to the partially
observable model.

6.1 Partially Observable Dynamic Fault Trees

We extend the NdDFTs to a more expressive model we call Partially Observable
Dynamic Fault Tree (PODFT). This model introduces a new gate type, a so-
called MONITOR gate, that declares which events in the fault tree are observable.
Hence, also which events can be reacted to by means of a recovery action. In
the case of all events being observable, we obtain a classical NdDFT. Fig. 6.1
on the following page gives an overview of the different relevant DFT classes
introduced up until now.

The regular classes of DFT and Repairable DFT known from existing lit-
erature are depicted at the bottom of the hierarchy. Traversing upwards, new
features such as non-determinism and partial observability are added. The new
classes discussed in the chapter will be the PO classes. In the following, we
define the necessary syntactic and semantic extensions to events, gates, and the
propagation logic.

98

6.1. PARTIALLY OBSERVABLE DYNAMIC FAULT TREES

PODFT

Repairable PODFT

Repairable NdDFT

NdDFT

DFT

Repairable DFT

New

Fig. 6.1. Class hierarchy of DFT classes.

6.1.1 MONITOR Gate
Syntactically, a PODFT is a DFT with an additional gate: A MONITOR gate.
The MONITOR gates augments the PODFT with the information by which
events can be observed. In order to incorporate time delays for an observation,
we parameterize the MONITOR gate by a time parameter t. Such a time delay
could, for example, model a watchdog that only performs a periodic observation
every t seconds. Hence, we obtain the t-MONITOR gate for which we define the
following basic properties. A t-MONITOR gate has:

• any number of observation inputs,

• an optional fault input for failing,

• a fault output for propagating failure, and

• an optional observation delay time t.

The gate symbol with its in- and outputs is given in Fig. 6.2 on the next
page. The primary input at the center is the observation input, and the input
to the small box on the bottom left is the fault input. If the fault input
is triggered, the MONITOR gate is set to fail and can no longer perform
observations. Furthermore, its failure is propagated using its fault output. This

99

CHAPTER 6. PARTIAL OBSERVABILITY

t

Fig. 6.2. t-MONITOR gate. The right-side input is the observation input. The
left-side input causes the gate to fail. The parent propagates the gate failure.

allows modeling constructs such as redundant observers. If the fault input is
repaired, observations are re-enabled. Multiple fault inputs can be achieved by
pre-positioning an OR gate.

For a given MONITOR gate m we use the shorthand notation t(m) to
denote its observation delay t. We also call 0-MONITOR gates immediate
MONITOR gates and t-MONITOR gates with t > 0 delayed MONITOR gates.
The t-MONITOR gate integrated into the DFT definition yields the syntactic
definition for PODFTs.

Definition 6.1. (Partially Observable Dynamic Fault Tree) A Partially Observ-
able Dynamic Fault Tree (PODFT) T is a FT with:

PODFTGates = DFTGates ∪ {t-MONITOR | t ∈ R, t ≥ 0}

6.1.2 Gate and Event Semantics
In the following, we discuss the semantics of the observation process and its
consequences on the semantics of other gates and events. First of all, for the
repair of basic events, we require a more flexible model than the old static rate
model. In NdDFTs, transient and repairable faults behaved semantically the
same.

However, this equivalence no longer upholds in PODFTs. For transient
failures, repair may start even when it is not known if a BE occurred. For
example, a transient bitflip may appear and disappear without an observational
effect. Repairs that model an active action, on the other hand, should in many
cases only be started upon observing some fault. We therefore extend the repair
rate model of BEs to allow a change in the repair rate based on the current
observations. Formally, the repair rate association R(b) for a basic event b
changes to R(b, O) where O is a set of observed events.

Possible timelines exhibiting fault occurrence, observation, and repair are
shown in Fig. 6.3 on the following page. For simplicity, we leave out the

100

6.1. PARTIALLY OBSERVABLE DYNAMIC FAULT TREES

timeFail Observe Repair

(a) Repairable Fault.

timeFail Repair

(b) Unobserved Transient Fault.

timeFail Observe Repair

(c) Observed Transient Fault.

Fig. 6.3. Timelines for repairable and transient faults. Green represents being in an
operational state, red in a failed state and yellow an initiated repair process.

observation of the repair event. In the classical case of Fig. 6.3a, where a fault
is repaired through a repair process, say a reset, we only start the reset upon
observation of the fault. Transient faults may self-repair without requiring an
observation. In fact, a transient fault might even be repaired without being
observed at all, as illustrated in Fig. 6.3b. Finally, Fig. 6.3c shows the case of a
transient fault being observed before it vanishes.

To adapt the gate semantics, in addition to adapting the fault propagation, we
also need to consider the propagation of observation information. Fig. 6.4 on the
next page gives an example where the TLE is not observable, yet its observation
state can be fully deduced. In this case, all basic events are observable, effectively
reducing the PODFT to a regular DFT. When Unit1 and Unit2 are observed, we
can infer the failure of the AND gate. Thus, we can also infer the failure of the
System SPARE gate and then perform a switch to Spare as a reaction. Generally,
we extend the propagation semantics of each gate to propagate observation
according to the same rules for propagating failure. E.g., AND gates propagate
if the failure of all inputs has been observed. Likewise, OR gates propagate if
the failure of any input has been observed. Further illustrations of the PODFT
syntax, gate interactions, and semantic interpretations can be found together
with the synthesis examples in Section 6.5.

101

CHAPTER 6. PARTIAL OBSERVABILITY

System

SpareAND

Unit2Unit1

0 0

0

b1 b2

b3

Fig. 6.4. Indirectly fully observable PODFT. The AND and System events are not
directly observable, but their occurrence can be inferred from the other observations.

6.2 Belief Markov Automaton Semantics
This section focuses on the two-stage approach of constructing the Belief MA of
a PODFT: First, by constructing an adapted version of a Markov automaton
and then transforming it into a Belief Markov Automaton (BMA) including the
partial observability information. Since a BMA is also an MA, we can from there
proceed using the previously established synthesis process.

In addition to the knowledge which nodes have currently failed, a PODFT
also needs to memorize which of these failed nodes have been observed. We
therefore extend the notion of a DFT state to a PODFT state by adding in a
set of observed nodes.

Definition 6.2 (PODFT State). A PODFT state s is a tuple

s = (history, claims, obs)

with (history, claims) being a DFT state and obs ⊆ N(T) a set of observed
failed nodes.

We denote the projection of the observable fragment of a PODFT state s
with O(s) := (obs(s), claims(s)) where obs(s) := obs. For the BMA of a fully
observable Markov automaton, we use probability distributions over PODFT
states. Formally, this leads to the following definition:

102

6.2. BELIEF MARKOV AUTOMATON SEMANTICS

Definition 6.3 (PODFT Belief-State). A PODFT belief-state b ∈ Dist(S(A))
of a PODFT T is a probability distribution over S(A) with A := MAJT K such
that for any s, s′ it holds that:

b(s) > 0, b(s′) > 0 iff O(s) = O(s′)

Fig. 6.5 shows an example of how fully observable MA states are represented
in the partially observable BMA. In the fully observable case, there are two states
(B1B3) and (B2B3). The partially observable one may have any probability
distribution over these two states. Here, we picked that with 25% we are in
(B1B3) and 75% we are in B2B3. In both cases, the only observed event is B3.
Note that in the partially observable state we do not know what the concrete
state is, as we only know the observation O(B3), however, we still have the full
knowledge over the probability distribution. For the partially observable state
space, this means that later the positional metrics need to be positional with
regard to the partially observable state with the known distribution.

(B1B3)

(B2B3)

(a) Fully Observable.

O(B3)
25% : (B1)
75% : (B2)

(b) Partially Observable.

Fig. 6.5. Fully observable MA states vs partial observable MA states.

To label the observation transitions we will once again use sets of observations
since multiple nodes may fail simultaneously. This may then lead to simultaneous
observations by MONITOR gates. We formally define the set of all observation
sets of a PODFT T to be:

OS(T) = {O ⊆ {n | n ∈ N(T)} ∪ {nr | n ∈ N(T)}}

First of all, note that the observation events are now based on the nodes in the
tree instead of the basic events. Furthermore, we do not exclude the empty set,
as we will later need it to model the lack of observations.

In the following, we will often require to know whether a node can be observed
in a current state. To capture the set of monitors that can observe a fault tree

103

CHAPTER 6. PARTIAL OBSERVABILITY

node n in state s, we define the set:

M(s, n) := {m | T (T , m) = t-MONITOR, P (n, m), m /∈ failed(s)}

Only monitors that have not failed in s are allowed membership to the set.
Furthermore, we denote the set of immediate monitors that can observe n with:

M(s, n)t=0 := {m | m ∈ M(s, n), t(m) = 0}

Likewise, the following set defines the set of delayed monitors observing n:

M(s, n)t>0 := {m | m ∈ M(s, n), t(m) > 0}

Similarly to the closure of failed basic events cl(s, b) under FDEPs, we define
the closure under observation:

ocl(s, n) ⊆ {n′ | ∃m ∈ M(s, n)t=0 : P (n′, m)}

It denotes for a given failure of a node n in state s the set of transitively failed
nodes that any immediate monitor can observe. Analogously, given a repair
event nr, we define the observation closure:

ocl(s, nr) ⊆ {n′r | ∃m ∈ M(s, n)t=0 : P (n′, m)},

which contains all nodes that are transitively repaired and immediately observ-
able.

For a PODFT belief state, we also need to revisit the notion of failure. In a
DFT, failure corresponds to the occurrence of the TLE. However, in a PODFT,
we may believe that the TLE has occurred but may not be certain of it. To
quantify the probability that the TLE has failed in a given belief-state b we
define:

F (b) = Σtle∈failed(s)b(s)

In the following, we consider any state with F (b) > 0 a potential fail state and
F (b) = 1 a fail state. Regarding the exit rate of a belief state b, we define:

exit(b) := Σs∈S(A)(b(s) · exitA(s))

Furthermore, since O(s) = O(s′) for any s, s′ with b(s) > 0, b(s′) > 0, we
can define the short hand notation O(b) = O(s) for any s with b(s) > 0 to
reference the observable fragment of a belief state b. Furthermore, given an
event e ∈ {n, nr}, either representing a failure or a repair event, we also define

104

6.2. BELIEF MARKOV AUTOMATON SEMANTICS

the observation event O(e) to capture the occurrence of observing e. Examples
of belief state spaces can be found in Sec. 6.5 on page 119.

Using the PODFT state and the PODFT belief state, we can now define the
two Markov Automata for the belief construction. We first start by defining the
fully observable MA. The main two additions to the MA construction are:

• Observation events and corresponding observation transitions

• Updating the observation information

We formalize this in the PODFT-MA semantics below:

Definition 6.4 (PODFT-MA Semantics). A PODFT-MA semantics is a map-
ping MAJK from an PODFT T to an MA A := MAJT K.

For the PODFT-MA semantics, we take over all construction rules for the
NdDFT-MA semantics and extend them as follows: First, we introduce a new
probabilistic state type O that will represent that a probabilistic observation
needs to be resolved. The updated labeling function thus has the updated
codomain:

L : S → 2{M,N,P,O}∪{FAIL,OP}

For the initial state, we simply set obs = ∅. We next update the rules for
generating state successors. Let s = (history, claims, obs) be a state.

Updating Markovian successor generation Assume s is a Markovian state.
For any enabled failure or repair event, generate the successors as usual.

In addition, let enabledO(s) denote the enabled delayed failure observations.
That is, for any event O(n) ∈ enabledO(s), it holds that

• n /∈ obs(s) and n ∈ failed(s) (n has failed but was not yet observed), and

• M(s, n)t>0 ̸= ∅ (A delayed, operational monitor gate is observing n).

Generate the successor state s′ := (history, claims, obs ∪ {ocl(s, n)}).
For the case of observing a repair nr, let enabledOr (s) denote the enabled

delayed repair observations. That is, for any event O(nr) ∈ enabledO
r (s), it holds

that

• n ∈ obs(s) and n /∈ failed(s) (n is not failed but is currently observed as
failed), and

105

CHAPTER 6. PARTIAL OBSERVABILITY

• M(s, n)t>0 ̸= ∅ (A delayed, operational monitor gate is observing n).

Generate the successor state s′ := (history, claims, obs \ {ocl(s, nr)}).
In both cases, for the transition, generate the Markovian transition

C(s, ocl(s, e) : λo, s′),

where
λo := ΣM(s,e)t>0t(m)

denotes the total observation rate, and e ∈ {n, nr} marks the event as a failure or
repair event respectively. Finally, mark the successor state as non-deterministic
by setting L(s′) := L(s′) ∪ {N}.

Updating probabilistic successor generation Next, consider P ∈ L(s),
that is, s is a probabilistic state. Note that with the new O state type that
will come into play, the construction has two markings for probabilistic states.
Here, we have the marking from the previous construction for resolving the
occurrence of immediate basic events. After resolving the immediate basic events,
we update the construction to resolve the immediate observers. For this purpose,
the successor generation of P states remains mostly the same, except for an
update to the labeling rule: Any successor state that would be labeled with {N}
is instead labeled with {O}.

Immediate observer successor generation Assume s is labeled with O ∈
L(s). Handling immediate observers is similar to handling Markovian states.
Since the monitors do not have observation probabilities, all transitions will
be simply labeled with probability 1. Note that in the BMA construction, the
observation probabilities will no longer be 1 due to the beliefs.

We need to capture the set of all immediate observations in state s, including
all repair observations and all fail observations. For this purpose we define the
following two helper sets:

unobsF (s) :=
⋃

n∈N(T)

{n | n ∈ failed(s), n /∈ obs(s)}

unobsR(s) :=
⋃

n∈N(T)

{nr | n /∈ failed(s), n ∈ obs(s)}

unobsF (s) then captures the set of all outstanding failure observations and
unobsR(s) the set of all outstanding repair observations. The total set of

106

6.2. BELIEF MARKOV AUTOMATON SEMANTICS

outstanding observations is then:

unobs(s) := unobsF (s) ∪ unobsR(s)

Generate the successor with the updated observation information:

s′ := (history, claims, obs ∪ unobsF (s) \ unobsR(s)),

and also generate the corresponding probablistic transition P (s, unobs(s) : 1, s′).
Finally, mark s′ as a non-deterministic state by updating the labeling with
L(s′) := L(s′) ∪ {N}.

For observation events, going from the MA to the BMA is now mostly a
matter of grouping the corresponding states sharing equal observation sets.
However, the construction becomes far trickier for regular failure and repair
events. Since the events are only observed in the observation transitions, we lose
the information about which failure or repair event actually happened. From
an outside perspective, any enabled event could have occurred. In order to deal
with this process, the construction will employ a special transition symbol τ
representing the silent occurrence of a repair or failure event. The recovery
automaton will not be able to directly respond to the τ -transitions since they
are not observable. Instead, we will consider an enriched RA model capable of
performing timeout transitions to estimate a decision point and switch strategies.
This will represent that so much time has passed that it makes more sense to
assume that a τ -transition occurred than not. In other words, the mean time to
happen of the τ -transition will come into play. Since the belief state space is
guaranteed to be finite, we add a ϵ criterion to the construction, where we only
distinguish between two belief states if they significantly differ in belief. The
significance level is here defined using ϵ and for the difference between two belief
states we define the regular 2-norm ||b1 − b2|| :=

√
Σs(b1(s) − b2(s))2. Overall,

this gives us the epsilon criterion that we only distinguish between b1, b2 iff
||b1 − b2|| > ϵ.

Definition 6.5 (PODFT-BMA Semantics). A PODFT-BMA semantics is a
mapping BMAJKϵ from an PODFT T to an MA B := BMAJT Kϵ.

In the following, we give the BMA construction. To generate the successors,
we distinguish between three processes of successor state generation:

• From a delayed observation event.

• From an unobservable fault event represented as a single silent event τ .

107

CHAPTER 6. PARTIAL OBSERVABILITY

• From an immediate observation event.

Consider some fully observable Markov automaton as produced by the up-
dated PODFT-MA semantics:

MAJT K = A = (S, L, A, N, C, P, s0)

We then define the PODFT-BMA:

BMAJT K = B = (B, L′, A′, N ′, C ′, P ′, b0)

As initial state, generate b0(s0) := 1 and b0(s) = 0 for any other state s ∈ S.
Now, let b be some generated belief state. Then, set L(b) = L(s) for any s

with b(s) ̸= 0. If there already exists a prior belief state a such that ||a − b|| < ϵ
and L(a) = L(b), then reroute all incoming transitions to b to a instead, and then
discard b. Otherwise, continue the construction. For non-deterministic states
N ∈ L(b), we simply copy over the non-deterministic transitions and likewise
copy the beliefs to the corresponding successor states. For the other state types,
we distinguish between three cases.

Delayed Observation Successor Assume in the following that M ∈ L(b).
Let C(s, O, s′) be some observation transition for some state s into another state
s′ with b(s) ̸= 0. Analogously to the basic event failures in the fully observable
MA, generate a successor b′ for the delayed observation events O. And generate
a Markovian transition C ′(b, O : λo, b′) with transition rate λo. The transition
rate is affected by two factors: The observation rates of the observing MONITOR
gates and the belief that we are in a state where n is failed. Finally, let

Sn = {u′ | C(u, O, u′), b(u) ̸= 0}

be the successor states sharing the same observations as s′. Let Mn = M(s, n)t>0
be the set of non-failed, delayed monitors observing n. Note that we introduced
the semantic restrictions of monitor failure always being observable. Therefore,
Mn is consistent over all beliefs in b. Then λo is defined as:

λo := (Σs∈Sn
b(s)) · (Σm∈Mn

t(m))
For any belief u /∈ Sn not compatible with the new observation set, we set

b′(u) = 0. The freed probability mass is then distributed over the remaining
beliefs. We therefore obtain for any u ∈ Sn:

b′(u) = b(u)/Σu′∈Sn
b(u′)

108

6.2. BELIEF MARKOV AUTOMATON SEMANTICS

Unobservable τ-Successor Assume in the following that either M ∈ L(b) or
P ∈ L(b). Assume further that b has at least one enabled fault event. Define
λb := exit(b) and Tb := 1/λb. In the BMA, generate a τ -transition and a
successor state b′. A τ -transition models the belief change after one mean time
to happen Tb for any enabled Markovian event. There is a probability premain

that no Markovian event fired in this time frame and we maintain our prior
beliefs from b This yields:

premain(b) := eλb·Tb = e−1

The probability mass pexit for a Markovian event firing is therefore:

pexit(b) := (1 − premain(b)) = 1 − e−1

Note that both probabilities are constants due to the probability mass change
after one mean time to happen being constant e−1, independently of the exit
rate. With this, the update rule for the belief change of a τ -transition can be
defined as following:

b′(s) = b(s) · premain(b) + pexit(b) · ΣC(sp,λsp ,s)b(sp)λsp/λb

= b(s) · e−1 + (1 − e−1) · ΣC(sp,λsp ,s)b(sp)λsp
/λb

For the transition rate of the τ -transition, we cannot directly use the regular
exit rate. This is due to the Markovian transition modeling a guaranteed
transition into a successor state. However, the belief transitioning semantics
models two simultaneous probabilistic processes: In addition to the exponentially
delayed distribution of eventually performing a transition, we also have the
probability pprob to not trigger a Markovian transition at all. Therefore, the exit
rate has to be conditioned to the remaining probability pexit. This gives the
transition rate of the τ -transition and also the adjusted exit rate of the belief
state b.

exit(b)τ = λb/pexit(b) = λb/(1 − e−1)

Immediately observable events Assume finally O ∈ L(b). We proceed
similarly to the case of the delayed observation transitions. Let P (s, O : 1, s′) be
some immediate observation transitions for some state s into another state s′

with b(s) ̸= 0 and observation set O. Generate a successor belief state b′ for the
immediate observation event O with a probabilistic transition P ′(b, O : pO, b′)
with transition probability pO := ΣP (u,O:1,u′),b(u) ̸=0b(u). Let further

109

CHAPTER 6. PARTIAL OBSERVABILITY

SO = {u′ | P (u, O, u′), b(u) ̸= 0}
be the successor states sharing the same observations as s′. For any belief

u /∈ SO not compatible with the new observation set, we set b′(u) = 0. For all
other states we redistribute the probability mass and obtain for any u ∈ SO:

b′(u) := b(u)/Σu′∈SO
b(u′)

The construction of state spaces with τ -transitions is abstractly depicted in
Fig. 6.6.

100% : s0

e−1 : s0
p1 : s1

...
pn : sn

e−1/(1 − po) : s0
p′

1 : s1
...

p′
n′ : sn′

O
po

1 : so
1

...
po

no
: sno

e−2/(1 − po) : s0
p′′

1 : s1
...

p′′
n′′ : sn′′

O
p′′o

1 : so
1

...
p′′o

n′′
o

: sn′′
o

τ : λ · e

1 − po

τ : λ′ · e

po

p′′
o

1 − p′′
o

(a) Immediate Observation.

100% : s0

e−1 : s0
p1 : s1

...
pn : sn

O
po

1 : so
1

...
po

no
: sno

e−2 : s0
p′

1 : s1
...

p′
n′ : sn′

O
p′′o

1 : so
1

...
p′o

n′
o

: sn′
o

τ : λ · e

τ : λ′ · e

λo · (1 − e−1)

λo · (1 − e−2)

(b) Delayed Observation.

Fig. 6.6. State space scheme for τ -Transitions with immediate and delayed observers.

In each example, there is one observer: an immediate observer and a delayed
observer with observation rate λo. The exit rate of a belief state is denoted

110

6.3. PARTIALLY OBSERVABLE RECOVERY AUTOMATON

with λ, λ′ respectively. For the immediate observer, the observation probability
po = Σn

i=1pi corresponds to the total probability of being in an observable state.
With no, n′

o, we denote the number of states that belong to the belief state after
the observation. For the state space, ϵ is chosen such that

|e−1/(1 − po) − e−2/((1 − po)(1 − p′′
o))| < ϵ

and |e−2 −e−3| < ϵ. That is, in the case of the immediate observer, we stop after
two τ -transitions and get a loop back. In the case of delayed observation, there is
no explicit loop, as the successor of the second τ -transition is a Markovian state.
Due to the ϵ criterion, a third τ -transition would produce a self-loop, which can
be ignored for CTMCs. In both cases, the state space construction can stop
after two τ -transitions. Note that with every τ -transition, the probability of
being in s0 decreases, and the total probability mass of being in some other state
subsequently increases. For simplicity, repair events are not considered in these
examples. The states with observation O are non-deterministic and would be
followed by recovery actions.

It follows from the construction that b′ is still a distribution and does not
inflate the total probability mass over 1. We show this in the following proof.
Proposition 6.1. Let b be a belief state and b′ a generated τ -transition successor.
Then Σsb

′(s) = 1.

Proof. Consider b, b′ as required. Then

Σsb
′(s) = Σs(b(s) · e−1 + (1 − e−1) · ΣC(sp,λsp ,s)b(sp)λsp/λb)

= e−1 · Σsb(s) + Σs((1 − e−1) · ΣC(sp,λsp ,s)b(sp)λsp
/λb)

= e−1 · Σsb(s) + (1 − e−1) · Σs(ΣC(sp,λsp ,s)b(sp)λsp
)/λb

= e−1 + (1 − e−1) · Σs(ΣC(sp,λsp ,s)b(sp)λsp)/λb (Σsb(s) = 1)
= e−1 + (1 − e−1) · Σs(b(s)exit(b))/λb

= e−1 + (1 − e−1) · λb/λb

= 1

6.3 Partially Observable Recovery Automaton
Due to the addition of the silent τ -transitions in the Belief MA, the old formalism
for RA’s is no longer strong enough to express the optimal recovery behavior.

111

CHAPTER 6. PARTIAL OBSERVABILITY

Since the original RA definition hinges on observing events, the RA cannot
change its recovery behavior based on an unobserved τ -transition.

Consider the following variation of the memory system illustrated in Fig. 6.7.
Here, a τ -transition may change the optimal recovery strategy.

System

SPARE2

Memory2

SPARE1

Memory1

b1 b2

Memory3

b3

Memory4

b4Wear

b5

RDEP

x

0

Fig. 6.7. Example PODFT with RDEP. The more time passes, the more likely it
becomes for Wear to occur and make Memory3 the sub-optimal spare choice.

In the fully observable case, the RA would choose the spare memory with the
lowest failure rate. Consider for this example F (b3) < F (b4). Then claiming b3
would be prioritized over claiming b4. However, the PODFT also has an RDEP
modifying the failure rate of b3. If x · F (b3) > F (b4), then upon b5 occurring,
it would be better for the RA to switch strategies and prioritize claiming b4.
However, in this case, the wear event is not observable and therefore creates
a silent τ -transition. Instead of relying on the knowledge of the wear event
occurring, the RA now needs to rely on the belief of the wear event having
occurred.

112

6.3. PARTIALLY OBSERVABLE RECOVERY AUTOMATON

To compensate for this, the basic RA model needs to be extended. The idea
is to add a time-based transition in the RA based on the mean time to happen
for the silent τ -transition. This could be achieved by elevating the RA to a
higher automaton class such as Timed Automata (TA). However, this semantic
elevation would have severe consequences on the composition between NdDFT
and RA since we would now need a model that both encompasses the Markovian
nature of MA’s and the timed nature of TA’s. While there are approaches to
compose continuous time MA’s with TA’s [70], we can perform the following
simplification: Instead of introducing the whole concept of clocks present in
TAs, we only add a single timeout transition for each RA state. This timeout
transition then corresponds to the silent τ -transition. For the composition
operation, this timeout transition can then reversely be approximated using a
Markovian transition.

As for the concept of recovery strategies, we can now adapt the fully observable
case by simply exchanging the input set to any observation set.

Definition 6.6 (Partially Observable Recovery Strategy). A recovery strategy
for an PODFT T is a mapping Recovery : OS(T)∗ → RS(T)∗ such that

• Recovery(ε) = ε and

• Recovery(O1, . . . , On) = Recovery(O1, . . . , On−1), rsn with rsn ∈ RS(T).

Putting these ideas into a concrete definition gives us the following simplified
concept of a Partially Observable Recovery Automaton (PORA).

Definition 6.7 (Partially Observable Recovery Automaton). A Partially Ob-
servable Recovery Automaton (PORA) RT = (Q, δ, t, q0) of a PODFT T is an
automaton where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• t : Q → Q × R>0 is a deterministic timeout transition function that maps
the current state to the successor state and the amount of time that needs
to pass, and

• δ : Q × OS(T) → Q × RS(T) is a deterministic transition function that
maps the current state and an observed set of events to the successor state
and a recovery action sequence.

113

CHAPTER 6. PARTIAL OBSERVABILITY

The transition function δ is extended to δ∗ : Q×OS(T)∗ → RS(T)∗ by letting

δ∗(q, ϵ) := ϵ

δ∗(q, O · w) := rs · δ∗(q′, w) with δ(q, O) = (q′, rs)

for any q ∈ Q, O ∈ OS(T) and w ∈ OS(T)∗. The recovery strategy induced
by a recovery automaton R, RecoveryR : OS(T)∗ → RS(T)∗, is given by
RecoveryR(w) := δ∗(q0, w).

To visually distinguish the transitioning processes between PORA and RA
we introduce a differing notation for labeling the event guards. For the PORA
we write O(F (n)) for a failure observation of n and O(R(n)) when observing a
repair event nr.

6.4 Synthesis Workflow
With the adoption of PORAs, the synthesis goal now naturally changes to
creating PORAs from PODFTs. In the next sections, we investigate which
adaptations need to be made to the individual steps of the synthesis workflow.

6.4.1 PORA Extraction
Since we have reduced the problem of PORA synthesis again to a schedule
optimization problem on a Markov automaton, the extraction process of the
PORA is mostly analog to the extraction of the RA in the fully observable
case. However, before, we only had to deal with transitions that were strictly
of the form of an event occurring and then being followed by a sequence of
recovery actions. Now, we also need to deal with the silent τ -transitions, which
in the PORA will become timeout transitions. We extend the PORA extraction
procedure as follows:

Consider a τ -transition starting in some belief state b, resolving immediate
observations in a probabilistic belief state p, and then transitioning into a
successor belief state b′. According to the state space construction, this sequence
then has the following form:

b
τ :λ·e→ p

1−po→ b′

The state p potentially has an observation transition for any immediately
observable node oi. On the other hand, b and b′ are Markovian and may have

114

6.4. SYNTHESIS WORKFLOW

Markovian observation transitions for each delayed observable node oj . Generate
the timeout transition:

t(b) = (p, 1/(λ · e))
Furthermore, generate the transition δ(b, ∅) = b′ representing not-observing

any observable event. Finally, for the observation case, proceed as usual. By
construction, for any enabled set of observations O, there exists a state sequence
of recovery actions of the form:

p
O : p−→ b1

r1−→ b2
r2−→ . . . bn−1

rn−1−→ bn

Generate the transition δ(p, O) := (bn, r1 . . . rn). From bn, the construction
then proceeds as usual.

In the case that an observation O occurs before the timeout, the recovery
action knows that a silent τ -transition occurred and needs to perform the
appropriate recovery actions. Consider a belief state b with no defined outgoing
transition for an event O. Then let b′ be the state reachable with a minimal
number of transitions with a defined outgoing transition for the observation O.
Copy the behavior by defining:

δ(b, O) := δ(b′, O)

6.4.2 PORA and MA Synchronization
Since PORA and MA both operate on observation events, the synchronization is
mainly reduced to the same case as the RA and MA synchronization. Not handled
are the new τ -transitions. In order to consider them in the synchronization
process, we extend the ∥ operator as follows:

Let (b, q) be a state generated in the synchronized product C := R ∥ B of
the RA R and the BMA B, such that b is a belief state with a τ -transition and
q a state in the recovery automaton. By construction, q then has a timeout
transition t(q) = (b, t) for some t ∈ R, and B has a sequence of the form:

b
τ :λ·e→ b

In C, generate the Markovian transition ((b, q), λ · e, (p, p)). For any successor
of p triggered by some observation set O, we proceed as usual. In the case of
not observing any event, that is, for the transition δ(p, ∅) = q′ for some q′, we
also, by construction, have in the BMA the probabilistic transition:

p
τ :1−po→ b′

115

CHAPTER 6. PARTIAL OBSERVABILITY

To synchronize these two transitions, generate in C the Markovian transition:

((p, b), 1 − po, (b′, q′))

Note that the timeout transition information itself is technically redundant
in the construction. The timeout itself t = 1/(λ · e) and the target state of the
timeout transition are known to the construction. An explicit representation of
the timeout transition within the automaton makes it more understandable to a
human. Furthermore, it allows performing some minor minimization techniques
for merging successive timeout transitions, which we will briefly discuss in the
implementation details.

6.4.3 Orthogonality under Partial Observability
Partial observability also affects the reduction of orthogonal states. Originally,
each non-repairable BE can occur at most once. However, in a PODFT, even
non-repairable events can be observed multiple times. Consider, for an example,
the simple PODFT with a SPARE and an immediate MONITOR gate, depicted
in Fig. 6.8.

System

Unit2Unit1

0

Fig. 6.8. Repeated failure observations. The event System can be observed twice.

If a CLAIM(System, Unit2) is performed upon observing the failure of System,
and if Unit2 fails, then it is possible to observe the sequence:

{O(F (System))}{O(R(System))}{O(F (System))}

Since the invariant of only each failure occurring at most once is no longer
fulfilled, orthogonal minimization is not applicable. We therefore disable the
orthogonal minimization on PORAs.

116

6.4. SYNTHESIS WORKFLOW

System

SG22

Unit4Unit3

SG11

Unit2Unit1

0

0

Fig. 6.9. Example of a non-modularizable PODFT. Only by observing System and
SG1 together is it possible to deduce that an event occurred in the SG2 sub-tree.

6.4.4 Adapting Modularization
In order to lift our results from the fully observable case, we now also need to
respect the flow of observation information. Consider the following PODFT
example, depicted in Fig. 6.9, where two sub-trees would theoretically each form
a module but cannot be modularized. Note that in the fully observable case SG1
and SG2 would each form a module. However, in the partially observable case,
the observation of SG1 has an influence on the recovery behavior in SG2. When
observing only {O(F (System))}, we can deduce that the fault must have occurred
in the SG2 sub-tree. On the other hand, observing {O(F (System)), O(F (SG1))}
implies that a fault occurred in the SG1 sub-tree. Overall, we can conclude that
the observation behavior of the two sub-trees is linked and cannot be considered
separately.

While modularization becomes impossible in many cases, it is not generally
impossible. The following examples, shown in Fig. 6.10 on the next page, demon-
strate cases where we have partially observable modules, and modularization is
indeed possible.

Adapting the modularization criteria requires the incorporation of the flow
of observation information:

• The root of a module must be immediately observable, or

• All inputs to a SPARE gate must be immediately observable.

117

CHAPTER 6. PARTIAL OBSERVABILITY

System

SG22

Unit4Unit3

SG11

Unit2Unit1

0

0 0

(a) Observable roots.

System

SG22

Unit4Unit3

SG11

Unit2Unit1

0

0

0 0

(b) Observable inputs.

Fig. 6.10. Example of modularizable PODFTs. Since sufficient information to
synthesize the optimal PORA is availble, SG1 and SG2 form module roots.

6.4.4.1 Classifying modules

In the course of this work, we have now introduced multiple workflows to solve
the RA synthesis problem for different types of fault trees with different levels of
semantic power. This raises the question of whether the entire workflows need to
be used for all modules of a PODFT. Originally, a key idea for modularization
was to solve static modules using a dedicated algorithm for static FT analysis
and dynamic modules using state-based approaches. We extend this idea for
PODFTs and introduce the following module types

• Deterministic

• Non-Deterministic and fully observable

• Non-Deterministic and partially observable

If all basic events in a module are fully observable, we treat the module as the
module of an NdDFT. As before, if a module contains no non-determinism,
independently of whether there are partially observable events or not, then it is
trimmed for the purpose of RA synthesis.

118

6.5. SYNTHESIS EXAMPLES

6.5 Synthesis Examples
To conclude the chapter on observability, we review the new objects and workflows
by presenting and discussing some examples. We focus on giving the PODFT,
an illustrative fragment of the Belief MA, and the synthesized PORA.

6.5.1 Probabilistic Claim Success
In a fully observable Markov Automaton, recovery actions (CLAIM, FREE)
were always guaranteed to succeed. However, under partial observability, this is
no longer guaranteed! For a simple example, we consider the PODFT and the
corresponding BMA fragment shown in Fig. 6.11.

System

SG2

M2

SG1

M1

0

1B1 3B2

M3

B3

(a) System

100% : ()
System

25% : (B1)
75% : (B2)

System
25% : (B1)
75% : (B2)

CLAIM(SG1, M3)

System
25% : (B1)
75% : (B2)

CLAIM(SG2, M3)

100% : (B1)
CLAIM(SG1, M3)

System
100% : (B2)

CLAIM(SG1, M3)

System
100% : (B1)

CLAIM(SG2, M3)
25% : (B2)

CLAIM(SG2, M3)

{System} : 4

CLAIM(SG1, M3)
CLAIM(SG2, M3)

25%
75%

75%25%

(b) Belief MA

Fig. 6.11. Probabilistic Success of CLAIM action. Claiming M3 with SG2 has the
highest probability of recovering System.

Observe how only the failure of System can be observed. However, since
there are two failure sources, B1 and B2, it is not evident which caused the
top-level event to fail. Claiming the shared redundancy M3 with SG1 or SG2,
respectively, is no longer guaranteed to repair the System! In this case, since the
failure rate of B2 is higher than the failure rate of B1, it is more likely for B2 to
be the source of failure and hence, claiming with SG2 is the optimal move. This
is reflected in the synthesized RA illustrated in Fig. 6.12 on the next page.

In case of the TLE failing, the spare gate with the higher likelihood of failure,
that is, SG2 gets to claim M3. If the TLE can still be observed or is observed in

119

CHAPTER 6. PARTIAL OBSERVABILITY

q0start q1
{O(F (System))} : CLAIM(SG2, M3)

{O(F (System))} : FREE(M3)CLAIM(SG1, M3)

Fig. 6.12. Synthesized Recovery Automaton retrying CLAIM action.

the future due to another component failure, the spare is freed, and the SPARE
gate SG1 gets to perform its claim.

6.5.2 Delayed Monitor
We consider here an example of how a delayed MONITOR gate can affect
the state space and synthesis. The PODFT illustrated in Fig. 6.13 has two
MONITOR gates: An immediate one monitoring System and a MONITOR gate
delayed by 1 time unit observing Unit1. In other words, additional information
on the failure of the TLE may be provided at a later point in time.

System

SG2

Unit4Unit3

SG1

Unit2Unit1

0

1

1
b1

1
b2

1
b3

1
b4

Fig. 6.13. System with delayed MONITOR. A delayed MONITOR gate observes
Unit1 with a time delay of 1.

The Belief MA fragment illustrated in Fig. 6.14 on the following page shows
how this affects the corresponding belief state space. Upon observing the TLE,
it is unknown which primary caused the failure. To avoid entering a fail state
with a 50% probability, both SPARE gates need to perform a claim. When

120

6.5. SYNTHESIS EXAMPLES

claiming only one redundant unit, it is possible to enter a fail state. Upon
learning of the failure from Unit1, freeing Unit2 leads guaranteed to a fail state.
However, performing a FREE on Unit4 still leaves the system with a 50% chance
of survival. On the other hand, if Unit1 is not observed, there is no guarantee as
to which claim should be freed.

100% : ()
System

50% : (b1)
50% : (b3)

System
50% : (b1)
50% : (b3)

CLAIM(SG1, Unit2)
CLAIM(SG2, Unit4)

System
50% : (b1)
50% : (b3)

CLAIM(SG2, Unit4)

System
50% : (b1)
50% : (b3)

CLAIM(SG1, Unit2)

100% : (b1)
CLAIM(SG1, Unit2)

System
100% : (b3)

CLAIM(SG1, Unit2)

System
100% : (b1)

CLAIM(SG2, Unit4)
50% : (b3)

CLAIM(SG2, Unit4)

50% : (b1)
50% : (b3)

CLAIM(SG1, Unit2)
CLAIM(SG2, Unit4)

{System} : 2

CLAIM(SG1, Unit2)

CLAIM(SG2, Unit3)

CLAIM(SG1, Unit2)
CLAIM(SG2, Unit3)

50%
50%

50%50%

100%

Unit1
100% : (b1)

CLAIM(SG1, Unit2)
CLAIM(SG2, Unit4)

{Unit1} : 1

System
25% : (b1, b2)
25% : (b1, b4)
25% : (b2, b2)
25% : (b2, b4)

CLAIM(SG1, Unit2)
CLAIM(SG2, Unit4)

{System} : 2

Unit1,System
50% : (b1, b2)
50% : (b1, b4)

CLAIM(SG1, Unit2)
CLAIM(SG2, Unit4)

{System} : 2

Unit1,System
50% : (b1, b2)
50% : (b1, b4)

CLAIM(SG1, Unit2)

FREE(Unit4)

Unit1,System
50% : (b1, b2)
50% : (b1, b4)

CLAIM(SG2, Unit4)

FREE(Unit2)

Unit1,System
50% : (b1, b2)
50% : (b1, b4)

CLAIM(SG2, Unit4)

100%

Unit1,System
100% : (b1, b2)

CLAIM(SG1, Unit2)

50%

Unit1,System
100% : (b1, b4)

CLAIM(SG1, Unit2)

50%

System
25% : (b1, b2)
25% : (b1, b4)
25% : (b2, b2)
25% : (b2, b4)

CLAIM(SG1, Unit2)

FREE(Unit4)

System
25% : (b1, b2)
25% : (b1, b4)
25% : (b2, b2)
25% : (b2, b4)

CLAIM(SG2, Unit4)

FREE(Unit2)

Fig. 6.14. Belief MA fragment for a system with a delayed MONITOR gate. Observing
the delayed occurrence of Unit1, gives additional information leading to a save recovery
strategy by freeing Unit4 upon the second System failure.

121

CHAPTER 6. PARTIAL OBSERVABILITY

The synthesized recovery automaton is given in Fig. 6.15. If the delayed
MONITOR provides no observation, the PORA is forced to attempt several
claim/free actions in order to uncover the failure mode of the TLE. Observing
that Unit1 causes the TLE to occur allows the PORA to resolve the uncertainty in
the state space and therefore has no need to attempt several claim configurations.
Knowing that Unit1 caused the earlier TLE event allows us to infer that Unit3
is functional. Upon observing another occurrence of the TLE, recovery can then
be achieved by freeing Unit4 and switching back to Unit3. Note that if the TLE
is caused again by a unit belonging to SG1, then the system is permanently
failed as both units are no longer functional.

q0start

q1

q2q3 q4

q5

{O(F (System))} :
CLAIM(SG1, Unit2)CLAIM(SG2, Unit4)

{O(R(System))} : []

{O(F (Unit1))} : []

{O(F (System))} : FREE(Unit4)

{O(F (System))} : FREE(Unit2)

{O(F (System))} :
FREE(Unit4)CLAIM(SG1, Unit2)

Fig. 6.15. Synthesized Recovery Automaton for the delayed monitor example. The
observation of Unit1’s failure simplifies the recovery.

6.5.3 Failable Monitor
We consider a variation of the previous example case where the MONITOR gate
can fail. Fig. 6.16 on the following page shows the modified PODFT. Here, both
monitors are immediate, but the second monitor gate now has a fault input.

Since SG1 can be initially explicitly observed, the PODFT has, effectively,
perfect knowledge of its current state. Since a failure in the left SPARE system

122

6.5. SYNTHESIS EXAMPLES

System

SG22

Unit4Unit3

SG11

Unit2Unit1

0

0
Monitor

Battery

0.1

b5
1
b1

2
b2

1
b3

2
b4

Fig. 6.16. Partially observable SPARE system with a failable MONITOR gate. SG1
is monitored by an observer that may fail when b5 occurs.

can be immediately observed, the exact failed basic event can be derived. Fur-
thermore, only observing the TLE failure but not observing anything within the
observable spare system also reveals that a BE in the right spare system must
have failed. However, upon the failure of Monitor, this knowledge is subsequently
lost.

The BMA fragment shown in Fig. 6.17 on the next page illustrates how the
change of knowledge from the loss of the second monitor affects the decision
process. The fragment depicts the very first basic event failure and the basic
event failure after a monitor fails. We can see in the fragment that the states
correspond to the regular MA while both monitors are operational. The optimal
claim action can be trivially derived since the MA state is known with 100%
certainty. In the case of monitor failure, the BMA has to deal with the uncertain
superposition. In order to guarantee the System’s function, both SPARE gates
need to be switched to their redundancy. The case is similar to fragments of
previous examples, so we do not further unwind the state space.

The synthesized RA is given in Fig. 6.18 on page 125. We can find the
structure of the BMA fragment within the PORA. If the failure of Monitor is
observed, the RA switches to a branch similar to the delayed monitor RA from
Fig. 6.15 on the previous page, without the delayed information.

123

CHAPTER 6. PARTIAL OBSERVABILITY

100% : ()

System
100% : (b3)

System, SG1
100% : (b1)

Monitor
100% : (b5)

System
50% : (b5, b1)
50% : (b5, b3)

{System, SG1} : 1
{System} : 1

{Monitor} : 0.1

{System} : 2

Fig. 6.17. Fragment of the BMA for the system with a failable MONITOR gate.
When the MONITOR gate fails, the beliefs after observing a System failure become
fuzzy.

As discussed earlier, the RA needs to claim both spares and if another TLE
occurs, potentially attempt several claim configurations. If the monitor fails
after the first unit fails, the PORA knows which unit needs to be claimed to
recover from the first fault and can subsequently still act optimally. Note that
due to the OR connection between the two SPARE subsystems a double failure
in the same subsystem leads to total system failure. Therefore, if we know that
the first failure occurred in a particular subsystem, then a second failure means
total system failure. Performing a claim in the other subsystem is therefore the
optimal choice, which is reflected in the decision process of the PORA.

6.5.4 Timeout Transitions
For the last example, we reconsider a simplified version of the memory system
running example in Fig. 6.19 on page 126. The aim is to showcase an example
with a silent τ -transition and how it propagates into a timeout transition in the
PORA. In the PODFT, initially, Memory3 is the favorite spare choice. However,
due to the RDEP potentially increasing the failure rate of Memory3, Memory4
might become the better choice over time.

A fragment of the BMA for ϵ = 0.2 is given in Fig. 6.20 on page 127. Values
are rounded to two decimals after the comma. Note that in each transition
state, the Markov automaton only assumes one event to have occurred, thus
resolving the first uncertainty with a 100% chance of being in the state where
only Memory1 has failed. The low chance that this is the case is represented
in the low transition rate. The state is not further expanded upon since it
corresponds to a regular failure without uncertainty. Once two unobservable τ -
transitions have occurred, the Belief MA is in a state where either just Memory1

124

6.5. SYNTHESIS EXAMPLES

q0start q1

q3q2

q4 q5

q6

q7

q10

q11

q9

{O(F (Monitor))} :
[]

{O(F (System), O(F (SG1))} :
CLAIM(SG1, Unit1) {O(F (System))} :

CLAIM(SG2, Unit4)

{O(F (System))} :
CLAIM(SG1, Unit2)
CLAIM(SG2, Unit4)

{O(R(System))} :
[]

{O(R(System))} :
[]

{O(R(System))} :
[]

{O(F (System))} :
FREE(Unit2)

{O(F (System))} :
FREE(Unit4)

CLAIM(SG1, Unit2)

{O(F (System))} :
CLAIM(SG2, Unit4)

{O(F (Monitor))} :
[]

{O(F (System))} :
CLAIM(SG1, Unit2)

{O(F (System)), O(F (SG1))} :
CLAIM(SG1, Unit2)
{O(F (System))} : []

Fig. 6.18. Synthesized recovery automaton for a system with failable MONITOR
gate.

125

CHAPTER 6. PARTIAL OBSERVABILITY

System

Memory1

1 b1

Memory3

1 b3

Memory4

2 b4Wear

5
b5

RDEP

20

10

Fig. 6.19. Simplified PODFT of memory system with spare pool. The silent failure
of Wear could make Memory4 the better spare choice.

has failed or where additionally the RDEP has been triggered. For the claims,
the empty recovery action [] is not illustrated since it clearly provides no benefit
in this scenario. Note that after performing the claims, there are two possible
events: The monitor observes the system to be functional again, or another silent
τ -transition occurs, possibly triggering the RDEP or the claimed spare. Since
the state space quickly increases in size, we stop the fragment illustration there.

The synthesized PORA is shown in Fig. 6.21 on the following page. As
discussed above, initially, the PORA claims Memory3 upon witnessing a failure.
The timeout transition between q0 and q2 initiates a change of strategy. At this
point, the PORA will prefer claiming Memory4 over Memory3. Note that the
timeout delay accumulates the reciprocates of the failure rates shown in the
BMA. This gives the timeout in the PORA 1/9.49+1/5.16 ≈ 0.105+0.194 ≈ 0.3.

126

6.5. SYNTHESIS EXAMPLES

100% : ()
37% : ()
11% : (b1)
53% : (b5)

14% : ()
11% : (b1)
55% : (b5)
20% : (b1, b5)

System
100% : (b1) System

35% : (b1)
65% : (b1, b5)

System
35% : (b1)
65% : (b1, b5)

CLAIM(System, Memory3)

System
35% : (b1)
65% : (b1, b5)

CLAIM(System, Memory4)

τ : 9.49 τ : 5.16

{System} : 1.05 {System} : 3.14

CLAIM(System, Memory3) CLAIM(System, Memory4)

Fig. 6.20. Fragment of the Belief MA with a silent RDEP.

q0start

q1 q2

q3

{O(F (System))} :
CLAIM(System, Memory3) 0.3

{O(F (System))} : CLAIM(System, Memory4) {O(F (System))} :
CLAIM(System, Memory4)

{O(F (System))} : CLAIM(System, Memory3)

Fig. 6.21. Synthesized recovery automaton with timeout transition. If in state q0 no
observation occurs within 0.3 time units, the automaton switches to q2.

127

Chapter 7
Implementation

In this chapter, we discuss a prototype implementation of the described FDIR
models and synthesis algorithms. We have implemented them within the Virtual
Satellite 4.0 framework [71] which we will also further discuss in the following.
Virtual Satellite 4 (VirSat) is an Eclipse-based framework intended for performing
Model-Based Systems Engineering (MBSE) over the whole life cycle of space
systems. VirSat provides a Generic Systems Engineering Language (GSEL) in
which model extensions called Conceptual Data Models (CDMs) or just concepts
can be described. Each concept addresses a specific engineering aspect such as
system decomposition, interface management, budgeting of mass allocation and
power consumption, and so on. The developed prototype is a VirSat application
called VirSat FDIR [4, 72]. It provides such a concept for modeling the FDIR
engineering aspect. This chapter discusses the conceptual data models, how they
integrate into the data models of VirSat, implementation details of the state
space representation and the synthesis algorithm, and further details on how the
synthesis workflow can be used within the prototypical implementation.

7.1 Virtual Satellite 4 Framework

In the past years, much effort has been invested into enabling Model-Based
Systems Engineering (MBSE) for the whole life cycle of a spacecraft. Part of
these efforts is Virtual Satellite.

129

CHAPTER 7. IMPLEMENTATION

Evolution of the model

...

DB

Phase 0/A

DB

Phase 0/A

DB

Phase B

DB

Phase B

DB

Phase C

DB

Phase C

Fig. 7.1. Virtual Satellite database growing along the phases

VirSat is a concurrent engineering tool used at the Concurrent Engineering
Facility (CEF) at the German Aerospace Center (DLR). It is also a software
framework that allows for integrating various engineering processes across the
individual phases of spacecraft design and operation and the different disciplines.
The framework implements an MBSE approach envisioned to cover the whole
life cycle of a satellite, starting from its initial conception to the management of
the operational phase.

A cornerstone for ensuring modularity, reusability, and a high level of semantic
precision is the notion of a Conceptual Data Model (CDM). A CDM is a meta-
model providing the language for capturing and defining a specific aspect in
the satellite model. In contrast to generic modeling languages such as SysML
or UML, a CDM may be specific to a certain phase or a certain engineering
discipline. In the technical memorandum ECSS-E-TM-10-23 [73] provided by
the European Cooperation for Space Standardization (ECSS), a CDM is defined
as a

“data model that captures the end-user needs in the end-user terms.”

Virtual Satellite provides a generic systems engineering language in which
a CDM capturing one specific engineering aspect can be described. Here, we
discuss such a CDM for the FDIR domain, developed for VirSat FDIR.

The workflow for performing studies with VirSat starts with a minimal set of
concepts in the early phase design and then adds new CDMs to the data model

130

7.2. GENERIC SYSTEMS ENGINEERING LANGUAGE

as the design matures and additional engineering aspects need to be considered.
For example, in the context of system and FDIR design, the modeling would start
by employing a CDM for modeling system elements, and then at a later stage,
add the FDIR CDM into the model. Fig. 7.1 on the previous page illustrates
how the model grows during the design phases.

The high level of specialization enables CDMs to be semantically precise
and restricts models to avoid creating ones with an unclear interpretation. An
example for a CDM that is actively being employed in the CEF is described
in [74]. This CDM is used for creating Phase 0/A satellite models.

7.2 Generic Systems Engineering Language
In VirSat, CDMs are described using its Generic Systems Engineering Language
(GSEL) [75]. The GSEL is partitioned into two types of elements: StructuralEle-
ments and Categories.

• StructuralElements are used to describe system decompositions into
its various subsystems and parts, as well as relations between parts. An
example of a relationship between StructuralElements is a product in a
product list providing a product type to the actual instantiation in the
satellite model.

• Categories, on the other hand, are used for tagging parts with the
actual data information. Examples for attachable Categories are mass
values, power consumption, interfaces, or – relevant for this work – FDIR
information.

From the CDM definition of StructuralElements and Categories, the GSEL
toolset generates a data model, and a UI for editing said data model within a
VirSat application. CDMs are bundled by VirSat extensions. A VirSat extension
is a VirSat application equipped with a set of CDMs and additional custom
logic for processing the data of the CDM. Fig. 7.2 on the next page depicts the
architecture of different VirSat extensions operating on a shared repository.

Extensions may share common concepts or be completely independent. When
an extension accesses a repository, its concepts are stored in the repository
alongside the satellite data model. This enables different VirSat extensions
equipped with different sets of CDMs to communicate with each other.

To enable concurrent engineering, each instance of a StructuralElement
is tagged with an owner. Only the owner can edit this instance and assign

131

CHAPTER 7. IMPLEMENTATION

Concept A Concept B

VirSat Application A

Concept A Concept B

VirSat Application A

Concept B Concept C Concept D

VirSat Application B

Concept B Concept C Concept D

VirSat Application B

<<Access>>

<<Access>>

<<Access>>
VirSat Application C

Concept A Concept D

VirSat Application C

Concept A Concept D Concept D

Concept C

Concept B

Concept A

Repository

Satellite
Model

Concept D

Concept C

Concept B

Concept A

Repository

Satellite
Model

Fig. 7.2. Virtual Satellite 4 architecture with different VirSat extensions operating on
the same repository.

Categories to it. In this manner, merge conflicts for storing the data models in
repositories such as SVN or Git are avoided.

7.3 Virtual Satellite 4 FDIR
VirSat FDIR is a VirSat extension that provides modeling elements to annotate
system elements with fault information as described in an FDIR CDM. As a
Virtual Satellite extension, it inherits the tool capabilities from VirSat.

The tool aims to support FDIR engineering throughout all the phases of
spacecraft design, starting from the design of redundancy concepts to the later
design of onboard software FDIR. The implementation supports direct graphical
modeling of DFTs/NdDFTs and recovery automata to create input fault trees.
As another input language, VirSat FDIR employs the Galileo file format [76],
which can also be used to describe NdDFTs as they are syntactically equal to
DFTs. The file format has been slightly extended to incorporate t-MONITOR
and x-RDEP gates.

The Galileo language has been implemented using XText [77]. All reliability
data sets, state space sizes, benchmark times, and synthesized recovery automata
in the evaluation performed in Chapter 8 have been generated using VirSat
FDIR. The following gives some further details on the techniques applied in
VirSat FDIR and their implementation.

132

7.3. VIRTUAL SATELLITE 4 FDIR

The conceptual data model closely follows the objects that have been formally
defined. Similar to the depiction convention for recovery automata, ϵ-loop
transitions are not explicitly modeled. If some input E is undefined for some
state, then it is assumed to be an ϵ-loop.

By default, VirSat FDIR employs standard DFT semantics from which
the usual metrics such as MTTF, minimum cut sets, and so on are computed
and saved in model artifacts dedicated to analysis results. When a recovery
automaton is defined, VirSat FDIR employs the NdDFT semantics. Likewise, if
no MONITOR gates are defined, the fully observable semantics is chosen, and
as soon as at least one MONITOR gate is a part of the model, it is interpreted
using PO semantics. For the PO case, additional custom-defined metrics have
been implemented, namely:

• Observability after time t: The observability describes the ability of
the failure of a node to be observed after time span t has passed. In terms
of the BMA semantics, this metric corresponds to the probability of being
in a state where the node has failed, and the failure has been taken into
the observation set obs. We denote this probability with Ω(t).

• Mean Time To Observation: The Mean Time To Observation (MTTO)
describes the long-term expected time it takes on average for a failed
node to be observed by a monitor. To define the meaning of MTTO in
terms of the BMA semantics, we also define a help metric, Mean Time To
Unobserved Failure (MTTUF). The MTTUF describes the expected time
for a node to fail without the failure being observed, or, in other words,
the expected time to reach a state where the node has failed but is not in
obs. For the MTTO, we then have MTTO := MTTF − MTTUF .

• Steady State Observability: The Steady State Observability (SSO)
describes the long-run capability to observe a given node. It corresponds
to the converged value of Ω(t) for t → ∞.

The key focus of VirSat FDIR considered here is the synthesis algorithm. As
optimization objectives, the user can pick any long-run metrics MTTF, SSA,
SSO, and MTTO.

Since the CDM is conceptualized with the GSEL, VirSat FDIR can annotate
any Virtual Satellite study with fault and recovery information without requiring
domain-specific knowledge about the models that are being annotated. This
especially includes very early Phase A models only consisting of a breakdown
hierarchy of the system into its subsystems and equipment, and hence, during

133

CHAPTER 7. IMPLEMENTATION

the initial planning of the equipment redundancies. In later phases, software
fragments can be tagged with faults to include software mechanisms into the
failure model.

7.3.1 FDIR Conceptual Data Model
Our Conceptual Data Model for the FDIR domain deals with mainly three
FDIR aspects: Modeling faults, detection, and recovery from them. There are
no special modeling elements for isolation in the FDIR CDM, although one
could consider the failed, probabilistic recovery actions of the PORA as isolation
actions trying to gain more information about the the system. Moreover, since,
in our framework, detection is modeled using an additional gate type in the fault
tree, there are no special considerations for detection modeling in the FDIR
CDM beyond introducing the MONITOR gate and metrics for the analysis.
Overall, the FDIR concept itself can be divided into the following sub-concepts:

• The Fault CDM, which focuses on modeling NdDFTs and DFTs.

• The Recovery CDM, which focuses on modeling recovery automata.

• The Analysis CDM, which focuses on modeling analysis information,
such as reliability curves, MTTF, and so on.

The CDMs are independent of the concrete structural decomposition of the
system and only contains Categories. The actual system decomposition in terms
of StructuralElements is expected to be defined in a separate concept engineered
towards the domain objects that should be studied. In the following, the word
component is used to refer to any element of such a structural decomposition.
To provide out-of-the-box modeling capabilities, VirSat FDIR is equipped with
the FDIR CDM and a default concept for modeling the system decomposition.
The default structural decomposition, its application, and how it can be used to
construct reusable, large-scale fault trees is briefly discussed in Section 7.3.3.

7.3.1.1 Fault CDM

The core element of the Fault CDM is the Fault category. It can be assigned to
any component. To model the cause of a Fault, a meta-model following DFTs
is employed. The BasicEvent category models direct causes of a Fault and is
supplied with a failure rate and, optionally, with a repair rate. Additionally,
the category can contain special repair rates for defined observation sets. For

134

7.3. VIRTUAL SATELLITE 4 FDIR

Component

Fault

1

*

1

*

FaultTreeNode

Gate

AND

FaultTree

FaultTreeEdge

...

1 11 1

OR SPARE

1

*

1

*

BasicEvent

1
*
1
*

<<connects>>

2
1

*

1

*

Fig. 7.3. Section of the FDIR CDM for modeling faults.

indirect causes, every Fault is also equipped with an FT, the Fault being the
root of the FT. Every FT contains its local graph data, i.e., its edges and the
gates describing the propagation from the lower level faults to the root failures.
Fig. 7.3 summarizes the Fault CDM and illustrates the relations between the
Categories.

To support the provision of fault information from component off-the-shelf
(COTS) suppliers, the software supports a mechanism for importing fault trees
described in the Galileo format. Likewise, the textual format is also used to
export the FT model into an input representation for other external FT analyzer
tools, such as STORM [78] or DFTCalc [79]. The latter in return provides
various interfaces for other solver back ends. For high-performance analysis of
large-scale fault trees using the deterministic standard DFT semantics, the user
can set VirSat FDIR to employ STORM as the verification back end directly.
STORM needs to be installed separately from VirSat FDIR.

135

CHAPTER 7. IMPLEMENTATION

ComponentRecoveryAutomaton

1* 1*

State Transition

RecoveryAction

ClaimAction

1
*

1
*

1
*

1
*

1
*
1
*<<connects>>

2

BasicEvent

<<guards>>
*

SPARE

FaultTreeNode

<<claim>>

<<claiming>>

Fig. 7.4. The CDM section for modelling recovery.

7.3.1.2 Recovery CDM

For modeling the recovery aspect, we introduce, in this section, the model
fragments that correspond to the recovery automaton from the theory. The
model is straightforward, containing a classical automaton model with states
and transitions. Each transition then has references to its start state, end state,
and guards in the form of references to fault tree nodes. Each transition also
contains the triggered recovery actions. Additional information such as optional
timeout data for timeout transitions in PORAs may also be contained here.
The overall Recovery CDM and its relation to the elements of other CDMs are
illustrated in Fig. 7.4.

Since CDMs in VirSat are extensible, extensions of the FDIR CDM can
provide additional recovery actions. To support this process, the Recovery CDM
provides a generic RecoveryAction category from which recovery actions can
derive. Here, these recovery actions cover the Claim and the Free action. On
the implementation level, the semantics of these additional recovery actions can
be injected into the semantics used by the state space generator.

136

7.3. VIRTUAL SATELLITE 4 FDIR

7.3.2 Analysis CDM
Analysis results such as reliability, availability, observability curves, and other
metrics are stored in dedicated categories. Each of these categories bundles
a set of metrics. Metrics pertaining to a single Fault can be attached to the
corresponding Fault. The following analysis categories have been defined:

• ReliabilityAnalysis: This category stores the MTTF and a reliability
curve for a designated mission duration.

• AvailabilityAnalysis: This category stores the SSA and an availability
curve for a designated mission duration.

• ObservabilityAnalysis: This category stores the SSO and MTTO, as
well as an observability curve for a designated mission duration.

• FMECA: This category stores an FMECA generated from the fault tree
model.

• MCSAnalysis: This category stores all the minimum cut sets up to a
given maximum MCS size. For each MCS, we also store the MTTF, SSO,
MMTO to classify the occurrence and observation probability of each MCS.
Also computed in this analysis is the overall fault tolerance: The size of
the smallest MCS.

7.3.3 Configuration Control
Not all subsystems need to be designed from scratch when designing a new
system. Going one level deeper: For hardware components, especially off-the-
shelf products with a high degree of reuse, the manufacturer may already have
a prior fault tree analysis. For space systems, the satellite bus may require
tailoring towards each payload, but even then, there may be previous fault tree
artifacts that can be reused.

The idea of configuration control is to introduce a systematic way to reuse
MBSE artifacts from manufacturers, previous studies, and so on, in a new study.
The configuration control implemented in VirSat is delivered together with the
Product Structure CDM. We consider here a simplified version of the Product
Structure CDM defined in VirSat. The CDM is depicted in Fig. 7.5 on the next
page.

This CDM describes a way to decompose the system in a manner that allows
information to be reused. The CDM exploits VirSat’s inheritance mechanism,

137

CHAPTER 7. IMPLEMENTATION

allowing structural elements to define run-time inheritance links. A structural
element that inherits from another structural element obtains a copy of all its
assigned categories, with the ability to further extend or override them.

A ProductTree (PT) represents a container for product definitions, called the
ElementDefinitions (ED). An ED abstractly represents a component (Product).
A ConfigurationTree (CT) represents a concrete instance of the system, for
example, the satellite model, and contains ElementConfigurations (EC). ECs
can be typed by EDs and inherit their assigned categories. This allows defining
a run-time type-instance pattern (similar to classes and objects), where products
can be defined independently of the mission, and then concrete instances of these
products can be used to build the MBSE model of the system under study. In
particular relevant here: Fault categories can be assigned to EDs. An example
of the overall fault tree composition using the Product Structure CDM is given
in Fig. 7.6 on the following page.

A single ED types two ECs, each inheriting the fault tree attached to the
ED. The CT has a TLE defined. The overall system fault tree is created by
composing the inherited fault trees. In this manner, product level FTA can be
reused over multiple ECs and also over multiple missions, each with their own
CT. Reusing the fault trees on the component level enables the user to compose
large-scale fault trees from existing smaller fault trees. While we have mainly
discussed hardware fault trees, this also applies to possible software fault trees.

ProductTree

ElementDefinition

ConfigurationTree

ElementConfiguration
<<inherits>>

1

*

1

*

1

*

1

*
1

*

1

* 1

*

1

*

Fig. 7.5. Simplified Product Structures CDM.

138

7.4. IMPLEMENTATION DETAILS

7.3.4 Software Workflow for Synthesis
We briefly describe in this section how the synthesis procedure is integrated
into VirSat FDIR. A special category RecoveryAutomatonGen describes the
synthesizer configuration. The first Fault will be identified as the TLE, for which
the automaton shall be synthesized by attaching it to a structural element. A
property objectiveMetric allows setting the optimization metric. Eligible metrics
are all long-run metrics MTTF, SSA, SSO, and MTTO. By default, VirSat FDIR
is deployed with a native scheduler engine using value iteration for computing the
optimal scheduler. Alternatively, the user can also choose the STORM engine as
the verification engine.

7.4 Implementation Details
In order to efficiently implement the described DFT semantics, a series of
techniques have been implemented. In the following, the main techniques are
discussed.

FT

<<inherits>>

PT

ED

Fault

CT

EC1

Fault

FT

Fault

FT

EC2

Fault

FT

Fig. 7.6. Example of a Product Tree on the left side, and a derived Configuration
Tree on the right side.

139

CHAPTER 7. IMPLEMENTATION

7.4.1 Preprocessing

In order to simplify the handling of the diverse landscape of fault tree gates,
fault trees are simplified by replacing gates that are expressible through other
gates. For instance, AND and OR gates are replaced by corresponding k-VOTE
gates, and POR gates express all other priority gates. With this approach, the
set of gates that need to be considered is reduced to k-VOTE, SPARE, FDEP,
x-RDEP, and POR.

7.4.2 Representation of DFT states

Formally a DFT state is represented using a history of occurred BE sets. However,
this leads to states with different occurrence orders of BEs to be different states.
While this is desirable for various gates sensitive to the order of occurrence, such
as priority gates or FDEPs, many gates do not require this information.

For each state, we therefore only save the order-sensitive BE sets in a history.
For the other basic events, the failure information is stored in two bit-sets failed
and permanent:

• failed represents the already discussed named function failed(s). A node
is in failed iff it is failed in the current state.

• permanent represents whether the state of a node can be changed. A
non-permanent node can change it’s state either by failing or by being
repaired.

We introduce an entry for every node in the fault tree in failed and permanent.
Similar to the propagation of failure between fault tree nodes, the implementation
also propagates the permanence of a node. If sufficient failure inputs for a node
are set to permanent to determine that the output of a node is also permanent,
then the node is also set to permanently failed. A basic event b is set to
permanently failed if it fails and has a repair rate r(b) = 0. For static gates such
as AND and OR, the AND gate is set to permanently failed iff all inputs are
permanently failed, and the OR gate is set to permanently failed iff at least one
input is set to permanently failed. In the case of the SPARE gate, if the primary
is permanently failed and all spares are permanently failed, then also the SPARE
gate is set to permanently failed. We exploit the permanence information in
Section 7.4.3 to reduce the state space.

140

7.4. IMPLEMENTATION DETAILS

7.4.3 Canonical States

The direct application of the presented Markov automaton semantics to NdDFTs
potentially yields vast state spaces. To keep the state space in a manageable
size, we have applied a technique we refer to in the following as canonical states.
When a basic event is set to failed, we also let all other basic events, that do
not alter the future failure behavior of the fault tree, fail. This is primarily
accomplished by exploiting the permanence bit-set. The permanence of a parent
node can be backward propagated to all child nodes that only have outputs to
permanent nodes. All permanent nodes, particularly basic events, can be safely
set to failed.

For example, consider a sub-tree with an OR node and a set of basic events
as children, of which one has permanently failed. Then, we can propagate and
also set the OR node to permanently failed. Backward propagation then sets all
other basic events to also be permanently failed. Since the OR node has already
failed, further failures of the contained BEs do not affect the failure behavior of
the fault tree. This way, we do not need to distinguish between the states where
the basic events are operational or failed.

Note that if all parents of a basic event are permanently failed, we can
set it to permanently failed even if the basic event is repairable. A Markov
automaton state in which the maximum number of such BEs have failed is
called a canonical state. We transform all states upon their generation into their
respective canonical form.

7.4.4 Optimization Workflow

Performing the orthogonal merge requires the computation of the disabled inputs
on all states. As the initial recovery automaton, which is extracted from a
Markov automaton, can be very big, computing the set of disabled inputs for
every state requires the computation of many set intersections. In addition to
directly optimizing a recovery automaton with the Recovery Equivalence relation,
we therefore also consider an optimization strategy where the recovery automaton
is first optimized using classical trace equivalence ≈ (Def. 5.3). The resulting
recovery automaton with reduced state space is further optimized using the ≈R

relation (Def. 5.5). In addition, the FAIL rule is applied in the beginning for
both workflows as merged FAIL states may reveal new orthogonally equivalent
states. The opposite has not been observed, but also not been disproven. The
resulting optimization workflows are visualized in Fig. 7.7 on the next page. We

141

CHAPTER 7. IMPLEMENTATION

later empirically verify in our evaluation that the refined workflow from Strategy
#2 is indeed an improvement.

FAIL Rule ≈R-Merge

(a) Optimization Strategy #1.

FAIL Rule ≈-Merge ≈R-Merge

(b) Optimization Strategy #2.

Fig. 7.7. Optimization workflows.

7.4.5 Reducing the Number of Timeout States
PO states generate a series of timeout transitions in the RA. However, not
all of them have a different recovery behavior. Therefore, we apply a simple
approach to reduce the number of timeout states by simply merging bisimilar
RA states and adding the total timeouts on the timeout transitions. In the
RA-MA synchronization construction, we then skip over τ -transitions until the
total mean time to happen equals the accumulated timeout on the RA transition.

7.4.6 Selecting Optimal Transitions on the Fly
In the semantics, we explore the full state space for every possible non-deterministic
decision and afterward choose the decision based on the optimal scheduler. How-
ever, if we can already conclude during run-time that from a set of certain
decisions, we can identify that some of them are definitely not viable compared
to the other decisions, then we could discard these non-deterministic state succes-
sors without exploring them further. In the following, we refer to such a decision
during the state space generation as a run-time optimal transition selection.

The key idea is to identify decisions that lead directly into a fail state. Even
if we do not know the full state space and thus usually cannot perform an early
metric evaluation, in the case of reaching a fail state within one decision, we
can safely choose non-fail states over the fail states. This avoids state space
generation of empty recovery actions and FREE actions that the optimized
scheduler will never choose as they will directly lead to a failure.

In the PO case, we apply a slight modification of this idea: Since the fail
property in PODFT states is a fuzzy probability, non-deterministic states may
have a high number of successor states with a non-zero fail state probability.
The optimal transition selection here chooses the state with the least failure

142

7.4. IMPLEMENTATION DETAILS

probability. If there are few states with a non-fail state probability of 1, the
number of viable successor states decreases drastically.

143

Chapter 8
Evaluation

In this chapter, we focus on evaluating the NdDFT methodology. Since the
approach is state-based, this raises the immediate question regarding its scal-
ability and how the introduction of non-determinism contributes to the state
space explosion. Some measures, in particular modularization, to counteract
said state space explosion have been proposed. However, we have yet to verify
the effectiveness on practical, real-life data sets. In the following, we will first
present a general experimental setup that we will be reusing for all following
experiments. We have chosen the Fault tree FOResT (FFORT) benchmark set,
which is a compilation of major literature fault tree case studies, as a basis
to perform our evaluation. We first present some more details on this bench-
mark set and elaborate on the additional data sets that have been compiled
into it. Afterwards, we will evaluate the scalability of various configurations of
NdDFTs (Repairable, partially observable, and so on). Furthermore, we will
also perform some experiments to investigate the effectiveness of our presented
recovery-equivalence-based reduction approach.

8.1 Experiment Setup
The FFORT benchmark set introduced in [80] was used as a source of fault tree
benchmarks to evaluate our proposed techniques. FFORT is an online fault
tree database with fault trees collected from scientific literature for the primary
purpose of benchmarking. We have selected fault tree families from the FFORT

145

CHAPTER 8. EVALUATION

benchmark set that contain at least one SPARE gate but do not employ the
authors’ custom fault tree extension of inspection modules (IM). Therefore, we
can guarantee that all experiments contain some non-determinism. The following
fault tree families from the FFORT benchmark fulfilled the selection criteria.
(The graphic symbols refer to the evaluation charts shown in the subsequent
sections)

• Active Heat Rejection System (AHRS). The AHRS is made up
of thermal rejection units of which only one is needed for the system to
function.

• Cardiac Assist System (CAS). The CAS models a hypothetical
cardiac assist system with redundant CPUs, motors, and pumps.

• Electro-Mechanical Actuator (EM). The model focuses on common-
cause failures in an electro-mechanical actuator.

• Hypothetical Example Computer System (HECS). The HECS
fault trees model computer systems including their processors, memory
modules, buses, consoles, operators, and software.

• Hypothetical Example Multi-Phase System (HEMPS). The
HEMPS model is a demonstrator of a system designed for a multi-phase
mission.

• Mission Avionics System (MAS). The MAS models represent
mission- and safety-critical systems with high redundancy. Components
include hardware, software and vehicle control subsystems, and system
management.

• Multiprocessor Computing System (MCS). The MCS model com-
puters with power supplies, memory modules, hard disks, and connecting
buses. The benchmarks have been enriched with instances from [62].

• Nuclear Power Plant Water Pumping System (NPPW). The
model represents a nuclear power plant system.

• Railway Crossing (RC). The RC fault tree collection models level
railway crossings with sensors, motors, and controllers. The models come
in two variations (sc and hc), representing the controller being a single
basic event or hypothetical example computer system, respectively.

146

8.2. FULLY OBSERVABLE SCALABILITY EXPERIMENTS

• Vehicle Guidance System (VGS). The VGS models are industrial
case studies dealing with variants of safety concepts for vehicle guidance
systems.

The benchmarks were carried out with an Intel(R) Xeon(R) W-2155 CPU,
16GB of RAM, and a timeout of 600s (10min). Note that this hardware is not
identical to the hardware used to produce the prior results published in [8]. In
particular, the accessible RAM has been increased from 4GB to 16GB. The
software, the experiment setup, all experiments, and all results can be found
at [72].

The number of solved instances, the number of timeouts, the number of
out-of-memories (OOMs), and the total solving time were logged for each of
the following configurations. Solving an instance here refers to successfully
synthesizing a recovery automaton given an input NdDFT. There is an exception
in the subsection focusing on orthogonal state-space minimization. There,
solving an instance refers to computing a minimized recovery automaton given
a synthesized recovery automaton. For each experiment configuration, we give
a tabular summary of the results and then have a closer look at the growth
behavior in relation to the number of fault tree nodes.

8.2 Fully Observable Scalability Experiments
This section focuses on evaluating configurations for the fully observable case.
We investigate the baseline scalability of our approach without applying modular-
ization. From there, we validate the effectiveness of the modularization approach
by comparing them to each other. Moreover, we check how repair impacts
scalability. Since the FTs from the FFORT benchmarks are not repairable, we
first define a rule for generating repairable NdDFTs. We apply the simple rule
for attaching a repair rate to every basic event, with the repair rate equal to
the failure rate. In total, the setup gives us the following four configurations
covering the combinations of using repair semantics and modularization:

• NdDFT without modularization

• NdDFT with modularization

• Repairable NdDFT without modularization

• Repairable NdDFT with modularization

147

CHAPTER 8. EVALUATION

8.2.1 NdDFT Experiments

We consider in this subsection the non-repairable NdDFT configurations, on the
one hand with modularization, and on the other hand without modularization.
A summary of the results is given in Tab. 8.1.

Table 8.1: Summary of benchmark results: NdDFT without repair.

modularization solved total timeouts ooms solveTime [s]
no 21 156 121 14 936
yes 143 156 13 0 602

As hypothesized prior, not applying modularization leads to state-space
explosion, causing many cases of TOs and OOMs and only solving a minor
amount of 21 instances. It is safe to conclude that the NdDFT approach does not
scale without modularization. However, by applying the modularized approach,
we synthesized RAs for all instances but 13. The experiments validate the overall
scalability of RA synthesis for NdDFTs. The following charts give a closer look
at the results of the experiments.

Fig. 8.1 shows a detailed time comparison between the synthesizer with
and without a modularizer, respectively. The dashed line marks where both
algorithms require equal time. Timeouts and out-of-memory results have been
placed on the outer lines and are labeled with TO and OOM, respectively.

10 0 10 1 10 2 10 3 10 4 10 5
100

101

102

103

104

105

T
O
O

O
M

TO
OOM

With modularization [ms]

W
ith

ou
t

m
od

ul
ar

iz
at

io
n

[m
s]

Fig. 8.1. Modularization vs no modularization.

148

8.2. FULLY OBSERVABLE SCALABILITY EXPERIMENTS

The chart reinforces the observations we have made from the summary. The
approach without modularization quickly heads towards TOs. On the other
hand, the modularized approach mostly scales. The families which not even the
modularized approach can handle are primarily MAS and MCS . Both of these
feature instances with large modules and a high number of SPARE gates due to
a high degree of spare sharing. On the other hand, the cases which can be solved
without modularization are mainly those with a small number (<5) of SPARE
gates. We will see in the following figures that a primary driver for whether an
instance can be solved or not is the number of SPARE gates. Fig. 8.2 shows the
time measurement breakdown compared to the number of SPARE gates in the
input instance.

0 5 10 15 20 25 30 35
100

101

102

103

104

105

TO
OOM

#SPARE Gates

T
im

e
[m

s]

(a) Without Modularization.

0 5 10 15 20 25 30 35
100

101

102

103

104

105

TO
OOM

#SPARE Gates

T
im

e
[m

s]

(b) With Modularization.

Fig. 8.2. Time measurement breakdown compared to the number of SPARE gates.

We can observe that the unmodularized approach cannot handle a growing
number of SPARE gates. For the modularized approach, we can also see that
for a small number of SPARE gates, we can synthesize RAs within the timeout.
At >15 SPARE gates, the MC instances break out and trend towards a TO.
However, we can also see that other fault tree families, here primarily the RC
instances, can still be solved even for a large number of SPARE gates. A special
remark should also be given on the VGS instances with no SPARE gates. It
appears that from the VGS family, only one instance has a SPARE gate, while
the others do not. In the modularized case, this means that the entire tree of
these SPARE gateless instances is simply discarded in the trimming step.

We conclude this evaluation by examining how the modularized approach
scales with an increasing number of nodes. Fig. 8.3 on the next page shows how
the synthesizer scales in terms of total nodes in a fault tree.

149

CHAPTER 8. EVALUATION

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

Fig. 8.3. Time measurement break-down for growing number of nodes.

The figure shows that, in general, the number of nodes does not cause an
exponential blow-up in the synthesis algorithm. However, we can also again
observe the breaking out MC instances. Moreover, they already start breaking
out for a small number of nodes. Overall, we can infer from both observations
that instances with a high density of SPARE gates are problematic for the
synthesis algorithm.

8.2.2 Repairable NdDFT Experiments
We consider here configurations using repairable NdDFTs. As before, we consider
the two cases of employing modularization and not employing. To create the
benchmark from the FFORT benchmark set, for every fault tree, we have created
a repairable version. Each basic event is also equipped with a repair rate equal
to its failure rate in this repairable version. A summary of the results is given in
Tab. 8.2.

Table 8.2: Summary of benchmark results: NdDFT with repair.

modularization solved total timeouts ooms solveTime [s]
no 6 156 123 27 549
yes 82 156 19 55 1651

Not employing modularization, we were only able to solve six instances.
Considering our prior observations regarding the scalability issues on regular

150

8.2. FULLY OBSERVABLE SCALABILITY EXPERIMENTS

NdDFTs, it is not surprising to see the synthesis algorithm without modulariza-
tion fairing worse on the harder, repairable instances. We can also see a reduction
of solvable instances when employing modularization. Going further, despite the
decrease of solved instances, we can also observe an increase of the total solve
time by a factor of 2.75. Overall, while we can solve over half of the instances,
we can conclude that RA synthesis on repairable NdDFTs is problematic. In
the event of triggering a TO for analyzing a repairable NdDFT, it should be
considered if the fault behavior can be meaningfully modeled with less repair
rates.

We can also observe that the number of OOMs increases significantly from
0 to 55. The data reveals that these OOMs do not occur exclusively in the
construction of the MA. 30 of the 55 OOMs occur during the RA composition
for the whole NdDFT. We visualize the blow-up in the RA state space in Fig. 8.4
by comparing the RA size post-composition from the non-repairable case with
the repairable case.

10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7
100

101

102

103

104

105

106

107

#RA States No Repair

#
R

A
St

at
es

R
ep

ai
r

Fig. 8.4. Increase of RA states for repair vs no repair cases.

We can observe that the state space increases massively up to 6 orders of
magnitude. The increase may be due to the lack of orthogonal state space
reduction in the repairable RA, which is not applicable for this case. It may also
be due to the RA strategies becoming intrinsically more complex.

In the following, we take a closer look as to which instances are problematic.
For this, we first consider a detailed breakdown between the configurations in
Fig. 8.5 on the next page again.

151

CHAPTER 8. EVALUATION

10 0 10 1 10 2 10 3 10 4 10 5
100

101

102

103

104

105

T
O
O

O
M

TO
OOM

With modularization [ms]

W
ith

ou
t

m
od

ul
ar

iz
at

io
n

[m
s]

Fig. 8.5. Modularization vs no modularization (Repair).

Since most instances for the non-modularized case run into a TO or OOM,
we only have a few instances left in the plot. The plot shows us the few instances
we could solve without modularization. In the non-modularized case, we were
able to solve instances of AHRS , NPPW , RC , CAS , and HEMPS . All
the solved instances share in common that they only have small fault trees with
less than 20 nodes and only 4-5 BEs and 2-3 SPARE gates.

We revisit the time measurement breakdown against the number of SPARE
gates in Fig. 8.6 on the following page to visualize better the scaling issues arising
from having a large number of SPARE gates.

The figure shows a similar trend curve as observed before in the non-repairable
experiments for the non-modularized case. However, we can also observe that
a large number of SPARE gates (>10) make the instances intractable for the
modularized case. Already for 15 SPARE gates, we can no longer solve even a
single instance. Overall, we can conclude that if we want to consider instances
with many repairable BEs, we need to be judicious with our usage of SPARE
gates, or otherwise, the RA synthesis becomes unfeasible.

Finally, we consider how the synthesis scales overall with the number of nodes
in Fig. 8.7 on the following page. Note that modularization is employed.

Qualitatively, we can observe similarities to the non-repairable curve. We can
see a curve of experiments that scales well even with an increasing number of
nodes. This curve mainly consists of the RC cases, and more specifically, by its
sc variation, whose instances have a structure that is easy to modularize. The hc

152

8.2. FULLY OBSERVABLE SCALABILITY EXPERIMENTS

0 5 10 15 20 25 30 35
100

101

102

103

104

105

TO
OOM

#SPARE Gates

T
im

e
[m

s]

(a) Without Modularization.

0 5 10 15 20 25 30 35
100

101

102

103

104

105

TO
OOM

#SPARE Gates
T

im
e

[m
s]

(b) With Modularization.

Fig. 8.6. Time measurement breakdown compared to the number of SPARE gates
(Repair).

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

Fig. 8.7. Time measurement break-down for growing number of nodes (Repair).

variation, on the other hand, follows the other trend line that includes all other
benchmark families and exponentially grows towards a TO. Overall, the results
show that RA synthesis on repairable NdDFTs quickly becomes unfeasible when
applied on instances where we cannot obtain small modules.

153

CHAPTER 8. EVALUATION

8.3 Recovery-Equivalence-Based State Space Re-
duction Experiments

This section evaluates the effectiveness of the recovery-equivalence-based state
space reduction techniques. Since the RA minimization requires a synthesized
RA, the benchmark set is further limited to those fault trees for which we
could successfully synthesize an RA. For the experiments, we log two pieces
of information: Firstly, we log the overall state space reduction using RA-
equivalence, that is, using all RA state space reduction techniques presented in
Section 5.3. Secondly, we also log the contribution of the trace-based equivalent
state space reduction in the overall reduction process. The results are shown in
Fig. 8.8.

10 0 10 1 10 2 10 3
100

101

102

103

States Minimized

St
at

es
R

aw

(a) RA-equivalence.

10 0 10 1 10 2 10 3
100

101

102

103

States Minimized

St
at

es
R

aw

(b) Contribution of Trace-equivalence.

Fig. 8.8. RA state space reduction results. RA-equivalence vs Trace-equivalence.

The figure shows a significant reduction contribution from conventional trace-
based equivalence. However, the overall effect is limited and does not reach
an order of magnitude. We can infer that, in general, synthesized RAs are not
well suited for trace-based state space reduction techniques. On the other hand,
the RA-equivalence proves to be effective and, in some cases, even reduces the
RA state space by two orders of magnitude. In fact, in many cases, we obtain
minimal states where the RA only contains 1 or 2 states. Families on which
the orthogonal RA state-space reduction is not adequate are primarily MCS
and HECS . Investigating the commonality between these two reveals that
these are both cases where SPARE gates have shared spares. RA reduction
thus becomes more difficult as more states are required to represent the optimal

154

8.3. RECOVERY-EQUIVALENCE-BASED STATE SPACE REDUCTION
EXPERIMENTS

strategy. Overall, we can learn from the data that RA-equivalence-based state-
space reduction works well in eliminating RA blow-up resulting from states that
execute trivial strategies, such as always claiming no matter what the state is.
We only observe a slight improvement over the trace-based equivalence approach
for complex strategies.

We have compared trace-based equivalence to the RA-equivalence-based
approach, the latter including technically two rules: Orthogonal state-space
reduction and the fail reduction rule. To evaluate the contribution of the fail
reduction rule, we further evaluate the contribution of the fail state reduction
rule. For this purpose, we consider, first of all, the direct contribution to the state
space reduction as before. In addition to this, we also consider a configuration
where the fail reduction rule is left out entirely to evaluate how it affects the
overall workflow. The two figures in Fig. 8.9 visualize the measured results.

10 0 10 1 10 2 10 3
100

101

102

103

States Minimized

St
at

es
R

aw

(a) Contribution of fail state reduction.

10 0 10 1 10 2 10 3
100

101

102

103

States Minimized

St
at

es
R

aw

(b) RA-equivalence without fail rule.

Fig. 8.9. Effects of the RA fail state reduction rule.

Fig. 8.9a logs the number of states removed by the fail reduction rule. From
it, we can observe that the fail rule itself is not a major contributor to the overall
RA state-space reduction workflow. However, we also consider an alternate
configuration where we entirely turn off the fail state reduction rule. The results
of the total state space reduction in this configuration are shown in Fig. 8.9b.
First, we observe that the curve significantly differs from the results in Fig. 8.8 on
the previous page. The entire RA minimization workflow is far less effective and
cannot produce the many 1 or 2 state automata witnessed in a full minimization
setup. In fact, due to the increased size, we could not synthesize as many RAs as
we did before. In the setup with the disabled Fail reduction rule, we could only
solve 126 instances; the other instances timed out during the RA composition

155

CHAPTER 8. EVALUATION

due to the large RAs in the individual modules. From these observations, we
can conclude that while the rule itself does not contribute to a major state space
reduction, it does help the orthogonal state-space reduction to identify more
recovery equivalent states.

Next, we verify our proposition that the refined Strategy 2 from Fig. 7.7
on page 142 outperforms directly applying the recovery equivalence. For that
purpose, we compare the run-time of the two strategies against each other.
The results are shown in Fig. 8.10. For most instances, the strategies yield
equal perfomance. However, for larger MC and RC instances with also large
recovery automata, we obtain a significant blow-up in run-time, yielding even
many TO events.

10 0 10 1 10 2 10 3 10 4 10 5
100

101

102

103

104

105

T
O
O

O
M

TO
OOM

Optimization Strategy #2 [ms]

O
pt

im
iz

at
io

n
St

ra
te

gy
#

1
[m

s]

Fig. 8.10. Optimization Strategy #2 vs Optimization Strategy #1.

We conclude this section by considering a final experimental configuration:
In our workflow, we only reduce the RA of each module and then perform
the composition operation. Afterward, we do not perform an additional RA
reduction. This raises the question of whether there are advantages of performing
another state-space reduction step after the composition. The results of this
configuration are illustrated in Fig. 8.11 on the following page. We have indeed
found some cases where some additional states could be removed. Overall,
however, we have not found a significant improvement.

156

8.4. PARTIALLY OBSERVABLE SCALABILITY EXPERIMENTS

10 0 10 1 10 2 10 3
100

101

102

103

States Minimized

St
at

es
R

aw

Fig. 8.11. Repeating RA minimization workflow after RA composition.

8.4 Partially Observable Scalability Experiments
In this section, we consider experiments to evaluate the PODFT semantics. We
saw in the semantic definition of PODFTs that we needed to treat the case of
immediate and delayed observers separately. Therefore, we further differentiate
the following classes for the experiments:

• PODFTs only with immediate observers and without repair (PO)

• PODFTs with delayed observers and without repair (PO Delay)

• PODFTs only with immediate observers and with repair (PO Repair)

• PODFTs with delayed observers and with repair (PO Delay Repair)

We take the original FFORT benchmarks and add appropriate MONITOR
gates to generate a benchmark set. However, the number of MONITOR gates
influences state space construction, and it would be interesting to quantify this
influence. We therefore define the auxiliary observability level parameter. We
say that a PODFT has an observability level i ≥ 0 iff all nodes up to depth
i are observed by a MONITOR gate. In the case of i = 0, only the TLE is
observed by a MONITOR gate. Using this parameter, we can investigate how
scalability is impacted as we start with little information (only the root node
is observable) and incrementally increase the observability level. Overall, we
obtain the following constructions rules to derive PODFT benchmarks for a

157

CHAPTER 8. EVALUATION

given observability level i from the original FFORT benchmark set: For any
node n with a depth of i or less, create a new MONITOR gate m and add an
observation propagation from n to m. For delayed cases, add an observation
delay of 1 time unit for any MONITOR gate on depth i. Note that all nodes on
depth i − 1 are still immediately observable in the delayed case, and only the
nodes on depth i are delayed observable. For the repair rates, we proceed as
before and apply repair rates equal to the failure rates for every basic event. We
compare in the following subsections with increasing observation levels:

• How the individual solve times evolve

• How the number of solved instances are impacted

We limit the scope of our investigations to the observation levels 0 to 5, the
latter being the depth by which most FFORT benchmark set entries have placed
their SPARE gates. We expect the results of observation level 5 to be close to
the results of the fully observable case.

8.4.1 Configuration: PO
In this section, we consider the configuration of having no repair rates and all
MONITOR gates having a delay of 0 time units. A summary of the results is
given in Tab. 8.3. In Fig. 8.12 on the following page, we have visualized these
results by plotting the observation level against the number of solvable instances.

Table 8.3: Summary of benchmark results: PO without delay.

observabilityLevel solved total timeouts ooms solveTime [s]
0 11 156 125 20 16
1 40 156 81 35 320
2 99 156 57 0 150
3 104 156 52 0 403
4 126 156 24 6 649
5 142 156 14 0 730

First of all, the data shows that partial observability majorly impacts the
tractability of the RA synthesis. On observability level 0, that is, only the root
node is observable; barely any instances can be solved. On the other hand, at
observability level 5, we can synthesize nearly as many RAs as we could in the
fully observable case. As for the remaining unsolved instance, it is a case from

158

8.4. PARTIALLY OBSERVABLE SCALABILITY EXPERIMENTS

0 1 2 3 4 5
0

50

100

150

Observability level

So
lv

ab
le

in
st

an
ce

s

Fig. 8.12. Solvable instances for observability levels 0 to 5.

the VGS family with a SPARE gate and a fault tree depth of 7. In other words,
in this case, the observability level 5 is not enough to fully observe the entire
tree. For the evolution of the solved instance count between the observability
levels 0 and 5, we can see a continuous increase in the number of solved instances.
Especially from observation levels 1 to 2, we can see a major jump. A look into
the benchmarks reveals that this jump is primarily due to an increase in the
number of modules. That lower observability levels cause the modularization to
find less modules is consistent with the additional modularization restrictions
introduced in Section 6.4.4. Regarding the evolution of the solve times, there is
an interesting anomaly occurring at observability level 2: The solve time with
150s is significantly low despite the already high count of solvable instances.

The plots given in Fig. 8.13 on the next page give a detailed breakdown of the
solve time measurements for each observability level. We can see in Fig. 8.13a on
the next page that the only initially solvable instances are from VGS and have
no SPARE gates and an assortment of small instances. Fig. 8.13b on the next
page shows that HECS and RC become solvable with observablity level 1. As
indicated from the tabular data, observability level 2 already resembles the fully
observable results. Mostly the MC family is currently not solvable. The MC
family becomes solvable over the course of the additional observability levels, as
can be seen in the remaining figures until the final curve closely resembles the
fully observable case from Fig. 8.3 on page 150.

159

CHAPTER 8. EVALUATION

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(a) Observability level 0.

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(b) Observability level 1.

0 200 400 600 800
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(c) Observability level 2.

0 200 400 600 800 1,000
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(d) Observability level 3.

0 200 400 600 800 1,000 1,200
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(e) Observability level 4.

0 200 400 600 800 1,000 1,200
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(f) Observability level 5.

Fig. 8.13. Time measurement breakdown for observability levels 0-5.

160

8.4. PARTIALLY OBSERVABLE SCALABILITY EXPERIMENTS

8.4.2 Configuration: PO Delay
In this section, we consider the configuration of having no repair but a delay
in the MONITOR gates. For a given observation level i, all MONITOR gates
observing a node on depth i have an assigned delay of 1 time unit. A summary
of the results is given in Tab. 8.4. In Fig. 8.14, we have visualized these results
by plotting the observation level against the number of solved instances.

Table 8.4: Summary of benchmark results: PO with delay.

observabilityLevel solved total timeouts ooms solveTime [s]
0 11 156 126 19 17
1 40 156 80 36 409
2 98 156 56 2 227
3 27 156 119 10 414
4 83 156 63 10 247
5 37 156 117 2 316

0 1 2 3 4 5
0

50

100

150

Observability level

So
lv

ab
le

in
st

an
ce

s

Fig. 8.14. Solvable instances for observability levels 0 to 5.

Note that the results for observability levels 0 to 2 are close to identical
to the PO without delay case results. However, we can observe a substantial
deviation from the PO case on the higher observability levels. Most importantly,
the number of solved instances no longer increases continuously. Instead, we can
observe two peaks at observability levels 2 and 4. Considering the complex state
space construction rule we introduced for the delay case, this is not surprising.

161

CHAPTER 8. EVALUATION

The state space needs to encode both the possibility of observing an event and
the possibility of being delayed. The data suggest that this construction rule
leads to a significant negative impact to the point where we can solve only very
few instances on observability level 5. Note that increasing the observability
level also increases the number of immediate observers on the level i − 1 for
observability level i. Due to these immediate MONITOR gates on the lower
levels, the modularization algorithm can identify more modules and thus, in a
sense, counters the negative impact of the delayed MONITOR gates.

The detailed breakdown for each observability level is given in the plots in
Fig. 8.15 on the following page. Fig. 8.15a on the following page to Fig. 8.15c
on the following page differ very little to their respective PO without delay
counterparts, except some instances RC and CAS performing notably worse
in the PO with delay case. On observability level 3, in Fig. 8.15d on the following
page, we can see the drop of solvable instances: For a large number of RC and
HECS instances, we are suddenly no longer able to synthesize RAs due to the
delayed MONITOR gate construction. On observability level 4, as Fig. 8.15e on
the following page shows, the MC instances become solvable due to achieving
good modularization. Finally, for observability level 5, displayed in Fig. 8.15f on
the following page, we can observe that only some easy MC and the SPARE
gate-less VGS instances remain solvable. We conclude overall that delayed
MONITOR gates should be employed sparingly.

162

8.4. PARTIALLY OBSERVABLE SCALABILITY EXPERIMENTS

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(a) Observability level 0.

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]
(b) Observability level 1.

0 200 400 600 800
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(c) Observability level 2.

0 200 400 600 800 1,000
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(d) Observability level 3.

0 200 400 600 800 1,000 1,200
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(e) Observability level 4.

0 200 400 600 800 1,000 1,200
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(f) Observability level 5.

Fig. 8.15. Time measurement breakdown for observability levels 0-5.

163

CHAPTER 8. EVALUATION

8.4.3 Configuration: PO Repair
In this section, we consider the configuration of having repair rates and all
MONITOR gates having a delay of 0 time units. For the repair rates we use
the same setup as before and set them to the same value as the failure rates.
A summary of the results is given in Tab. 8.5. In Fig. 8.16, we have visualized
these results by plotting the observation level against the number of solvable
instances.

Table 8.5: Summary of benchmark results: Repairable PO without delay.

observabilityLevel solved total timeouts ooms solveTime [s]
0 9 156 134 13 22
1 22 156 132 2 25
2 77 156 59 20 666
3 72 156 52 32 767
4 77 156 32 47 1112
5 80 156 20 56 1584

0 1 2 3 4 5
0

50

100

150

Observability level

So
lv

ab
le

in
st

an
ce

s

Fig. 8.16. Solvable instances for observability levels 0 to 5.

The results show that already on observability level 2, the number of solved
instances closely approaches the fully observable case. Overall, adding partial
observability to repair does not seem to have a major impact as adding it to the
non-repair case. We can even find that the solve time for the observability level
2 is at only 666s despite only solving three instances less than observability level

164

8.4. PARTIALLY OBSERVABLE SCALABILITY EXPERIMENTS

5. We can only also observe a significant reduction of OOM events. Furthermore,
after a peak at observability level 2, the number of solvable instances first
decreases. To investigate these different results, we take a closer look at the RA
sizes again. In Fig. 8.17, we compare the RA sizes of the PO Repair case on
observability level 2 to the fully observable repair case.

10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7
100

101

102

103

104

105

106

107

#RA States PO Repair

#
R

A
St

at
es

Fu
lly

O
bs

er
va

bl
e

R
ep

ai
r

Fig. 8.17. Increase of RA states for partially observable repair vs fully observable
repair case.

We have already confirmed that the RA size increases dramatically when
going from the non-repairable to the repairable case. The figure shows that while
the fully observable case for small instances tends to yield smaller RAs, the larger
instances shift towards providing smaller RAs for the partially observable case.
Since fewer events are observable, the RA also needs to process fewer inputs
and consequently also does not need to memorize the inputs it cannot observe.
We have not observed this significantly impacting the partially observable,
non-repairable case. However, for the repairable case, reducing the number of
observable events can significantly reduce the overall optimal RA size.

The detailed breakdown for each observability level is given in the plots in
Fig. 8.18 on the next page. Note that from observability level 3, depicted in
Fig. 8.18d on the next page, onwards, the curves are strikingly similar to the
fully observable, repairable case from Fig. 8.7 on page 153. The differences
between them are too insignificant to make any major observations. Overall, we
conclude that adding partial observability to repairable instances does not lead
to a significant blow-up, provided enough levels remain observable to perform
modularization.

165

CHAPTER 8. EVALUATION

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(a) Observability level 0.

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(b) Observability level 1.

0 200 400 600 800
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(c) Observability level 2.

0 200 400 600 800 1,000
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(d) Observability level 3.

0 200 400 600 800 1,000 1,200
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(e) Observability level 4.

0 200 400 600 800 1,000 1,200
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(f) Observability level 5.

Fig. 8.18. Time measurement breakdown for observability levels 0-5.

166

8.4. PARTIALLY OBSERVABLE SCALABILITY EXPERIMENTS

8.4.4 Configuration: PO Delay Repair
In this section, we consider the configuration of having repair rates and delays
in the MONITOR gates. As before, for a given observation level i, we assign
all MONITOR gates observing a node on depth i a delay of 1 time unit. A
summary of the results is given in Tab. 8.6. In Fig. 8.19, we have visualized
these results by plotting the observation level against the number of solvable
instances.

Table 8.6: Summary of benchmark results: Repairable PO with delay.

observabilityLevel solved total timeouts ooms solveTime [s]
0 9 156 141 6 24
1 22 156 132 2 30
2 72 156 62 22 528
3 24 156 123 9 287
4 48 156 78 30 986
5 11 156 117 28 518

0 1 2 3 4 5
0

50

100

150

Observability level

So
lv

ab
le

in
st

an
ce

s

Fig. 8.19. Solvable instances for observability levels 0 to 5.

We can observe the same pattern from the PO Delay case. The data reveals
two peaks on observability levels 2 and 4. Moreover, on observability level
5, barely any RAs can be synthesized. What stands out is that the peak on
observability level 2 does not differ too greatly from the peak of the PO Repair
case without delay. Only five instances less can be solved, despite the addition

167

CHAPTER 8. EVALUATION

of the delayed MONITOR gates. On all other observability levels, however, the
performance of the PO Delayed Repair class does not scale.

Before we look at the detailed breakdown, we first perform another comparison
of the RA sizes between the now delayed partially observable repair case and the
fully observable repair case in Fig. 8.20. As before, on the partially observable
side, we use the best performing observability level 2.

10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7
100

101

102

103

104

105

106

107

#RA States Delayed PO Repair

#
R

A
St

at
es

Fu
lly

O
bs

er
va

bl
e

R
ep

ai
r

Fig. 8.20. Increase of RA for delayed partially observable repair vs fully observable
repair case.

The number of instances where the fully observable case yields smaller RAs
increases, especially for some instances from RC but otherwise replicates the
pattern of the PO repair vs. fully observable repair case.

The detailed breakdown for each observability level is given in the plots in
Fig. 8.21 on the following page. Since, on most observability levels, the number
of solvable instances is small, there is not much to be evaluated. The notable
cases are the two peaks observability levels 2 and 4. In Fig. 8.21c on the following
page, we can see that on observability level 2, some of the RC instances scale
well with the number of nodes, but all other families trend towards a TO. In
Fig. 8.21e on the following page, we can see a similar result, except that now
also RC quickly trends towards a TO.

168

8.4. PARTIALLY OBSERVABLE SCALABILITY EXPERIMENTS

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(a) Observability level 0.

0 200 400 600
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]
(b) Observability level 1.

0 200 400 600 800
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(c) Observability level 2.

0 200 400 600 800 1,000
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(d) Observability level 3.

0 200 400 600 800 1,000 1,200
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(e) Observability level 4.

0 200 400 600 800 1,000 1,200
100

101

102

103

104

105

TO
OOM

#Nodes

T
im

e
[m

s]

(f) Observability level 5.

Fig. 8.21. Time measurement breakdown for observability levels 0-5.

169

CHAPTER 8. EVALUATION

8.5 Summary and Update of the NdDFT Hier-
archy

In this section, we summarize the essential points of our findings and perform
an update to the theoretical NdDFT hierarchy using our experimental results.

• Modularization is key to performance. Without modularization, the
NdDFT approach does not scale. With modularization, the approach
scales for a vast number of case studies.

• Repair causes the RA sizes to explode. We have seen a large number
of OOMs caused by the RA composition and even seen partial observability
having a positive performance impact due to reducing the RA sizes thanks
to fewer observable events. Transferring orthogonal state space reduction
onto the repair case might help mitigate the issue. Otherwise, it would
be necessary to investigate a workflow that can drop the RA composition.
However, the composition is at the latest required during the creation of
the MC from the NdDFT and the RA to compute non-composable metrics
such as the MTTF. The way forward might be not to use exact state spaces
but approximation approaches to allow for composability.

• Partial observability reduces scalability for non-repair cases but
does not have much of an effect on repair cases. While the concrete
effects on the state space depend on the employed observability level, we
have seen a strong negative impact of partial observability in the non-
repairable case. Usually, this is driven by how effectively we can still
perform modularization even under partial observability. A better, custom-
tailored modularization approach might be a way forward to deal with this
issue. On the other hand, for the repair case, we have not seen that many
detrimental effects. Provided that at least enough levels remain observable
to perform some basic modularization, adding partial observability to
repair cases does not impact the RA synthesis negatively. Should an RA
be synthesizable for a repairable NdDFT, it is likely that one can still
synthesize an RA even after adding partial observability.

• Delayed MONITOR gates should be avoided. While not surprising,
considering the complex state space fragment that gets involved from any
partially observable event firing, the experiments have confirmed that the
delayed MONITOR gate causes a state space increase that makes RA
synthesis impossible. Even for the non-repairable case, on observability

170

8.5. SUMMARY AND UPDATE OF THE NDDFT HIERARCHY

level 5, we could only solve very few instances. Therefore, employing
observation delays in MONITOR gates should only be done if the model
absolutely requires them.

Since the delayed MONITOR gates lead to unscalable cases, we consider a
refined version of the NdDFT class hierarchy from Fig. 6.1. We differentiate
between the immediate PODFT class with no delayed MONITOR gates and the
PODFT class as introduced in the theory section with delayed MONITOR gates.
The updated hierarchy is shown in Fig. 8.22.

Repairable PODFT

Repairable Immediate PODFT
PODFT

Immediate PODFT
Repairable NdDFT

NdDFT

DFT

Repairable DFT

New

Fig. 8.22. Refined class hierarchy of DFT classes.

171

Chapter 9
Conclusion and Outlook

DFTs have rigid semantics, which leads to problems such as spare races. These
rigid semantics make them difficult to apply to complex FDIR systems with
features such as shared redundancies or partial observability.

In this thesis, we presented an FDIR model based on non-deterministic DFTs
and deterministic recovery automata. Furthermore, we focused on the recovery
automata synthesis problem to automatically generate an optimal recovery
automaton with respect to a given metric from an NdDFT. The basic approach
was to transform the NdDFT into a Markov Automaton, compute an optimal
scheduler using model checking techniques, and extract the recovery automaton
from the scheduler. The resulting algorithm was refined two-fold. Firstly, the
state space of the synthesized automaton was reduced beyond what traditional
trace-based equivalence is capable of. Secondly, modularization approaches were
employed to avoid the state space explosion problem. We also introduced a
partially observable DFT model (PODFTs) and lifted the previous constructions
to this model.

We implemented the proposed approach within the open-source framework
of Virtual Satellite and translated the formalized FDIR model into an FDIR
conceptual data model. Furthermore, we proposed various implementation
details for an efficient implementation.

Finally, we evaluated the scalability of our RA synthesis on case studies
selected from the FFORT benchmark set. We were able to show that for the
basic NdDFT model, our algorithm could solve nearly all literature case studies.

173

CHAPTER 9. CONCLUSION AND OUTLOOK

However, we also demonstrated that the efficiency was firmly bound to how well
a model could be modularized. We could solve some instances for more complex
classes, such as repairable NdDFTs and PODFTs. However, the results suggest
that our approach would not scale up when modeling real-world FDIR systems
for these advanced classes. Especially repair rates and delayed MONITOR gates
were identified as problematic elements.

Overall, we set up a formal basis modeling complex FDIR systems using
NdDFTs and PODFTs. Especially the benefit of including partial observability
into the model seems promising, but it is not yet at a level where it can be
applied for real-world spacecraft development. We discuss further ideas and
propositions on how the approach could be further improved. Since all our
Virtual Satellite implementation is open source, interested researchers can easily
build upon the established research.

Outlook: Our work showed that modularization is a key to efficient RA
synthesis. Therefore, improved techniques for dealing with instances where good
modularization is not possible are of interest. Especially since an interconnected
system with dependencies crossing between subsystems may be of particular
interest for formal analysis. One possible angle of improvement would be to
identify a weaker set of rules to identify a module, possibly with overlapping
nodes. Since, at this step, we are not interested in the concrete metrical RAMS
values but only in the correct RA behavior, it could be possible to identify rules
that allow shared nodes to be included in multiple modules. Another direction
would be to improve the efficiency of handling larger modules. In the past,
symmetry reduction techniques have proved useful to combat the state space
explosion problem in deterministic DFTs [62]. Leveraging these approaches to
NdDFTs could be a promising approach to deal with larger modules.

Another central area of improvement could be to reduce the RA state space
further. A generalization of the orthogonal merging rules to the repair case
would be of interest. A prototypical generalization has been created in [13] and
has also already been implemented. However, it is not clear how complete the
proposed approach is. Rather than pursuing a generalization fixed on repairable
NdDFTs, it might be more effective to pursue a generalization of orthogonal
state space reduction where a given Linear Time Logic (LTL) formula describes
the restrictions under which events are allowed to occur, similarly to fairness
restrictions. Such a general approach could also allow to model further details,
for example, that a cold spare can only fail if activated, and thus promises further
avenues of reducing the state space of an RA.

174

Finally, on the area of partially observable NdDFTs, we reused our fully
observable construction and encoded the beliefs in the second-stage belief Markov
automaton construction. Comparing our two-stage construction approach to a
representation using a partially observable Markov Automaton (POMA) would
be interesting. Moreover, we applied a simple approach to lift modularization
to the partially observable case by requiring the root node to be immediately
observable. Since, as already stated, we have identified modularization as a
critical factor for efficiency, investigating the possibility of a further refinement
holds the potential to increase the scalability of PODFTs majorly.

175

Eidesstattliche Erklärung
Ich, Sascha Müller, erkläre hiermit, dass diese Dissertation und die darin dar-
gelegten Inhalte die eigenen sind und selbstständig, als Ergebnis der eigenen
originären Forschung, generiert wurden. Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand
dieser Fakultät und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademi-
schen Abschluss oder eine andere Qualifikation an dieser oder einer anderen
Institution verwendet wurde, wurde dies klar angezeigt;

3. Wenn immer andere eigene - oder Veröffentlichungen Dritter herangezogen
wurden, wurden diese klar benannt;

4. Wenn aus anderen eigenen - oder Veröffentlichungen Dritter zitiert wurde,
wurde stets die Quelle hierfür angegeben. Diese Dissertation ist vollständig
meine eigene Arbeit, mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit
anderen basiert, wurde von mir klar gekennzeichnet, was von anderen und
was von mir selbst erarbeitet wurde;

7. Ein Teil oder Teile dieser Arbeit wurden zuvor veröffentlicht wie in Sekti-
on 1.2 aufgegliedert.

Sascha Müller, 6. Juli 2023, Braunschweig

177

Erklärung zur Wahrung von
Betriebsgeheimnissen

Ich gebe folgende Erklärung ab: Ich versichere, dass die in Zusammenarbeit mit
dem Deutsche Zentrum für Luft- und Raumfahrt e. V. entstandene Dissertati-
onsschrift durch ihre Veröffentlichung keine bestehenden Betriebsgeheimnisse
verletzt.

Sascha Müller, 6. Juli 2023, Braunschweig

179

Bibliography

[1] International Electrotechnical Commission, Geneva, Switzerland. Fault Tree
Analysis (FTA), 2006.

[2] Enno Ruijters and Mariëlle Stoelinga. Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools. Computer Science Review,
15-16:29–62, 2015. doi:10.1016/j.cosrev.2015.03.001.

[3] Sascha Müller, Andreas Gerndt, and Thomas Noll. Synthesizing FDIR
recovery strategies from non-deterministic dynamic fault trees. In 2017
AIAA SPACE Forum, volume AIAA 2017-5163. American Institute of
Aeronautics and Astronautics, 2017. doi:10.2514/6.2017-5163.

[4] Sascha Müller and Andreas Gerndt. Towards a conceptual data model for
fault detection, isolation and recovery in Virtual Satellite. In SECESA 2018.
European Space Agency, 2018. URL: https://elib.dlr.de/122061/.

[5] Liana Mikaelyan, Sascha Müller, Andreas Gerndt, and Thomas Noll. Syn-
thesizing and optimizing FDIR recovery strategies from fault trees. In
International Workshop on Formal Techniques for Safety-Critical Systems,
pages 37–54. Springer, 2018. doi:https://doi.org/10.1007/978-3-030-
12988-0_3.

[6] Sascha Müller, Andreas Gerndt, and Thomas Noll. Synthesizing failure
detection, isolation, and recovery strategies from nondeterministic dynamic
fault trees. Journal of Aerospace Information Systems, 16(2):52–60, 2019.
doi:https://doi.org/10.2514/1.I010669.

181

https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.2514/6.2017-5163
https://elib.dlr.de/122061/
https://doi.org/https://doi.org/10.1007/978-3-030-12988-0_3
https://doi.org/https://doi.org/10.1007/978-3-030-12988-0_3
https://doi.org/https://doi.org/10.2514/1.I010669

BIBLIOGRAPHY

[7] Sascha Müller, Liana Mikaelyan, Andreas Gerndt, and Thomas Noll. Syn-
thesizing and optimizing FDIR recovery strategies from fault trees. Science
of Computer Programming, 196:102478, 2020. doi:https://doi.org/10.
1016/j.scico.2020.102478.

[8] Sascha Müller, Adeline Jordon, Andreas Gerndt, and Thomas Noll. A
modular approach to non-deterministic dynamic fault trees. In International
Conference on Computer Safety, Reliability, and Security, pages 243–257.
Springer, 2021. doi:10.1007/978-3-030-83903-1_16.

[9] Kilian Höflinger, Sascha Müller, Ting Peng, Moritz Ulmer, Daniel Lüdtke,
and Andreas Gerndt. Dynamic fault tree analysis for a distributed onboard
computer. In 2019 IEEE Aerospace Conference, pages 1–13, 2019. doi:
10.1109/AERO.2019.8742128.

[10] Sascha Müller, Kilian Höflinger, Michal Smisek, and Andreas Gerndt. To-
wards an FDIR software fault tree library for onboard computers. In 2020
IEEE Aerospace Conference, pages 1–10, 2020. doi:10.1109/AERO47225.
2020.9172756.

[11] Emanuel Kopp, Sascha Mueller, Fabian Greif, and Anko Boerner. Towards
an H/W-S/W interface description for a comprehensive space systems
simulation environment. In 2020 IEEE Aerospace Conference, pages 1–14,
2020. doi:10.1109/AERO47225.2020.9172440.

[12] Philipp M Fischer, Caroline Lange, Volker Maiwald, Sascha Müller, Andrii
Kovalov, Janis Häseker, Thomas Gärtner, and Andreas Gerndt. Spacecraft
interface management in concurrent engineering sessions. In International
Conference on Cooperative Design, Visualization and Engineering, pages
54–63. Springer, 2019. doi:10.1007/978-3-030-30949-7.

[13] Yogeswari Renganathan. Semantics of non-deterministic repairable fault
trees. Master’s thesis, Technische Universität Darmstadt, 2019. URL:
https://elib.dlr.de/131219/.

[14] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. IEEE
transactions on dependable and secure computing, 1(1):11–33, 2004. doi:
10.1109/TDSC.2004.2.

[15] A Wander and R Förstner. Innovative fault detection, isolation and recovery
strategies on-board spacecraft: State of the art and research challenges.

182

https://doi.org/https://doi.org/10.1016/j.scico.2020.102478
https://doi.org/https://doi.org/10.1016/j.scico.2020.102478
https://doi.org/10.1007/978-3-030-83903-1_16
https://doi.org/10.1109/AERO.2019.8742128
https://doi.org/10.1109/AERO.2019.8742128
https://doi.org/10.1109/AERO47225.2020.9172756
https://doi.org/10.1109/AERO47225.2020.9172756
https://doi.org/10.1109/AERO47225.2020.9172440
https://doi.org/10.1007/978-3-030-30949-7
https://elib.dlr.de/131219/
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2

BIBLIOGRAPHY

In Deutscher Luft- und Raumfahrtkongress 2012, Bonn, Germany, 2013.
German Soc. for Aeronautics and Astronautics – Lilienthal-Oberth e.V.
URL: https://www.dglr.de/publikationen/2013/281268.pdf.

[16] Xavier Olive. FDI(R) for satellites: How to deal with high availability
and robustness in the space domain? International Journal of Applied
Mathematics and Computer Science, 22(1):99–107, 2012. doi:10.2478/
v10006-012-0007-8.

[17] Julien Marzat, Hélène Piet-Lahanier, Frédéric Damongeot, and Eric Walter.
Model-based fault diagnosis for aerospace systems: a survey. Proceedings
of the Institution of Mechanical Engineers, Part G: Journal of aerospace
engineering, 226(10):1329–1360, 2012. doi:10.1177/0954410011421717.

[18] O Benedettini, Tim S Baines, HW Lightfoot, and RM Greenough. State-
of-the-art in integrated vehicle health management. Proceedings of the
Institution of Mechanical Engineers, Part G: Journal of Aerospace Engi-
neering, 223(2):157–170, 2009. doi:10.1243/09544100JAERO446.

[19] John Von Neumann. Probabilistic logics and the synthesis of reliable
organisms from unreliable components. Automata studies, 34:43–98, 1956.

[20] Robert E Lyons and Wouter Vanderkulk. The use of triple-modular re-
dundancy to improve computer reliability. IBM Journal of Research and
Development, 6(2):200–209, 1962. doi:10.1147/rd.62.0200.

[21] Ali Zolghadri. Advanced model-based FDIR techniques for aerospace sys-
tems: Today challenges and opportunities. Progress in Aerospace Sciences,
53:18–29, 2012. doi:10.1016/j.paerosci.2012.02.004.

[22] Domenico Reggio Patrick Bergner, André Posch. GAFE Methodology. 2018.
URL: http://gafe.estec.esa.int/files/GAFE_Methodology.pdf.

[23] Rudolph Emil Kalman. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35–45, 1960. doi:10.1115/
1.3662552.

[24] Stephen Osder. Practical view of redundancy management application and
theory. Journal of Guidance, Control, and Dynamics, 22(1):12–21, 1999.
doi:10.2514/2.4363.

183

https://www.dglr.de/publikationen/2013/281268.pdf
https://doi.org/10.2478/v10006-012-0007-8
https://doi.org/10.2478/v10006-012-0007-8
https://doi.org/10.1177/0954410011421717
https://doi.org/10.1243/09544100JAERO446
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1016/j.paerosci.2012.02.004
http://gafe.estec.esa.int/files/GAFE_Methodology.pdf
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.2514/2.4363

BIBLIOGRAPHY

[25] Walt Truszkowski, Harold Hallock, Christopher Rouff, Jay Karlin, James
Rash, Michael Hinchey, and Roy Sterritt. Autonomous and autonomic
systems: With applications to NASA intelligent spacecraft operations and
exploration systems. Springer Science & Business Media, 2009. doi:10.
1007/b105417.

[26] Requirements & Standards Division, Noordwijk, Netherlands. ECSS On-
board control procedures, 2012.

[27] Requirements & Standards Division, Noordwijk, Netherlands. ECSS Space
segment operability, 2008.

[28] Jens Eickhoff. Onboard Computers, Onboard Software and Satellite Op-
erations: An Introduction. Springer Science & Business Media, 2011.
doi:10.1007/978-3-642-25170-2.

[29] Requirements & Standards Division, Noordwijk, Netherlands. ECSS System
- Gloassary of terms, 2012.

[30] Richard E Barlow and Frank Proschan. Mathematical theory of reliability.
SIAM, 1996. doi:10.1126/science.148.3674.1208-a.

[31] Marvin Rausand and Arnljot Høyland. System reliability theory: models,
statistical methods, and applications, volume 396. John Wiley & Sons, 2004.
doi:10.1002/9780470316900.ch12.

[32] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
press, 2008.

[33] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. On probabilistic
automata in continuous time. In IEEE Symposium on Logic in Computer
Science, pages 342–351. IEEE, 2010. doi:10.1109/LICS.2010.41.

[34] Gianfranco Ciardo, Reinhard German, and Christoph Lindemann. A
characterization of the stochastic process underlying a stochastic petri
net. IEEE Transactions on Software Engineering, 20(7):506–515, 1994.
doi:10.1109/32.297939.

[35] Niklas Holsti and Matti Paakko. Towards advanced FDIR components.
Data Systems in Aerospace, DASIA 2001, 2001.

184

https://doi.org/10.1007/b105417
https://doi.org/10.1007/b105417
https://doi.org/10.1007/978-3-642-25170-2
https://doi.org/10.1126/science.148.3674.1208-a
https://doi.org/10.1002/9780470316900.ch12
https://doi.org/10.1109/LICS.2010.41
https://doi.org/10.1109/32.297939

BIBLIOGRAPHY

[36] Burton H Lee. Using Bayes belief networks in industrial FMEA modeling and
analysis. In Reliability and Maintainability Symposium, 2001. Proceedings.
Annual, pages 7–15. IEEE, 2001. doi:10.1109/RAMS.2001.902434.

[37] Technical Committee and others, Geneva, Switzerland. Analysis Techniques
for System Reliability-Procedure for Failure Mode and Effects Analysis
(FMEA), 2006.

[38] William E Vesely, Francine F Goldberg, Norman H Roberts, and David F
Haasl. Fault tree handbook. Technical report, Nuclear Regulatory Com-
mission, Washington, DC, 1981. URL: https://www.osti.gov/biblio/
5762464-fault-tree-handbook.

[39] Olivier Coudert and Jean Christophe Madre. Fault tree analysis: 1020

prime implicants and beyond. In Reliability and Maintainability Symposium,
1993. Proceedings., Annual, pages 240–245. IEEE, 1993. doi:10.1109/
RAMS.1993.296849.

[40] Ernest Edifor, Martin Walker, and Neil Gordon. Quantification of priority-or
gates in temporal fault trees. In International Conference on Computer
Safety, Reliability, and Security, volume 7612 of LNCS, pages 99–110.
Springer, 2012. doi:10.1007/978-3-642-33678-2_9.

[41] Sebastian Junges, Dennis Guck, Joost-Pieter Katoen, and Mariëlle Stoelinga.
Uncovering dynamic fault trees. In Dependable Systems and Networks (DSN),
2016 46th Annual IEEE/IFIP International Conference on, pages 299–310.
IEEE, 2016. doi:10.1109/DSN.2016.35.

[42] Joanne Bechta Dugan, Salvatore J Bavuso, and Mark A Boyd. Dynamic
fault-tree models for fault-tolerant computer systems. IEEE Transactions
on Reliability, 41(3):363–377, 1992. doi:10.1109/24.159800.

[43] Mohammad Modarres, Mark P Kaminskiy, and Vasiliy Krivtsov. Reliability
engineering and risk analysis: a practical guide. CRC press, 2009.

[44] Haiping Xu and Liudong Xing. Formal semantics and verification of dynamic
reliability block diagrams for system reliability modeling. In Proc. 11th
International Conference on Software Engineering and Applications (SEA
2007), pages 155–162, 2007.

[45] Michael Stamatelatos, Homayoon Dezfuli, George Apostolakis, Chester
Everline, Sergio Guarro, Donovan Mathias, Ali Mosleh, Todd Paulos, David

185

https://doi.org/10.1109/RAMS.2001.902434
https://www.osti.gov/biblio/5762464-fault-tree-handbook
https://www.osti.gov/biblio/5762464-fault-tree-handbook
https://doi.org/10.1109/RAMS.1993.296849
https://doi.org/10.1109/RAMS.1993.296849
https://doi.org/10.1007/978-3-642-33678-2_9
https://doi.org/10.1109/DSN.2016.35
https://doi.org/10.1109/24.159800

BIBLIOGRAPHY

Riha, Curtis Smith, et al. Probabilistic risk assessment procedures guide
for NASA managers and practitioners. 2011. URL: https://ntrs.nasa.
gov/archive/nasa/casi.ntrs.nasa.gov/20120001369.pdf.

[46] Peter Fenelon and John A McDermid. New directions in software safety:
Causal modelling as an aid to integration. In Workshop on Safety Case
Construction, York (March 1994), 1992. URL: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.47.4673&rep=rep1&type=pdf.

[47] Hideo Nakano and Yoshiro Nakanishi. Graph representation and diagnosis
for multiunit faults. IEEE Transactions on Reliability, 23(5):320–325, 1974.
doi:10.1109/TR.1974.5215295.

[48] SV Nageswara Rao and N Viswanadham. Fault diagnosis in dynamical
systems: A graph theoretic approach. International journal of systems
science, 18(4):687–695, 1987. doi:10.1080/00207728708964000.

[49] Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Regis De Ferluc,
Marco Gario, Andrea Guiotto, and Yuri Yushtein. An integrated process
for FDIR design in aerospace. In Model-Based Safety and Assessment,
volume 8822 of LNCS, pages 82–95. Springer, 2014. doi:10.1007/978-3-
319-12214-4_7.

[50] Trevor A Kletz. HAZOP and HAZAN: identifying and assessing process
industry hazards. CRC Press, 2001.

[51] John A McDermid, Mark Nicholson, David J Pumfrey, and P Fenelon.
Experience with the application of HAZOP to computer-based systems.
In Computer Assurance, 1995. COMPASS’95. Systems Integrity, Software
Safety and Process Security. Proceedings of the Tenth Annual Conference
on, pages 37–48. IEEE, 1995. doi:10.1109/CMPASS.1995.521885.

[52] Johan De Kleer and James Kurien. Fundamentals of model-based di-
agnosis. volume 36, pages 25–36. Elsevier, 2003. doi:10.1016/S1474-
6670(17)36467-4.

[53] Malcolm Wallace. Modular architectural representation and analysis of fault
propagation and transformation. Electronic Notes in Theoretical Computer
Science, 141(3):53–71, 2005. doi:10.1016/j.entcs.2005.02.051.

[54] Xiaocheng Ge, Richard F Paige, and John A McDermid. Probabilistic failure
propagation and transformation analysis. In International Conference on

186

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.4673&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.4673&rep=rep1&type=pdf
https://doi.org/10.1109/TR.1974.5215295
https://doi.org/10.1080/00207728708964000
https://doi.org/10.1007/978-3-319-12214-4_7
https://doi.org/10.1007/978-3-319-12214-4_7
https://doi.org/10.1109/CMPASS.1995.521885
https://doi.org/10.1016/S1474-6670(17)36467-4
https://doi.org/10.1016/S1474-6670(17)36467-4
https://doi.org/10.1016/j.entcs.2005.02.051

BIBLIOGRAPHY

Computer Safety, Reliability, and Security, volume 5775 of LNCS, pages
215–228. Springer, 2009. doi:10.1007/978-3-642-04468-7_18.

[55] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen,
Thomas Noll, and Marco Roveri. The COMPASS approach: Correctness,
modelling and performability of aerospace systems. In International Confer-
ence on Computer Safety, Reliability, and Security, volume 5775 of LNCS,
pages 173–186. Springer, 2009. doi:10.1007/978-3-642-04468-7_15.

[56] Marco Beccuti, Giuliana Franceschinis, Daniele Codetta-Raiteri, and Serge
Haddad. Computing optimal repair strategies by means of NdRFT modeling
and analysis. The Computer Journal, 57(12):1870–1892, 2014. doi:10.
1093/comjnl/bxt134.

[57] Enno Ruijters, Dennis Guck, Peter Drolenga, and Mariëlle Stoelinga. Fault
maintenance trees: reliability centered maintenance via statistical model
checking. In Reliability and Maintainability Symposium (RAMS), 2016
Annual, pages 1–6. IEEE, 2016. doi:10.1109/RAMS.2016.7447986.

[58] Daniele Codetta-Raiteri and Luigi Portinale. Dynamic Bayesian networks for
fault detection, identification, and recovery in autonomous spacecraft. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 45(1):13–24,
2015. doi:10.1109/TSMC.2014.2323212.

[59] Daniele Codetta Raiteri and Luigi Portinale. ARPHA: an FDIR architecture
for autonomous spacecrafts based on dynamic probabilistic graphical models.
Technical Report TR-INF-2010-12-04-UNIPMN, Computer Science Institute,
Università del Piemonte Orientale, Vercelli, Italy, 2010. URL: http://www.
di.unipmn.it/TechnicalReports/TR-INF-2010-12-04-UNIPMN.pdf.

[60] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Viet Yen Nguyen,
Thomas Noll, and Marco Roveri. Safety, dependability and performance
analysis of extended AADL models. The Computer Journal, 54(5):754–775,
2011. doi:10.1093/comjnl/bxq024.

[61] Sweewarman Balachandran and Ella Atkins. Markov decision process frame-
work for flight safety assessment and management. Journal of Guidance,
Control, and Dynamics, 40(4):817–830, 2017. doi:10.2514/1.G001743.

[62] Matthias Volk, Sebastian Junges, and Joost-Pieter Katoen. Advancing
dynamic fault tree analysis-get succinct state spaces fast and synthesise
failure rates. In International Conference on Computer Safety, Reliability,

187

https://doi.org/10.1007/978-3-642-04468-7_18
https://doi.org/10.1007/978-3-642-04468-7_15
https://doi.org/10.1093/comjnl/bxt134
https://doi.org/10.1093/comjnl/bxt134
https://doi.org/10.1109/RAMS.2016.7447986
https://doi.org/10.1109/TSMC.2014.2323212
http://www.di.unipmn.it/TechnicalReports/TR-INF-2010-12-04-UNIPMN.pdf
http://www.di.unipmn.it/TechnicalReports/TR-INF-2010-12-04-UNIPMN.pdf
https://doi.org/10.1093/comjnl/bxq024
https://doi.org/10.2514/1.G001743

BIBLIOGRAPHY

and Security, volume 9922 of LNCS, pages 253–265. Springer, 2016. doi:
10.1007/978-3-319-45477-1_20.

[63] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach.
Pearson, 4 edition, 2020.

[64] Omid Madani, Steve Hanks, and Anne Condon. On the undecidability
of probabilistic planning and infinite-horizon partially observable markov
decision problems. In AAAI/IAAI, pages 541–548, 1999. doi:10.1016/
S0004-3702(02)00378-8.

[65] Catherine Venturini, Barbara Braun, David Hinkley, and Greg Berg. Im-
proving mission success of cubesats. In Proceedings of the AIAA/USU
Conference on Small Satellites, 2018. URL: http://digitalcommons.usu.
edu/smallsat/2018/all2018/273/.

[66] G.H. Mealy. A method for synthesizing sequential circuits. The Bell
System Technical Journal, 34(5):1045–1079, 1955. doi:10.1002/j.1538-
7305.1955.tb03788.x.

[67] John Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. In Theory of machines and computations, pages 189–196.
Elsevier, 1971. doi:10.1016/B978-0-12-417750-5.50022-1.

[68] Gary A Kildall. A unified approach to global program optimization. In
Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 194–206. ACM, 1973. doi:
10.1145/512927.512945.

[69] Yves Dutuit and Antoine Rauzy. A linear-time algorithm to find modules
of fault trees. IEEE Transactions on Reliability, 45(3):422–425, 1996. doi:
10.1109/24.537011.

[70] Alexandru Mereacre, Joost-Pieter Katoen, Tingting Han, and Taolue Chen.
Model checking of continuous-time markov chains against timed automata
specifications. Logical Methods in Computer Science, 7, 2011. doi:10.2168/
LMCS-7(1:12)2011.

[71] Caroline Lange, Jan Thimo Grundmann, Michael Kretzenbacher, and
Philipp Martin Fischer. Systematic reuse and platforming: Application ex-
amples for enhancing reuse with model-based systems engineering methods
in space systems development. Concurrent Engineering, 26(1):77–92, 2018.
doi:10.1177/1063293X17736358.

188

https://doi.org/10.1007/978-3-319-45477-1_20
https://doi.org/10.1007/978-3-319-45477-1_20
https://doi.org/10.1016/S0004-3702(02)00378-8
https://doi.org/10.1016/S0004-3702(02)00378-8
http://digitalcommons.usu.edu/smallsat/2018/all2018/273/
http://digitalcommons.usu.edu/smallsat/2018/all2018/273/
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1145/512927.512945
https://doi.org/10.1145/512927.512945
https://doi.org/10.1109/24.537011
https://doi.org/10.1109/24.537011
https://doi.org/10.2168/LMCS-7(1:12)2011
https://doi.org/10.2168/LMCS-7(1:12)2011
https://doi.org/10.1177/1063293X17736358

BIBLIOGRAPHY

[72] Sascha Müller. virtualsatellite/VirtualSatellite4-FDIR: Release 4.12.1, Oc-
tober 2020. doi:10.5281/zenodo.6962365.

[73] Requirements & Standards Division, Noordwijk, Netherlands. Space system
data repository, 2011. URL: https://ecss.nl/hbstms/ecss-e-tm-10-
23a-space-system-data-repository/.

[74] Philipp Martin Fischer, Meenakshi Deshmukh, Volker Maiwald, Dominik
Quantius, Antonio Martelo Gomez, and Andreas Gerndt. Conceptual
data model: A foundation for successful concurrent engineering. Con-
current Engineering, 26(1):55–76, 2018. doi:https://doi.org/10.1177/
1063293X17734592.

[75] Philipp M Fischer, Daniel Lüdtke, Caroline Lange, F-C Roshani, Frank
Dannemann, and Andreas Gerndt. Implementing model-based system
engineering for the whole lifecycle of a spacecraft. CEAS Space journal,
9(3):351–365, 2017. doi:https://doi.org/10.1007/s12567-017-0166-
4.

[76] Joanne Bechta Dugan, Kevin J Sullivan, and David Coppit. Developing a
low-cost high-quality software tool for dynamic fault-tree analysis. IEEE
Transactions on Reliability, 49(1):49–59, 2000. doi:10.1109/24.855536.

[77] Lorenzo Bettini. Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing Ltd, 2016.

[78] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. A storm is coming: A modern probabilistic model checker. In
International Conference on Computer Aided Verification, pages 592–600.
Springer, 2017. doi:10.1007/978-3-319-63390-9_31.

[79] Dennis Guck, Jip Spel, and Mariëlle Stoelinga. Dftcalc: Reliability centered
maintenance via fault tree analysis (tool paper). In International Conference
on Formal Engineering Methods, pages 304–311. Springer, 2015. doi:
10.1007/978-3-319-25423-4_19.

[80] Enno Ruijters, Carlos E Budde, Muhammad Chenariyan Nakhaee, Mariëlle
Ida Antoinette Stoelinga, Doina Bucur, Djoerd Hiemstra, and Stefano
Schivo. FFORT: A benchmark suite for fault tree analysis. pages 878–885,
2019. doi:https://doi.org/10.3850/978-981-11-2724-3_0641-cd.

189

https://doi.org/10.5281/zenodo.6962365
https://ecss.nl/hbstms/ecss-e-tm-10-23a-space-system-data-repository/
https://ecss.nl/hbstms/ecss-e-tm-10-23a-space-system-data-repository/
https://doi.org/https://doi.org/10.1177/1063293X17734592
https://doi.org/https://doi.org/10.1177/1063293X17734592
https://doi.org/https://doi.org/10.1007/s12567-017-0166-4
https://doi.org/https://doi.org/10.1007/s12567-017-0166-4
https://doi.org/10.1109/24.855536
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/https://doi.org/10.3850/978-981-11-2724-3_0641-cd

	Acronyms
	Introduction
	Publication List
	Thesis Structure

	State of the Art
	FDIR
	Modular Hardware Redundancy
	Spare Hardware Redundancy
	Analytical Redundancy
	Recovery Strategies for Space Systems
	Hierarchical FDIR

	Robustness Measures
	Techniques For Fault Modeling and Analysis
	Low-level Techniques
	Classical Techniques
	Model-Based Techniques

	From Fault Model to Recovery Strategy
	Partial Observability

	Preliminaries
	Basic Notation
	Markovian Structures
	Markov Chains
	Markov Automata

	Dynamic Fault Trees

	Formalization of the FDIR Model
	Rate Dependency Extension
	Non-Deterministic Fault Trees
	NdDFT with Repair
	FDEP with Repair
	Extended Notation with Repair

	Markov Automaton Semantics
	Construction Examples
	Repairable NdDFT to MA
	Recovery Strategies and Automata

	Synthesis of Recovery Strategies
	Synthesis Methodology
	Extraction

	Examples
	Construction of an Adaptable Recovery Strategy
	Optimized Spare Ordering

	Further Optimization of Recovery Automata
	Optimizing Orthogonal States
	Optimizing the FAIL State
	Completeness

	Modular Synthesis of Recovery Automata
	Modular Workflow
	Modularization

	Partial Observability
	Partially Observable Dynamic Fault Trees
	MONITOR Gate
	Gate and Event Semantics

	Belief Markov Automaton Semantics
	Partially Observable Recovery Automaton
	Synthesis Workflow
	PORA Extraction
	PORA and MA Synchronization
	Orthogonality under Partial Observability
	Adapting Modularization

	Synthesis Examples
	Probabilistic Claim Success
	Delayed Monitor
	Failable Monitor
	Timeout Transitions

	Implementation
	Virtual Satellite 4 Framework
	Generic Systems Engineering Language
	Virtual Satellite 4 FDIR
	FDIR Conceptual Data Model
	Analysis CDM
	Configuration Control
	Software Workflow for Synthesis

	Implementation Details
	Preprocessing
	Representation of DFT states
	Canonical States
	Optimization Workflow
	Reducing the Number of Timeout States
	Selecting Optimal Transitions on the Fly

	Evaluation
	Experiment Setup
	Fully Observable Scalability Experiments
	NdDFT Experiments
	Repairable NdDFT Experiments

	Recovery-Equivalence-Based State Space Reduction Experiments
	Partially Observable Scalability Experiments
	Configuration: PO
	Configuration: PO Delay
	Configuration: PO Repair
	Configuration: PO Delay Repair

	Summary and Update of the NdDFT Hierarchy

	Conclusion and Outlook
	Bibliography

