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A hybrid algorithm to solve optimal control problems is discussed in the present paper,

and applied to the powered descent guidance (PDG) problem. A reference solution is first

obtained via a convex direct solver, and is then used as guess for the primal-dual boundary

value problem associated with the initial problem. In this context, a covector mapping theorem

is used to map the multipliers of the direct solution to the corresponding discrete costates of the

indirect method. Collocation based on hp pseudospectral scheme is employed for the convex

direct step, while single shooting for the indirect step. A switching-detection technique further

equips the shooting. As opposed to the hybrid convex-indirect algorithm, a state-of-the-art

purely indirect algorithm is outlined: such approach merges the same single shooting approach

with a homotopic continuation. The proposed methods are applied to the pinpoint landing

formulation of the PDG, framed in a 3-D environment. Results are finally outlined, comparing

the proposed hybrid strategy to the purely indirect approach. The outcome highlights the gain

in computational times for the hybrid optimization technique over the fully homotopic scheme,

demonstrating the validity of the former for landing trajectory optimization purposes.

I. Introduction

Optimal control constitutes a widely adopted mathematical formulation of problems for a vast variety of engineering

applications. Traditionally, indirect and direct methods for solving Optimal Control Problems (OCPs) have been

opposed to each other; the former firstly augment the original primal dynamics to its equivalent Hamiltonian, namely

primal-dual, then solve the associated Boundary Value Problem (BVP). The latter transcribe the cost function, constraints
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and dynamics into discrete constraints, and cast the OCP as a Nonlinear Programming (NLP) problem. Indirect methods’

workhorse is solution accuracy [1], as the BVP directly stems from the optimality necessary conditions of the original

problem; on the other hand, they are penalized by reduced extension of convergence basin; convergence either to a

non-physical or to a suboptimal solution is indeed likely [2]. Direct methods allow instead to easily include constraints,

hence the versatility of algorithms based on such approaches. Eventually, the original problem can be convexified,

thus reformulating the NLP as Convex Programming (CP) problem; this formulation represents a key technology for

onboard computation purposes [3, 4], and allows the use of highly performing interior-point algorithms, ensuring

convergence to the convex sub-problem optimum in polynomial time [5]. Lossless [6, 7] or successive convexification

[8–12] techniques are the most common approaches in this context. However, solution refinement determines rapid

increase of computational loads, whether OCP is transcribed as NLP or CP problem.

Solutions to the main drawbacks of both methods have been vastly analyzed in the latest years. Homotopic continuation

techniques have been introduced for indirect solvers to overcome initial guess sensitivity [13]. A starting subproblem

differing from the original one is solved first; the solution is then used as guess for a second subproblem, more similar to

the original problem. Such process is repeated iteratively, up to when the second subproblem matches the original.

Keys for the homotopic approach to succeed are 1) the formulation of the starting subproblem with a large enough

convergence basin and 2) a design of continuation scheme ensuring that each solution lies in the convergence basin of

the successive subproblem. The difference of the generic subproblem with respect to the original lies on a different

functional formulation of the objective function, constraints or system dynamics. A homotopic parameter is used to

gradually transform the starting functional back to the original one. In the context of offline optimal control, low thrust

trajectories [14, 15], rocket ascent and descent [16, 17] and hypersonic reentry [18–21] make up valid application

examples. Pseudospectral (PS) collocation methods have come into the limelight for what concerns direct methods: for

smooth problems, their solution converges the OCP one with quasi-exponential rate [22], hence the requirement of few

nodes only. Moreover, local collocation schemes allow to increase matrix sparsity, further alleviating computational

weights [23, 24]. Validity of pseudospectral methods is confirmed by the variety of dynamic environments they

are applied in, especially in combination with convex formulations: relative trajectory design [25, 26], deep-space

trajectories [27], landing scenarios [28, 29], hypersonic entry [30] and multistage rocket guidance [31] are some

examples from the aerospace field; proofs of their performance have further been provided for different engineering

problems [32, 33]. Nonetheless, a complete coverage of requirements dictated by practical applications still lacks in

both cases. For indirect methods, homotopically continuing a reference solution heavily penalizes computational times.

For direct methods, polynomial shape functions cannot approximate non-regular dynamics accurately; discontinuities,

however, characterize the optimal control profile in a vast majority of dynamical environments, hence the need for

approaches tailored to the specific problem.

In this complex framework, a major breakthrough is represented by the work of Fahroo and Ross: tenet of their
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research is the existence of a connection between the covectors of an OCP and the multipliers solving the corresponding

NLP [34]; such nexus is referred to as Covector Mapping Principle (CMP). Its mathematical formulation, called Covector

Mapping Theorem (CMT), varies with the employed transcription scheme. CMP is proven to exactly map Lagrange

multipliers to discrete costates only for some pseudospectral methods, such as the Gauss-Pseudospectral [35] method

and the Radau-Pseudospectral method [36]. Quadrature weights are employed to build the mapping between multipliers

and costates. CMT has been previously used either to verify optimality of solution obtained from a direct method [37]

or to obtain accurate guess costates for an indirect formulation from the equivalent direct one. ISS zero-propellant

maneuver [38] constitutes a valuable example in this context.

Within indirect methods, CMT-based guess generation represents a promising approach. Indeed, the idea of

warm-starting an indirect method using a direct method has been proposed by Bulirsch [39], however prior to the

derivation of the CMT made by Ross [34]. In addition, if the original problem is reformulated as a convex one,

guesses for the indirect solver are generated quickly and reliably, as demonstrated in [40]; in this last case, however,

the exactness provided by the CMT has not been taken into account. In this work we propose to use an exact CMT,

mainly thought for verification purposes, to combine convex and indirect methods into a hybrid algorithm. The first

and main contribution of this paper is the development of a hybrid algorithm to solve the Powered Descent Guidance

problem for a pinpoint landing formulation. As second contribution, we improve a previously-developed purely indirect

approach based on homotopic continuation and apply it to the PDG problem. We then compare the performances of

the original hybrid approach with the fully indirect homotopy-based algorithm; we demonstrate the supremacy of the

proposed convex-indirect scheme over the state-of-art homotopic approach. For what concerns the hybrid strategy, the

PDG problem is transcribed and solved first with an hp Radau-Pseudospectral method. Such direct step exploits a

convexified formulation of the problem: successive convexifications to handle free final time are combined with the

dynamics of the losslessly convexified formulation of the problem to handle the non-convex annular thrust constraint.

The PDG OCP formulation as convex optimization problem ensures evaluating a guess with reduced computational

times and convergence guarantees; the employed Radau-Pseudospectral method is chosen for its unique mapping

properties between Lagrange multipliers and discrete costates [36]. The free-final-time formulation is necessary within

the PDG problem as mass consumption is unimodal with respect to time of flight [6]; such formulation turns the linear

dynamical constraints associated with the losslessly covexified PDG OCP into nonlinear, hence the need for successive

convexifications. The following indirect step is based on a single shooting exploiting the analytical Jacobian of the

dynamics; a switching detection technique is employed to integrate the primal-dual system with high accuracy over the

bang-bang control profile. The indirect single shooting allows to cope with uncertainty over the number of switches

whilst ensuring that the solution coincides with the theoretical bang-bang control profile. Indeed, the PDG OCP admits

at maximum two switches, as analytically and practically demonstrated in literature [41, 42]; the use of a single shooting

minimizes the dimension of the solved problem while further improving the convex step accuracy. Dynamics’ analytical
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Jacobian increases STM propagation accuracy when compared its numerical counterpart, resulting in a more robust

correction step within the shooting.

Considering instead the homotopy-based algorithm, the objective function of the original formulation is generalized to a

quadratic functional, and the corresponding optimal PDG problem is solved iteratively. The same shooting technique

used for the indirect step of the hybrid approach is employed for each subproblem of the homotopy; primal-dual

dynamics, analytical Jacobians and the switching detection technique are modified according to the generalized quadratic

objective function. The chosen homotopic path gradually increases steepness in the optimal control profile, ensuring

successful continuation of the OCP with reduced number of homotopic steps; use of analytical Jacobians is motivated

by the same reasoning of the previous paragraph.

An overview of the contents division is here provided. In Sec. II the Optimal Control Problem with its dual Hamiltonian

augmentation is provided and specialized for the Powered Descent Guidance problem. Section III is focused on the

indirect method used to solve the problem outlined in Sec. II: the shooting approach is explained along with the

techniques employed to integrate the bang-bang profile. Section IV develops the purely indirect algorithm, introducing the

homotopic continuation scheme and the quadratic objective function characterizing the generic homotopic subproblem.

In Sec. V the hybrid algorithm is presented and analyzed, providing a deep-dive into the guess-generation system

based on the direct convex approach: the global PS method with relative CMT, the employed hp collocation scheme

and the adopted convexification procedure are sequentially explained. Multipliers-to-costates mapping completes the

section. In Sec. VI firstly performances of the hybrid technique and of the homotopic approach are compared; then,

for what concerns the hybrid algorithm, accuracy improvements due to the indirect step with respect to the direct one

are presented; finally, hybrid algorithm robustness is tested with two Monte-Carlo analyses. Conclusions are drawn in

Sec. VII.

II. Optimal Powered Descent Guidance Problem
A. Optimal Control Problem and Hamiltonian Augmentation

Throughout the paper the notation is such that a boldface symbol indicates a vector, and the lightface form of the

same symbol indicates the magnitude of this vector.

Let the analyzed physical system be autonomous, characterized at each 𝑡 ∈ [𝑡0, 𝑡 𝑓], with 𝑡0 assumed equal to 0, by the

state 𝒙(𝑡) ∈ R𝑛, and by the control 𝒖(𝑡) ∈ R𝑚. States belong to space of continuous functions defined over [0, 𝑡 𝑓],

namely 𝐶 ( [0, 𝑡 𝑓],R𝑛); controls are almost-everywhere continuous functions and belong to 𝐶 ( [0, 𝑡 𝑓] −𝑄𝑡 ,R
𝑚), where

𝑄𝑡 contains the instants which control is discontinuous at. Let us consider fixed initial conditions for all states and fixed

final conditions for the first k states. The subscripts (·)0 and (·) 𝑓 denote the quantity (·) evaluated respectively at initial
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and final time. The boundary conditions (BCs) therefore read

𝒙0 = �̄�0 and 𝑥𝑖, 𝑓 = 𝑥𝑖, 𝑓 , 𝑖 = 1, . . . , 𝑘 (1)

Given the right-hand side (RHS) 𝒇 : R𝑛+𝑚 → R𝑛, the corresponding dynamical constraints dictate the flow of the initial

states, and read

¤𝒙 = 𝒇 (𝒙, 𝒖) with 𝑡 ∈ [0, 𝑡 𝑓] (2)

where the dependency of states and controls with respect to time has been dropped for notation ease.

Moreover, defining the scalar function 𝑔𝑢 : R𝑚+1 → R, 𝒖 shall satisfy the scalar pure control constraint expressed by

𝑔𝑢
(
𝒖, 𝑡

)
≤ 0 with 𝑡 ∈ [0, 𝑡 𝑓] (3)

A control profile 𝒖(𝑡) satisfying Eq. (3) is said to belong to the set of admissible controlsU ⊆ R𝑚.

At last, let us introduce the cost function, or, more precisely, the cost functional [43], J : 𝐶 ( [0, 𝑡 𝑓],R𝑛) × 𝐶 ( [0, 𝑡 𝑓] −

𝑄𝑡 ,R
𝑚) × R→ R . The cost function, with some abuse of notation regarding its domain, is defined as

J (𝒙, 𝒖, 𝑡 𝑓) �
∫ 𝑡 𝑓

0
L
(
𝒙, 𝒖, 𝑡

)
d𝑡 (4)

where L : R𝑛+𝑚+1 → R is referred to as path (or running) cost.

Under the aforementioned assumptions, the Optimal Control Problem (OCP) is formalized by

min
𝒖
J
(
𝒙, 𝒖, 𝑡 𝑓

)
s.t.



¤𝒙 = 𝒇
(
𝒙, 𝒖

)
𝑔𝑢

(
𝒖, 𝑡

)
≤ 0

𝒙0 = �̄�0

𝑥𝑖, 𝑓 = 𝑥𝑖, 𝑓 , 𝑖 = 1, . . . , 𝑘

(5)

To dualize the problem we shall introduce the costates; it is furthermore convenient to define the Hamiltonian. Costates

at generic instant 𝑡 are indicated by 𝝀(𝑡) ∈ R𝑛; the HamiltonianH : R2𝑛+𝑚+1 → R is defined according to

H
(
𝒙, 𝒖, 𝝀, 𝑡

)
� L

(
𝒙, 𝒖, 𝑡

)
+ 𝝀T 𝒇

(
𝒙, 𝒖

)
(6)

Remark 1: Costates have been introduced to define the Hamiltonian; actually, they are defined as the continuous-time

multipliers of the dynamical constraints, rearranged as 𝒇 (𝒙, 𝒖) − ¤𝒙 = 0. Handling Problem (5) requires indeed an
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augmented version of the cost functional J , built including the dynamical constraints; the interested reader is referred

to [2] for further details.

The first-order optimality necessary conditions can be obtained combining the Euler-Lagrange (EL) equations

for the OCP and the Pontryagin’s Minimum Principle (PMP) [2, 44], the former consisting in costate dynamics and

transversality conditions (TCs), i.e. boundary conditions on costates and Hamiltonian. The necessary conditions read



State dynamics: ¤𝒙 = ∇𝝀H

Costate dynamics: ¤𝝀 = −∇𝒙H � 𝒇_

PMP: 𝒖∗ = argmin
𝒖 ∈ U

{
H

(
𝒙, 𝒖, 𝝀, 𝑡

)}
with BCs and TCs



𝒙0 = �̄�0

𝑥𝑖, 𝑓 = 𝑥𝑖, 𝑓 , 𝑖 = 1, . . . , 𝑘

_ 𝑗 , 𝑓 = 0, 𝑗 = 𝑘 + 1, . . . , 𝑛

H 𝑓 = 0

(7)

Formulation in (7) corresponds to a Two-Point Boundary Value Problem (TPBVP) as the optimal control 𝒖∗ is expressed

as function of system states and costates, i.e. the problem primal-dual variables.

The developed set of equations is now applied to the Powered Descent Guidance problem.

B. Powered Descent Guidance problem formulation

A 3-DoF scenario is now considered; a Vertical Takeoff-Vertical Landing vehicle is accounted for such purpose and

the parameters associated with propulsion system performances are chosen coherently with standard propulsion systems.

Aerodynamic forces are neglected and gravity field is modelled as constant. Vehicle motion is referred to a cartesian

Downrange-Crossrange-Altitude (DCA) reference frame, centered in the landing site location. Altitude is alternatively

referred to as Height. Assembling state as 𝒙 � [𝒓T, 𝒗T, 𝑚]T, dynamics results

¤𝒙 =



𝒗

𝑢𝑇
𝑇𝑚𝑎𝑥

𝑚
𝒊𝑇 + 𝒈

−𝛼 𝑢𝑇


� 𝒇

(
𝒙, 𝑢𝑇 , 𝒊𝑇

)
where 𝛼 =

𝑇max
𝐼𝑠𝑝𝑔0

and 𝒈 =



0

0

−𝑔0


(8)

Specific impulse 𝐼𝑠𝑝 = 320 𝑠 corresponds to a semicryogenic architecture [45], 𝑔0 = 9.807𝑚/𝑠2 is sea level gravity

acceleration. Thrust vector versor 𝒊𝑇 and non-dimensional thrust magnitude 𝑢𝑇 constitute problem control variables.

Both initial and final position and velocity vectors are assigned, while mass is provided at the beginning only, as its final
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value shall be optimized. Boundary conditions, where the superscript (·)𝑛𝑑 denotes a non-dimensional quantity, read

𝒓𝑛𝑑0 =



0.24

0.12

1


, 𝒗𝑛𝑑0 =



−0.66

0

−1.98


, 𝒎𝑛𝑑

0 = 1 and 𝒓 𝑓 =



0

0

0


, 𝒗 𝑓 =



0

0

0


(9)

and the vector �̄�𝑛𝑑0 � [0.24, 0.12, 1,−0.66, 0,−1.98, 1]T gathers the non-dimensional initial conditions. Initial height is

considered as reference length; landing time of the free-final time quadratic objective function-optimal problem, outlined

in Sec. IV, is instead considered as reference time. Reference velocity results from the ratio of the two, while reference

mass corresponds to initial mass. Null final velocity and displacement with respect to the landing site characterize the

present landing formulation, namely a pinpoint landing. Initial conditions force trajectory to lie on a curved surface, as

represented in Fig. 1; therefore the analysis is applied to the most general case for the presented dynamical environment.

Thrust limitations are associated with lower throttling limit and upper thrust magnitude, hence

𝒊𝑦𝒊𝑥

𝒊𝑧
𝑟𝑧,0

𝑟𝑦,0

𝑟𝑥,0

𝒗0

Fig. 1 Example of a trajectory lying on a curved surface

𝑢𝑇,min ≤ 𝑢𝑇 ≤ 𝑢𝑇,max with


𝑢T,min = 0.3

𝑢T,max = 1
(10)
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Definition of 𝒊𝑇 as unit vector requires

𝑖𝑇 = 1 (11)

Usual aim of an optimal landing problem is the minimization of the propellant mass while ensuring the final landing

site is correctly targeted. Moreover, the direct step of the hybrid algorithm requires an Acceleration-Optimal (AO)

formulation, which is less intuitive than the Fuel Optimal (FO), but equivalent to it [6]. Indeed, the direct step makes

use of the lossless convex formulation of the 3-DoF PDG problem, which in turn requires the AO formulation. The cost

functional J is hence coherently formulated, thus reading

J =

∫ 𝑡 𝑓

0

𝑇max
𝑚

𝑢𝑇 d𝑡 (12)

with free final time 𝑡 𝑓 , since the objective function is unimodal with respect to 𝑡 𝑓 [6].

We would like to highlight that in this analysis we did not include typical path constraints such as the glideslope

limitation, constituting a pure state constraint that cannot be active over a finite interval of time as shown in literature

[46], nor the thrust direction constraint, which constitutes a pure control constraint, as they do not intrinsically alter the

TPBVP formulation in Eq. (7).

The Acceleration-Optimal PDG problem P can be hence formalized as

min
𝑢𝑇 ,𝒊𝑇 ,𝑡 𝑓

J s.t.



¤𝒙 = 𝒇
(
𝒙, 𝑢𝑇 , 𝒊𝑇

)
𝑢𝑇,min ≤ 𝑢𝑇 ≤ 𝑢𝑇,max

𝑖𝑇 = 1

BCs in Eqs. (9)

(13)

The HamiltonianH associated with Problem (13) is hereafter defined

H � 𝑇max
𝑚

𝑢𝑇 + 𝝀T
𝑟 𝒗 + 𝝀T

𝑣

(
𝑢𝑇

𝑇max
𝑚

𝒊𝑇 + 𝒈
)
− _𝑚 𝛼 𝑢𝑇 (14)

The PMP, therefore, provides

𝒊∗𝑇 (𝝀) = −
𝝀𝑣

_𝑣
and 𝑢∗𝑇 (𝒙, 𝝀) =



𝑢𝑇,min if 𝑆 > 0

∈ [𝑢𝑇,min, 𝑢𝑇,max] if 𝑆 = 0

𝑢𝑇,max if 𝑆 < 0

(15)

where the relation on the left stems from Lawden’s primer vector theory [47], while the function 𝑆 depends on
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primal-dual states only, and is referred to as switching function. Its expression, for the considered dynamics and 𝒊∗
𝑇

, reads

𝑆 (𝒙, 𝝀) = 𝑇max
𝑚
(1 − _𝑣) − _𝑚 𝛼 (16)

Since 𝑆 is non-null almost everywhere [41], 𝑢∗
𝑇

is discontinuous, then referred to as bang-bang.

Both primal and dual dynamical constraints can be reformulated employing Eqs. (15) and (16), according to the

following

¤𝒙 = 𝒇
(
𝒙, 𝝀

)
=



𝒗

−𝑢∗
𝑇

𝑇𝑚𝑎𝑥

𝑚

𝝀𝑣

_𝑣
+ 𝒈

−𝛼 𝑢∗
𝑇


and ¤𝝀 = 𝒇_ (𝒙, 𝝀) =



03x1

−𝝀𝑟
𝑢∗
𝑇
𝑇max

𝑚2 (1 − _𝑣)


(17)

Problem in (13) is finally dualized, and the TPBVP embedding the PMP is outlined here


¤𝒙 = 𝒇 (𝒙, 𝝀)

¤𝝀 = 𝒇_ (𝒙, 𝝀)
with BCs



𝒙𝑛𝑑0 = �̄�𝑛𝑑0

𝒓 𝑓 = 03×1

𝒗 𝑓 = 03×1

_𝑚, 𝑓 = 0

H 𝑓 = 0

(18)

Note that, whereas the benchmark presented here is well-known, and therefore useful to understand the behavior of the

proposed methodology, the use of a higher-fidelity model for the dynamics (e.g. including the rocket’s rotational degrees

of freedom) rapidly increases the complexity of retrieving the optimal control by using the PMP, and is therefore beyond

the scope of this paper.

III. Acceleration-Optimal PDG Indirect Single Shooting

The present section deepens the analysis of the shooting method employed to solve Problem (18), along with the

techniques to correctly handle the bang-bang control profile. A technique built on the legacy of [14], developed for

low-thrust optimization, is applied to the vacuum PDG dynamics.

A. Single shooting technique

States 𝒙 and costates 𝝀 can be grouped in the vector 𝒚 =
[
𝒙T, 𝝀T]T ∈ R14. Let 𝝋𝒚 ( [�̄�0, 𝝀0] , 0; 𝑡) denote the flow

[48] of the initial primal-dual states according to dynamics defined in Problem (18). It results 𝒚 � 𝝋𝒚 ( [�̄�0, 𝝀0] , 0; 𝑡),
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therefore 𝒚 = 𝒚 (𝒚0, 𝑡) = 𝒚 (𝝀0, 𝑡) since initial states and time are fixed. The TPBVP can be recast in PI as follows

Find [𝝀T
0 , 𝑡 𝑓]

T such that 𝒚(𝑡) satisfies



𝒓
(
𝝀0, 𝑡 𝑓

)
= 03×1

𝒗
(
𝝀0, 𝑡 𝑓

)
= 03×1

_𝑚
(
𝝀0, 𝑡 𝑓

)
= 0

H
(
𝝀0, 𝑡 𝑓

)
= 0

(19)

The employed approach consists of an indirect single shooting. First, initial costates and final time are guessed,

and a high-order explicit integration scheme is used to propagate the primal-dual dynamics until final time: the initial

guesses are indeed ’shot’. Secondly, the violation of terminal conditions 𝚫 𝑓 ∈ R8 is evaluated, and used to correct initial

guesses.

The propagation is performed using an 8th order Dormand-Prince Runge-Kutta fixed-step integrator equipped with

a switching detector; such choice is justified by the nature of the optimal solution: since the dynamics are locally

non-regular, the multi-step integrator can not handle the local non-continuous control profile correctly.

As far as a corrector step is considered, constraints on final conditions are strongly nonlinear, therefore an analytical

first-order approximation is employed to robustly correct the initial states and time, avoiding unnecessary numerical

approximations. Let the superscript (·)𝑘𝑚 mark the quantity (·) estimated at the generic 𝑘 th
𝑚 iteration of the single

shooting main loop. Let the vector 𝚫𝑘𝑚
0 ∈ R8 gather the approximated deviations of initial conditions at step 𝑘𝑚 from

the solution. The following equation defines the linearized mapping from 𝚫𝑘𝑚
0 to 𝚫𝑘𝑚

𝑓
.

𝚫𝑘𝑚
𝑓
�



𝛿𝒓 𝑓

𝛿𝒗 𝑓

𝛿_𝑚, 𝑓

𝛿H 𝑓



𝑘𝑚

=



𝚽𝝀,[𝒓 ,𝒗,_𝑚 ]

¤𝒓

¤𝒗

¤_𝑚

∇T
𝒚H 𝑓 𝚽𝝀,𝒚

¤H 𝑓



𝑘𝑚 
𝛿𝝀0

𝛿𝑡 𝑓



𝑘𝑚

� J𝑘𝑚


𝛿𝝀0

𝛿𝑡 𝑓



𝑘𝑚

� 𝚫𝑘𝑚
0 (20)

Block 1 Block 2

The State Transition Matrix (STM) 𝚽 is defined in the following paragraph. The Jacobian of the final constraints

with respect to the free variables, here represented by J𝑘𝑚 , is built using two blocks.

1. Block 1 - Flow-related components

Given a reference trajectory and the initial perturbation 𝛿𝒚0, the STM 𝚽(𝑡0, 𝑡) maps 𝛿𝒚(𝑡) over [0, 𝑡] according to

𝛿𝒚(𝑡) � 𝚽(𝑡0, 𝑡) 𝛿𝒚0. The STM constitutes the first-order approximation of the perturbations’ dynamics; given the 𝑛th

order identity matrix I𝑛×𝑛, if the primal-dual states belong to 𝐶1 ([0, 𝑡 𝑓],R14) , its components obey to the following
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dynamics [49] 
¤𝚽(𝑡0, 𝑡) = J𝒚𝑭(𝒚) 𝚽(𝑡0, 𝑡)

𝚽(𝑡0, 𝑡0) = I14×14

where 𝑭(𝒚) �


𝒇 (𝒚)

𝒇_ (𝒚)

 (21)

Block 1 of J𝑘𝑚 employs 𝚽𝝀,[𝒓 ,𝒗,_𝑚 ] for the first upper sub-block, namely the components of 𝚽 mapping perturbations

of costates to perturbations of position, velocity and comass _𝑚. The lower sub-block, chains 1) ∇𝒚H 𝑓 which identifies

the dependency of final H with respect to the augmented states and 2) 𝚽𝝀,𝒚 , that maps perturbations on costates to

perturbations on final augmented state.

For the Acceleration-Optimal formulation, the primal-dual dynamics Jacobian is provided by

J𝒚𝑭 =



03x3 I3x3 03x1 03x3 03x3 03x1

03x3 03x3 𝛀𝑣,𝑚 03x3 𝛀𝑣,_𝑣
03x1

01x3 01x3 0 01x3 01x3 0

03x3 03x3 03x1 03x3 03x3 03x1

03x3 03x3 03x1 −I3x3 03x3 03x1

01x3 01x3 Ω_𝑚 ,𝑚 01x3 𝛀_𝑚 ,_𝑣
0



,



𝛀𝑣,𝑚 =
𝑇max𝑢

∗
𝑇

𝑚2
𝝀𝑣

_𝑣

𝛀𝑣,_𝑣
=
𝑇max𝑢

∗
𝑇

𝑚

(
− I3x3
_𝑣
+
𝝀𝒗𝝀

T
𝒗

_3
𝑣

)
Ω_𝑚 ,𝑚 = −2

𝑇max𝑢
∗
𝑇

𝑚3
(
1 − _𝑣

)
𝛀_𝑚 ,_𝑣

= −
𝑇max𝑢

∗
𝑇

𝑚2
𝝀T
𝑣

_𝑣

(22)

2. Block 2 - Final time-related components

Block 2 components are trivial: variation of the time horizon leads, in the first-order approximation, to a variation in

final conditions proportional to the total time derivatives. In such fashion, the variation of the Hamiltonian is again

composed, asH 𝑓 = H
(
𝒚 𝑓

)
; therefore ¤H 𝑓 = ∇T

𝒚H 𝑓 ¤𝒚.

The corrector exploits the constraints’ Jacobian to correct the initial condition estimation, using therefore a Newton-

Raphson method to solve iteratively Problem (19). The solution at the generic 𝑘 th
𝑚 step solves the system

J𝑘𝑚


𝝀0

𝑡 𝑓


𝑘𝑚

= J𝑘𝑚


𝝀0

𝑡 𝑓


𝑘𝑚−1

− b 𝚫𝑘𝑚
𝑓

(23)

where the fixed scalar b ∈ [0, 1] is tuned to define the radius of the trust region. The loop is stopped when
𝚫𝑘𝑚

0


∞
< tol,

being tol fixed to tol = 10-5. The correction step reported in Eq. (23) and used across this work allows to include

the free-final-time contributions within the Fuel-Optimal-equivalent problem formulation, expanding the original Fuel

Optimal formulation in [14].
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Remark 2: Given 𝒛 �
[
𝒚T,vec(𝚽)T

]T where vec transforms a matrix into a column-wise vector, the augmented

state dynamics shall be further augmented propagating STM according to

¤𝒛 =


¤𝒚

vec( ¤𝚽)

 =


𝑭(𝒚)

vec
(
J𝒚𝑭𝚽

)
 � F (𝒛) (24)

Propagation of the STM is possible only numerically, and an analytical form is used for J𝒚𝑭. While the STM is required

for the corrector step, number of its components grows quadratically with the number of states. For our application,

𝒛 ∈ R210, since vec (𝚽) ∈ R196; using an implicit propagator results in demanding computational time requirements.

Remark 3: STM dynamics in Eq. (21) is valid within thrusting arcs. At the generic switching time 𝑡sw, instead,

Jacobian of primal-dual dynamics is discontinuous. Jacobian Ψ(𝑡sw) � J𝒚 (𝑡−sw ) 𝒚
(
𝑡+sw

)
handles the discontinuity according

to

𝚽 (0, 𝑡) = 𝚽(𝑡+sw,𝑡 )Ψ(𝑡sw)𝚽(0, 𝑡−sw) (25)

and is computed with the following relation [49]

Ψ(𝑡sw) = I14×14 +
[
¤𝒚
(
𝑡+sw

)
− ¤𝒚

(
𝑡−sw

) ] ∇T
𝒚 𝑆 (𝑡sw)
¤𝑆 (𝑡sw)

(26)

Equation (25) may be applied multiple times in case multiple switches are present over the time domain; ¤𝑆 is instead

computed in the same fashion as ¤H , i.e. ¤𝑆 � ∇T
𝒚 𝑆 ¤𝒚.

B. Switching detection approach

The described technique requires a switching detection routine. The reason for such claim is twofold: 1) correction

accuracy benefits from accurately computing the STM and, consequently, from accurately estimating the switching

time; 2) propagation accuracy of states and costates benefits from accurate evaluation of the switching time: states and

costates do not belong to 𝐶∞ with respect to time at switching points, due to discontinuities in the optimal control profile.

Therefore, as previously mentioned, non-stiff single-step and multi-step integrators can not handle such discontinuities;

rather than using a stiff integrator, in this work we employ the switching detection to place an integration node exactly

at the switching point, hence allowing a non-stiff single step to integrate the primal-dual dynamics minimizing the

integration error across the control switch.

During the integration, the sign of the switching function is monitored: according to Eq. (15), 𝑆 changes sign

whenever 𝑢∗
𝑇

switches. If a sign change of 𝑆 is detected during the generic step [𝑡1, 𝑡2], a Newton-Raphson zero-finding

algorithm looks for the zero of 𝑆 in the interval [𝑡1, 𝑡2]; at the generic 𝑘 𝑡ℎ𝑠 iteration of the switching time detection loop,

12



therefore, it simply reads

𝑡
𝑘𝑠
sw = 𝑡

𝑘𝑠−1
sw −

𝑆

(
𝑡
𝑘𝑠−1
sw

)
¤𝑆
(
𝑡
𝑘𝑠−1
sw

) (27)

and the algorithm is considered converged when Δ𝑘𝑠 𝑡sw � 𝑡
𝑘𝑠
sw − 𝑡𝑘𝑠−1

sw < tol. tol in this case equals 10 eps, where

eps is the machine epsilon.

The overall integration workflow is explained in Algorithm 1. The superscript 𝑘 indicates the generic step of the

integration loop, F (1) and F (0) denote respectively the dynamics corresponding to maximum control and to idle control.

In Algorithm 1, 𝒛0 is built using the known initial state 𝒙0, the assigned STM 𝚽(𝑡0, 𝑡0). Initialization of 𝝀0 is instead

complex, due to the ill-conditioning of the primal-dual dynamics. The two guess-generation techniques to counteract

such problematique are described in the following two sections. The former exploits an indirect homotopy, and is based

on state-of-the-art homotopy techniques well employed both in rocket descent [17] and low-thrust optimization [14]; the

latter exploits the convex direct step and the Covector Mapping Theorem, thus providing the novel hybrid method.

Algorithm 1 Integration workflow with external switching detection technique

𝒛𝑘 ← 𝒛0 𝑆𝑘 ← 𝑆(𝒛𝑘)
while 𝑡𝑘 < 𝑡 𝑓 do

if 𝑆𝑘 > 0 then F 𝑘 ← F (0) ; else if 𝑆𝑘 < 0 then F 𝑘 ← F (1) ; end if
𝒛𝑘+1 ← 𝝋𝑘

𝒛 (𝑡𝑘 , 𝑡𝑘+1) ⊲ 𝝋𝑘
𝒛 (𝑡𝑘 , 𝑡𝑘+1) � 𝒛

(
𝒛𝑘 , 𝑡𝑘 ; 𝑡𝑘+1

)
is 𝒛 flow from 𝑡𝑘 through F 𝑘

𝑆𝑘+1 ← 𝑆(𝒚𝑘+1) ⊲ 𝑡𝑘+1 is arbitrarily chosen as 𝑡𝑘 + 0.1 𝑠

if sign(𝑆𝑘+1) = sign(𝑆𝑘) then
𝑡𝑘 ← 𝑡𝑘+1 𝑧𝑘 ← 𝑧𝑘+1

else if sign(𝑆𝑘+1) ≠ sign(𝑆𝑘) then
find 𝑡sw solving 𝑆 = 0, 𝑡guess

sw = 𝑡𝑘 ⊲ See Sec. III.B for details[
𝒚𝑘+1,vec

(
𝚽𝑘+1
−

) ]T← 𝝋𝑘
𝒛 (𝑡𝑘 , 𝑡sw)

𝚽𝑘+1 = 𝚿(𝑡sw) 𝚽𝑘+1
− ⊲ See Eq. (26) for 𝚿 evaluation

𝑡𝑘 ← 𝑡sw 𝑧𝑘 ←
[
𝒚𝑘+1,vec

(
𝚽𝑘+1) ]T Impose F 𝑘 depending on the detected switch type

end if
end while

IV. Indirect homotopy-based guess generation

The present section presents the generic homotopic subproblem, then outlines the continuation scheme employed for

the fully-indirect algorithm.

A. Quadratic PDG Problem and shooting formulation updates

Let the quantity (·)h denote the generic variable (·) associated with the generalized quadratic formulation here

presented.

The machinery developed in the previous sections needs to be partially reformulated to increase problem convergence

basin. Indeed, a generalized cost functional is introduced: setting the homotopy parameter Y ≠ 1 in the homotopic
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cost functional in Eq. (28), convergence robustness of the PDG dual formulation increases with respect to the

Acceleration-Optimal case.

Jh =

∫ 𝑡 𝑓

0

[
(1 − Y)

(
𝑇max
𝑚

𝑢𝑇

)2
+ Y𝑇max

𝑚
𝑢𝑇

]
d𝑡 where Y ∈ [0, 1] (28)

For Y = 0 the PDG problem is purely quadratic, and is therefore referred to as Energy Optimal (EO); for Y = 1 the

original Acceleration-Optimal formulation is retrieved, hence the lower convergence performances.

The Hamiltonian is modified accordingly, and, if no thrust limitations are accounted, the problem features finite

optimal thrust magnitude 𝑢𝑡ℎ
𝑇

. Both read as follows.

Hh = (1 − Y)
(
𝑇max
𝑚

𝑢𝑇

)2
+ Y𝑇max

𝑚
𝑢𝑇 + 𝝀T

𝑟 𝒗 + 𝝀T
𝑣

(
𝑢𝑇

𝑇max
𝑚

𝒊𝑇 + 𝒈
)
− _𝑚 𝛼 𝑢𝑇

𝑢𝑡ℎ
𝑇
(𝒙, 𝝀, Y) = 1

2(1 − Y)

[
𝑚2

𝑇2
max

_𝑚𝛼 +
𝑚

𝑇max
(_𝑣 − Y)

] (29)

hence the application of the PMP provides Eq. (30); it constrains 𝑢𝑇 in Eq. (29), but leaves unaltered the optimal thrust

direction outlined in Eq. (15).

𝑢∗𝑇,h (𝒙, 𝝀, Y) =



𝑢𝑇,min if 𝑢𝑡ℎ
𝑇

< 𝑢𝑇,min

𝑢𝑡ℎ
𝑇

if 𝑢𝑡ℎ
𝑇
∈ [𝑢𝑇,min, 𝑢𝑇,max]

𝑢𝑇,max if 𝑢𝑡ℎ
𝑇

> 𝑢𝑇,max

(30)

The corresponding TPBVP reads


¤𝒙 = 𝒇h (𝒙, 𝝀, Y)

¤𝝀 = 𝒇_,h (𝒙, 𝝀, Y)
with BCs



𝒙𝑛𝑑0 = �̄�𝑛𝑑0

𝒓 𝑓 = 03×1

𝒗 𝑓 = 03×1

_𝑚, 𝑓 = 0

Hh, 𝑓 = 0

(31)

While 𝒇ℎ differs from 𝒇 for the optimal thrust magnitude program only, 𝒇_,ℎ also features a different functional form
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with respect to 𝒇_.

𝒇_,h (𝒙, 𝝀, Y) =



03x1

−𝝀𝑟

𝑢∗
𝑇,h 𝑇max

𝑚2 (Y − _𝑣) + 2

(
𝑢∗
𝑇,h 𝑇max

)2

𝑚3 (1 − Y)


(32)

Let us refer to the three thrust levels outlined in Tab. 1.

Table 1 Thrust levels for generalized Jℎ

Thrust level 𝑢∗
𝑇,h

(1) 𝑢min

(2) 𝑢𝑡ℎ
𝑇

(3) 𝑢max

With respect to the Acceleration Optimal, the generalized formulation features arcs propelled by non-constant thrust:

𝑢𝑡ℎ
𝑇

changes continuously and the interval [𝑢𝑡 ,min, 𝑢𝑡 ,max] has non-null duration, hence constant thrust arcs are patched

by non-constant thrust ones, namely arcs of thrust level (2).

The generalized single shooting problem PI,h is reformulated as follows.

Find [𝝀T
0 , 𝑡 𝑓]

T such that 𝒚h (𝑡) satisfies



𝒓
(
𝝀0, 𝑡 𝑓

)
= 03×1

𝒗
(
𝝀0, 𝑡 𝑓

)
= 03×1

_𝑚
(
𝝀0, 𝑡 𝑓

)
= 0

Hh
(
𝝀0, 𝑡 𝑓

)
= 0

(33)

The correction step machinery is not modified, and the related Jacobian Jh features the updated dynamics RHS and

Hamiltonian.

The propagation step, instead, requires Jacobians with different functional forms depending on the thrust level.
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Specifically, for thrust levels (1) and (3), the Jacobian of dynamics reads

J(1,3)𝒚 𝑭ℎ =



03x3 I3x3 03x1 03x3 03x3 03x1

03x3 03x3 𝛀(1,3)𝑣,𝑚 03x3 𝛀(1,3)
𝑣,_𝑣

03x1

01x3 01x3 0 01x3 01x3 0

03x3 03x3 03x1 03x3 03x3 03x1

03x3 03x3 03x1 −I3x3 03x3 03x1

01x3 01x3 Ω
(1,3)
_𝑚 ,𝑚

01x3 𝛀(1,3)
_𝑚 ,_𝑣

0



,



𝛀(1,3)𝑣,𝑚 =
𝑇max𝑢

∗
𝑇,h

𝑚2
𝝀𝑣

_𝑣

𝛀(1,3)
𝑣,_𝑣

=
𝑇max𝑢

∗
𝑇,h

𝑚

(
− I3x3
_𝑣
+
𝝀𝒗𝝀

T
𝒗

_3
𝑣

)
Ω
(1,3)
_𝑚 ,𝑚

= −2
𝑢∗
𝑇,h 𝑇max

𝑚3 (Y − _𝑣) +

−6

(
𝑢∗
𝑇,h 𝑇max

)2

𝑚4 (1 − Y)

𝛀(1,3)
_𝑚 ,_𝑣

= −
𝑇max𝑢

∗
𝑇,h

𝑚2
𝝀T
𝑣

_𝑣

(34)

For thrust level (2), instead, the non-null gradient components of 𝑢∗
𝑇,h = 𝑢𝑡ℎ

𝑇
shall be taken into account; therefore the

Jacobian corresponding to thrust level (2) is provided by the following equations

J(2)𝒚 𝑭ℎ =



03x3 I3x3 03x1 03x3 03x3 03x1

03x3 03x3 𝛀(2)𝑣,𝑚 03x3 𝛀(2)
𝑣,_𝑣

𝛀(2)
𝑣,_𝑚

01x3 01x3 Ω
(2)
𝑚,𝑚 01x3 𝛀(2)

𝑚,_𝑣
Ω
(2)
𝑚,_𝑚

03x3 03x3 03x1 03x3 03x3 03x1

03x3 03x3 03x1 −I3x3 03x3 03x1

01x3 01x3 Ω
(2)
_𝑚 ,𝑚

01x3 𝛀(2)
_𝑚 ,_𝑣

Ω
(2)
_𝑚 ,_𝑚



,



𝜕𝑢∗
𝑇,h

𝜕𝑚
=

1
2(1 − Y)

[
2

𝑚

𝑇2
max

_𝑚𝛼 +
1

𝑇max
(_𝑣 − Y)

]
∇_𝑣

𝑢∗
𝑇,h =

1
2(1 − Y)

𝑚

𝑇max

𝝀𝑣
_𝑣

𝜕𝑢∗
𝑇,h

𝜕_𝑚
=

1
2(1 − Y)

𝑚2

𝑇2
max

𝛼



𝜕 ¤𝑣
𝜕𝑢∗

𝑇,h
= −𝑇max

𝑚

𝝀𝑣

_𝑣

𝜕 ¤_𝑚
𝜕𝑢∗

𝑇,h
=

𝑇max

𝑚2 (Y − _𝑣) + 4
𝑢∗
𝑇,h 𝑇

2
max

𝑚3 (1 − Y)

𝛀(2)𝑣,𝑚 = 𝛀(1,3)𝑣,𝑚 +
𝜕 ¤𝑣

𝜕𝑢∗
𝑇,h

𝜕𝑢∗
𝑇,h

𝜕𝑚
𝛀(2)

𝑣,_𝑣
= 𝛀(1,3)

𝑣,_𝑣
+ 𝜕 ¤𝑣
𝜕𝑢∗

𝑇,h
∇T
_𝑣
𝑢∗
𝑇,h 𝛀(2)

𝑣,_𝑚
=

𝜕 ¤𝑣
𝜕𝑢∗

𝑇,h

𝜕𝑢∗
𝑇,h

𝜕_𝑚

Ω
(2)
𝑚,𝑚 = −𝛼

𝜕𝑢∗
𝑇,h

𝜕𝑚
𝛀(2)

𝑚,_𝑣
= −𝛼∇T

_𝑣
𝑢∗
𝑇,h Ω

(2)
𝑚,_𝑚

= −𝛼
𝜕𝑢∗

𝑇,h

𝜕_𝑚

𝛀(2)
_𝑚 ,𝑚

= Ω
(1,3)
_𝑚 ,𝑚

+ 𝜕 ¤_𝑚
𝜕𝑢∗

𝑇,h

𝜕𝑢∗
𝑇,h

𝜕𝑚
𝛀(2)

_𝑚 ,_𝑣
= 𝛀(1,3)

_𝑚 ,_𝑣
+ 𝜕 ¤_𝑚
𝜕𝑢∗

𝑇,h
∇T
_𝑣
𝑢∗
𝑇,h 𝛀(2)

_𝑚 ,_𝑚
=

𝜕 ¤_𝑚
𝜕𝑢∗

𝑇,h

𝜕𝑢∗
𝑇,h

𝜕_𝑚

(35)

Remark 4: The presented formulas are valid as long as Y ≠ 1. The formulation corresponding to such value has

however already been treated in Sec. III, and it substitutes the quadratic PDG when Y = 1. Moreover, switching times

are substituted by saturation times; here the thrust profile is non-smooth, therefore a saturation detection is employed,

and the value of 𝑢𝑡ℎ
𝑇

is monitored; when it steps across a saturation value 𝑢𝑇,sat (may be either 𝑢𝑇,min or 𝑢𝑇,max), a

zero-finding algorithm finds 𝑡sat such that 𝑢𝑡ℎ
𝑇
(𝑡sat) − 𝑢𝑇,sat = 0. A Newton-Raphson method similar to the one described
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in Sec. III.B is employed for such purpose. However, since thrust magnitude is continuous, no Jacobian dynamics

discontinuity is present, hence no STM jump 𝚿 is added.

The propagation algorithm with saturation detection is summarized in Algorithm 2. The operator lev extracts

the thrust level from the theoretical optimal thrust magnitude, according to Eq. (30) and Tab. 1. The superscript of Fh

indicates the thrust level the augmented RHS corresponds to.

Algorithm 2 Integration workflow with external saturation detection technique

𝒛𝑘 ← 𝒛0 𝑢
𝑡ℎ,𝑘

𝑇
← 𝑢𝑡ℎ

𝑇
(𝒛𝑘)

while 𝑡𝑘 < 𝑡 𝑓 do
if 𝑢

𝑡ℎ,𝑘

𝑇
< 𝑢𝑇,min then F 𝑘

h ← F
(1)

h ; else if 𝑢
𝑡ℎ,𝑘

𝑇
> 𝑢𝑇,max then F 𝑘

h ← F
(3)

h ; else F 𝑘
h ← F

(2)
h ; end if

𝒛𝑘+1 ← 𝝋𝑘
h,𝒛 (𝑡

𝑘 , 𝑡𝑘+1) ⊲ 𝝋𝑘
h,𝒛 (𝑡

𝑘 , 𝑡𝑘+1) � 𝒛
(
𝒛𝑘 , 𝑡𝑘 ; 𝑡𝑘+1

)
is 𝒛 flow from 𝑡𝑘 through F 𝑘

h

𝑢
𝑡ℎ,𝑘+1
𝑇

← 𝑢𝑡ℎ
𝑇
(𝒚𝑘+1) ⊲ 𝑡𝑘+1 is arbitrarily chosen as 𝑡𝑘 + 0.1 𝑠

if lev(𝑢𝑡ℎ,𝑘+1
𝑇

) = lev(𝑢𝑡ℎ,𝑘
𝑇
) then

𝑡𝑘 ← 𝑡𝑘+1 𝑧𝑘 ← 𝑧𝑘+1

else if lev(𝑢𝑡ℎ,𝑘+1
𝑇

) ≠ lev(𝑢𝑡ℎ,𝑘
𝑇
) then

find 𝑡sat solving 𝑢𝑡ℎ
𝑇
− 𝑢𝑇,sat = 0, 𝑡guess

sat = 𝑡𝑘[
𝒚𝑘+1,vec

(
𝚽𝑘+1
−

) ]T← 𝝋𝑘
h,𝒛 (𝑡

𝑘 , 𝑡sw)

𝑡𝑘 ← 𝑡sw 𝑧𝑘 ←
[
𝒚𝑘+1,vec

(
𝚽𝑘+1) ]T Impose F 𝑘

h depending on the detected switch type
end if

end while

Solution and convergence properties of Problem in (31) depend on the specific functional form of Jh, which in

turn depends on the homotopic parameter Y. The single shooting converges in few steps for Y = 0, given arbitrary

initial conditions for both 𝝀0 and 𝑡 𝑓 . The purely quadratic problem is therefore used as first subproblem for the indirect

homotopy, described in the following subsection.

B. Homotopy-based purely indirect algorithm

The idea underlying the homotopy is straightforward: the solution of the 𝑘 th
h subproblem can be successfully used as

guess for the (𝑘h + 1)th, as long as the two problems are sufficiently similar. In the present case, the closer Y𝑘h to Y𝑘h+1,

the more similar the two subproblems. As suggested in literature [50], the sequence [Y1, . . . , Y𝑛+1] is taken as equally

spaced on a logarithmic scale, thus guaranteeing successful continuation for sufficiently small distance between Y𝑘h and

Y𝑘h+1. A correctly designed homotopy converges to the original problem, therefore it shall be Y𝑛+1 � 1; in addition, for

the suggested convergence properties of the PDG problem for Y = 0, it is chosen Y1 � 0.

The full indirect algorithm is schematized in the flowchart in Fig. 2. Notice the notatation PI,h (Y), as the problem

PI,h solved at each iteration changes with Y.

The presented homotopic scheme is capable of efficiently handling the reduced basin of convergence extension

of the Fuel-Optimal problem. Yet, as exposed later in the results Sec. VI, the number of required homotopic steps is
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Start
· Randomly generate

𝝀0
0 and 𝑡0

𝑓
> 0

· 𝑘h = 1

· 𝝀guess
0 = 𝝀𝑘h−1

0
· 𝑡guess

𝑓
= 𝑡

𝑘h−1
𝑓

· Y = Y𝑘h

Solve PI,h (Y)
Save solution
as 𝝀𝑘h

0 , 𝑡
𝑘h
𝑓

Y = 1

𝑘h = 𝑘h + 1

· 𝝀guess
0 = 𝝀𝑛0
· 𝑡guess

𝑓
= 𝑡𝑛

𝑓

Solve PI
Use PMP to

extract 𝑢∗
𝑇
, 𝒊∗

𝑇

End

No

Yes

Acceleration optimal indirect shooting

Homotopy-based guess generation loop

Fig. 2 Fully indirect homotopy-based algorithm overview

relevant; as a consequence, computational times of the guess generation mechanism widely overcome the time required

to solve PI.

The hybrid strategy discussed in the following section solves this issue.

V. Convex pseudospectral-based guess generation

The present section starts by presenting in Sec. V.A the Second-Order Cone Programming (SOCP) problems, and

the employed collocation scheme with relative Covector Mapping Theorem in Sec. V.B. It then develops the lossless

convex version of the Fuel-Optimal problem and the successive convexifications are applied to the transcribed version

of the problem to treat the free final time in Sec. V.C. The hybrid algorithm is completed in Sec. V.D and its schematic

overview provided in Fig. 4.

A. Second-Order Cone Programming

Second-Order Cone Programming problems make up a specific subclass of convex problems, and have recently

grown in popularity in trajectory optimization∗; indeed, they offer a feasible formulation for OCPs from different

dynamical environments [6, 26, 30, 51, 52].
∗Notation employed in this subsection partially clashes with the rest of the paper, and is limited to the summary of SOCP problems.
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Let 𝒙 momentarily denote a vector of parameters 𝒙 ∈ R𝑛. Let 𝝋 ∈ R𝑛 be the cost function coefficients vector; in addition,

𝑨𝑖 ∈ R𝑛𝑖×𝑛, 𝒃𝑖 ∈ R𝑛𝑖 , 𝒄𝑖 ∈ R𝑛, 𝒅𝑖 ∈ R, with 𝑖 = 1, . . . , 𝑚, are associated with quadratic inequality constraints, while

𝒑 ∈ R𝑝 , 𝑷 ∈ R𝑝×𝑛 and 𝒒 ∈ R𝑞 , 𝑸 ∈ R𝑞×𝑛 are respectively related to linear inequality and linear equality constraints†.

The general SOCP problem results then

min
𝒙∈R𝑛

𝝋T𝒙 s.t.



∥𝑨𝑖𝒙 + 𝒃𝑖 ∥2 ≤ 𝒄T
𝑖
𝒙 + 𝑑𝑖 𝑖 = 1, . . . , 𝑚

𝑷 𝒙 ⪯ 𝒑

𝑸 𝒙 = 𝒒

(36)

where the symbol ⪯ defines the component-wise inequality. The inequality ∥𝑨𝒙 + 𝒃∥2 ≤ 𝒄T𝒙 + 𝑑, with 𝑨 ∈ R𝑟×𝑛,

defines a generic second-order cone constraint: it indeed defines a second-order cone in R𝑟+1 for the variables 𝒚, 𝑡

obtained with the affine transformation 𝒚 = 𝑨𝒙 + 𝒃, 𝑡 = 𝒄T𝒙 + 𝑑. Fig. 3 provides a simplified representation of this

concept: the region of admissible couples [𝒚, 𝑡], with 𝒚 ∈ R2, is identified by the blue region, a cone in R3.

Fig. 3 Second order cone constraint in R3 : ∥𝒚∥2 ≤ 𝑡

Ideally, one could aim at transforming the problem via a lossless convexification, relaxing constraints or dynamics

in a convex equivalent and obtaining a different problem featuring the same optimal solution as the original one.

However, such result is not always possible; a more general approach, based on successive convexifications, helps in

this context: non-convex functions are convexified, and a convexify and optimize approach is iteratively applied until

solution converges to the desired one within prescribed tolerance. Our approach combines lossless convex terms and
†Linear inequality constraints actually define cones on orthants in n-dimensional spaces, thus can be seen as subsets of second-order cone

constraints; nonetheless, pure linear constraints are treated by solvers with dedicated approaches [53], thus linear inequalities are explicitly defined.
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successive convexifications: the lossless convexification is applied to the continuous-time version of the problem, while

the successive convexifications are applied to the transcribed equivalent.

B. hp Radau Pseudospectral Transcription scheme

A Legendre-Gauss-Radau (LGR) scheme is employed in this work: Lagrange polynomials approximate states and

controls, and are based on 1) the roots of the Legendre-Radau polynomials and 2) the right limit of the pseudospectral

time used for the integration.

For a global collocation approach, we introduce the pseudotime 𝜏 ∈ [−1, 1], mapped from the physical time according

to the following affine transformation

𝜏 =
2

𝑡 𝑓 − 𝑡0
𝑡 −

𝑡 𝑓 + 𝑡0
𝑡 𝑓 − 𝑡0

𝑡 ∈ [𝑡0, 𝑡 𝑓] (37)

the Legendre-Radau polynomial 𝑅𝑛 is built as

𝑅𝑛 (𝜏) = �̃�𝑛 (𝜏) + �̃�𝑛−1 (𝜏) (38)

where �̃�𝑛 is the 𝑛th order Legendre polynomial. Let 𝜏𝑘 be the 𝑘 th root of the polynomial in Eq. (38), and 𝑡𝑘 the

corresponding physical time. States 𝒙 ∈ R𝑛𝑠 are approximated by a summation of 𝑛 + 1 Lagrange polynomials 𝑃 of

degree 𝑛 according to

𝒙(𝑡) ≈
𝑛∑︁
𝑖=0

𝑿𝑖𝑃𝑖 (𝑡) 𝑃𝑖 (𝑡) =
𝑛∏

𝑘=0
𝑘≠𝑖

𝑡 − 𝑡𝑘
𝑡𝑖 − 𝑡𝑘 (39)

Time domain is indeed discretized in 𝑛 + 1 nodes. In Eq. (39), 𝑿𝑖 = 𝒙(𝑡𝑖) since Lagrange polynomials satisfy the

isolation property. The pseudospectral differential operator 𝑫 is obtained by differentiating with respect to 𝜏, and 𝑖th

column component relative to time 𝑡𝑘 is provided by

𝑫𝑘,𝑖 =
d𝑃𝑖

d𝜏
(𝜏𝑘) I𝑛𝑠×𝑛𝑠 =

𝑡 𝑓 − 𝑡0
2

¤𝑃𝑖 (𝑡𝑘) I𝑛𝑠×𝑛𝑠 (40)

Rescaling the differential operator from pseudotime to time, continuous-time dynamical constraints are approximated by

2
𝑡 𝑓 − 𝑡0

𝑫𝑖𝑿 − 𝒇 (𝑿𝑖 ,𝑼𝑖) = 0 𝑖 = 0, . . . , 𝑛 − 1 (41)

Remark 5: Dynamical constraints are reinforced at collocation points only: as far as LGR collocation is concerned,

𝜏 = 1 is not a root of 𝑅𝑛 (𝜏), thus dynamics is not reinforced at the corresponding physical instant, namely 𝑡 𝑓 = 𝑡𝑛.

Nonetheless, Lagrange base polynomials include the polynomial associated with final time: this 1) allows for reinforcing
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the boundary conditions at both time bounds, and 2) make the differentiation operator 𝑫 rectangular, with dimensions

𝑛 × (𝑛 + 1).

Using local collocation guarantees higher convergence rate for non-smooth solution [23] and alleviates computational

loads with respect to global collocation due to an increased sparsity of the matrix associated with the dynamics. Local

collocation can be developed by dividing the whole domain in segments, and employing over each segment the procedure

explained for the global collocation. The convex collocation scheme employed in this work, based on work in [24], is

therefore referred to as hp pseudospectral.

If time domain is subdivided in �̄� segments,
[
𝑡
𝑗

0 , 𝑡
𝑗
𝑝

]
denotes the 𝑖th segment, each discretized in 𝑝 + 1 nodes. Then

𝑿 𝑗

𝑖
𝑼 𝑗

𝑖

𝑗 = 1, . . . , �̄�

𝑖 = 0, . . . , 𝑝
(42)

identify the states and controls at the 𝑖th node of the 𝑗 th segment, respectively. The integral of the path cost features the

multiple segments division, as

∫ 𝑡 𝑓

0
L (𝒙, 𝒖, 𝑡) d𝑡 ≈

𝑡 �̄�𝑝 − 𝑡10
2�̄�

�̄�∑︁
𝑗=1

𝑝∑︁
𝑖=0

𝑤𝑖L
(
𝑿 𝑗

𝑖
,𝑼 𝑗

𝑖
, 𝑡

𝑗

𝑖

)
where 𝑤𝑖 =


2

𝑛 + 12 𝑖 = 0

(1 − 𝜏𝑖)
𝑛2 �̃�𝑛 (𝜏𝑖)2

𝑖 = 1, . . . , 𝑛 − 1
(43)

thus providing, if substituted in Eq. (4), the discrete cost function for the hp collocation J ℎ𝑝

𝑑
= J ℎ𝑝

𝑑
(𝑿ℎ𝑝 ,𝑼ℎ𝑝 , 𝑡ℎ𝑝).

The PS NLP problem can be then written as

min
𝑼ℎ𝑝∈R(𝑝+1)×𝑛

J ℎ𝑝

𝑑
(𝑿ℎ𝑝 ,𝑼ℎ𝑝 , 𝑡ℎ𝑝) s.t.



2
𝑡
𝑗
𝑝 − 𝑡 𝑗0

D 𝑗

𝑖+1𝑿
𝑗

𝑖
− 𝒇

(
𝑿 𝑗

𝑖
,𝑼 𝑗

𝑖

)
= 0

𝑔𝑢 (𝑼 𝑗

𝑖
, 𝑡

𝑗

𝑖
) ≤ 0


𝑗 = 1, . . . , �̄�

𝑖 = 0, . . . , 𝑝

Boundary conditions in Eq. (5)

𝑡
𝑗−1
𝑝 = 𝑡

𝑗

0

𝑿 𝑗−1
𝑝 = 𝑿 𝑗

0

 𝑗 = 2, . . . , �̄�

(44)

where the last two constraints make up for the linking conditions. In addition, for the same number of nodes 𝑝 in each

segment, the matrix 𝑫 is the same for all the segments; therefore

𝑫 𝑗 = 𝑫 (45)
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holds, and the index 𝑗 can be dropped.

The CMT for the pseudospectral scheme can be easily demonstrated for a single segment formulation, and is valid for

the hp pseudospectral scheme as well.

In the one segment case, the Lagrangian L̃ of the NLP reads

L̃ =
𝑡 𝑓 − 𝑡0

2

𝑛−1∑︁
𝑖=0

[
𝑤𝑖L

(
𝑿𝑖 ,𝑼𝑖 , 𝑡𝑖

)
+ 𝑀𝑖𝑔𝑢 (𝑼𝑖 , 𝑡𝑖)

]
−

𝑛−1∑︁
𝑖=0

𝚲T
𝑖

[
𝑫𝑖𝑿 −

𝑡 𝑓 − 𝑡0
2

𝒇
(
𝑿𝑖 ,𝑼𝑖

) ]
(46)

where 𝑀𝑖 and 𝚲𝑖 are the multipliers respectively related to pure control constraints and dynamical constraints at instant 𝑡𝑖 .

Dynamical constraints have been rescaled to mirror the quadrature applied exactly in the context of the continuous-time

OCP.

Optimality necessary conditions for the solution of Problem in (44), the Karush–Kuhn–Tucker (KKT) conditions, are

obtained by nulling the gradients of Eq. (46). The KKT conditions concerning stationarity with respect to 𝑿𝑖 ,𝑼𝑖 and 𝑡 𝑓

are reported in Eq. (47), where 𝑿0 is fixed, coherently with boundary conditions.

2
𝑡 𝑓 − 𝑡0

𝑫T
𝑖
𝚲 = 𝑤𝑖 ∇𝑿𝑖

L𝑖 + JT
𝑿𝑖

𝒇𝑖 𝚲𝑖 𝑖 = 1, . . . , 𝑛 − 1

0 = 𝑤𝑖 ∇𝑼𝑖
L𝑖 + JT

𝑼𝑖
𝒇𝑖 𝚲𝑖 + ∇T

𝑼𝑖
𝑔𝑢,𝑖 𝑀𝑖 𝑖 = 0, . . . , 𝑛 − 1

𝑫T
𝑛𝚲 = 0

𝜕

𝜕𝑡 𝑓

[
𝑡 𝑓 − 𝑡0

2

𝑛−1∑︁
𝑖=0

(
𝑤𝑖L𝑖 + 𝚲T

𝑖 𝒇𝑖 + 𝑀𝑖𝑔𝑢,𝑖
) ]

= 0

(47)

where 𝑫T
𝑖

is (𝑖 + 1)th row of matrix 𝑫T and 𝒇𝑖 � 𝒇 (𝑿𝑖 ,𝑼𝑖).

A Covector Mapping Theorem for the LGR collocation scheme is derivable by transcribing dynamics of the

Hamiltonian system of formulation in (7) with the same LGR collocation scheme outlined for the primal system; among

the resulting equations, the dynamical constraints and the boundary conditions of interest are reported followingly,

where �̃�𝑖 and ˜̀𝑖 are the discrete costates and discrete path multipliers at 𝑖th collocation point and 𝑫† is the differentiation

operator for the costates.

− 2
𝑡 𝑓 − 𝑡0

𝑫†
𝑖
�̃� = ∇𝒙L𝑖 + JT

𝒙 𝒇𝑖 �̃�𝑖 𝑖 = 1, . . . , 𝑛 − 1

0 = ∇𝒖L𝑖 + JT
𝒖 𝒇𝑖 �̃�𝑖 + ∇T

𝒖𝑔𝑢,𝑖 ˜̀𝑖 𝑖 = 0, . . . , 𝑛 − 1

�̃�𝑛 = 0

𝜕

𝜕𝑡 𝑓

[
𝑡 𝑓 − 𝑡0

2

𝑛−1∑︁
𝑖=0

𝑤𝑖

(
L𝑖 + �̃�T

𝑖 𝒇𝑖 + ˜̀𝑖𝑔𝑢,𝑖
) ]

= 0

(48)
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Since 𝑡𝑛 = 𝑡 𝑓 is not a collocation point for the employed scheme, H 𝑓 is obtained deriving with respect to 𝑡 𝑓 the

quadrature ofH over the collocation points, and �̃�𝑛 is extrapolated exploiting �̃�.

Identification of conditions in Eq. (47) with conditions in Eq. (48) is completed by analyzing the differential operators

𝑫† and 𝑫T. It can be proven that 𝑫† is a differential operator for the space of polynomials of degree 𝑛 − 1, provided its

components are built according to the following equations [36]

𝑫†0,0 = −𝑫0,0 −
1
𝑤0
I𝑛𝑠×𝑛𝑠

𝑫†
𝑖, 𝑗

= −
𝑤 𝑗

𝑤𝑖

𝑫 𝑗 ,𝑖 otherwise
(49)

Defining 𝑾 as the diagonal matrix of quadrature weights 𝑤𝑖 such that 𝑾𝑖,𝑖 = 𝑤𝑖I𝑛𝑠×𝑛𝑠 , Eq. (49) determines the

following relations

𝑫T
𝑖 = −𝑤𝑖𝑫

†
𝑖
𝑾−1 =⇒ 1

𝑤𝑖

2
𝑡 𝑓 − 𝑡0

𝑫T
𝑖 𝚲 = − 2

𝑡 𝑓 − 𝑡0
𝑫†

𝑖
�̃� (50)

This proves that the left hand-side of the discrete costate dynamics in Eq. (48) is equivalent to the left-hand side of the

stationarity condition with respect to state in Eq. (47), provided that a scaling through the quadrature weight is applied.

The affine transformation outlined in Eq. (51) exploits nodal LGR quadrature weights to map multipliers to costates,

thus making up the CMT for the employed transcription scheme: its application allows to exactly match Eq. (47) and

Eq. (48), proving the existence of an exact link between the indirect and direct formulations of the OCP. The interested

reader is referred to the full derivation of the employed CMT, in [36].

�̃�𝑛 = 𝑫T
𝑛𝚲

�̃�𝑖 =
𝚲𝑖

𝑤𝑖

𝑖 = 0, . . . , 𝑛 − 1

˜̀𝑖 =
𝑀𝑖

𝑤𝑖

𝑖 = 0, . . . , 𝑛 − 1

(51)

C. Convex powered descent guidance problem

Let us consider the change of variables (on the left), objective function (in the center) and acceleration constraints

(on the right) in Eq. (52). The problem associated with such contributions is the lossless convex version of problem P:

the non-convexity of thrust limitations is relaxed by 1) the use of 𝑢𝑇 , 2) the Second-Order Cone constraint on 𝒖 and 𝜎
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and 3) the linearization and parabolic approximations of bounds over 𝜎.

𝒖 �
𝑢𝑇 𝑇max

𝑚
𝒊𝑇

𝜎 �
𝑢𝑇 𝑇max

𝑚

�̃� � log(𝑚)

Jcvx =

∫ 𝑡 𝑓

0
𝜎d𝑡 and



𝑢 ≤ 𝜎

𝜎 ≤ 𝜌𝑢𝑒
−�̃�𝑢

[
1 − (�̃� − �̃�𝑢)

]
𝜎 ≥ 𝜌𝑙𝑒

−�̃�𝑙
[
1 − (�̃� − �̃�𝑙) + 0.5(�̃� − �̃�𝑙)2

]
�̃�𝑢 � log

(
𝑚0 − 𝛼𝑢𝑇,min𝑡

)
; 𝜌𝑢 � 𝑢𝑇,max𝑇max

�̃�𝑙 � log
(
𝑚0 − 𝛼𝑢𝑇,max𝑡

)
; 𝜌𝑙 � 𝑢𝑇,min𝑇max

(52)

Such approach limits the non-convex terms in the dynamics formulation and speeds up the direct step. The modified

state 𝒙cvx dynamics reads then

¤𝒙cvx =



¤𝒓

¤𝒗

¤̃𝑚


=



𝒗

𝒖 + 𝒈

− 𝜎

𝐼𝑠𝑝𝑔0


= 𝒇cvx

(
𝒙cvx, 𝒖, 𝜎

)
(53)

The problem P can be then formulated in lossless convex form PLCvx as

min
𝒖,𝜎,𝑡 𝑓

Jcvx s.t.



¤𝒙cvx = 𝒇cvx
(
𝒙cvx, 𝒖, 𝜎

)
Constraints in Eq. (52)

𝒓 𝑓 = 03×1

𝒗 𝑓 = 03×1

(54)

Remark 6: The problem obtained from the convexification is Acceleration Optimal (AO), justifying the original

problem formulation of P as AO.

Problem in (54) is transcribed with the pseudospectral scheme described in Sec. V.B, and the lossless convexification

ensures its solution coincides with the original problem one. However, the objective function, the dynamics LHS and the

constraints over 𝜎 depend on time; this happens in such way that the contribution of free final time is non-convex when

problem in (54) is transcribed. Successive convexifications are therefore required: time-related terms of transcribed

P are linearized about the guessed final time, the obtained convex subproblem is solved and the solution constitutes

the guess for a successive subproblem. Such sequential transcription of free-final-time contributions, introduced for

discrete-time dynamics in [8] and adapted to the hp pseudospectral collocation in [11], is in this work rearranged as

analytically exact, as per Eq. (55) and Eq. (56).

Let 𝑿𝑘
cvx,𝑼

𝑘 , Σ𝑘 , 𝑡 𝑓
𝑘 denote the solution of the 𝑘 th subproblem of the succession. Moreover, the �̄� segments domain
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is divided in are arbitrarily fixed as equal. Therefore, for the (𝑘 + 1)th subproblem, dynamical constraints provided by

(41) are linearized according to the following system of equations, and read

2�̄�
𝑡 𝑓

𝑘
𝑫𝑖𝑿

𝑘+1
cvx = 𝒇cvx

(
𝑿𝑘+1

cvx ,𝑼
𝑘+1, Σ𝑘+1) + 2

(𝑡 𝑓 𝑘)2
𝑫𝑖𝑿

𝑘
cvx

(
𝑡𝑘+1𝑓 − 𝑡𝑘𝑓

)
with 𝑖 = 0, . . . , 𝑛 − 1 (55)

which corresponds to a linear constraint on 𝑿𝑘+1
cvx ,𝑼

𝑘+1, Σ𝑘+1, 𝑡𝑘+1
𝑓

, and the condition 𝑡0 = 0 has been taken back into

account. For simplicity the superscript indicating the segment is dropped. Similarly, the objective function is linearized

according to

J 𝑘+1
cvx =

𝑡𝑘
𝑓

2�̄�

�̄�∑︁
𝑗=1

𝑝∑︁
𝑖=0

𝑤𝑖Σ
𝑘+1
𝑖 + 1

2�̄�

�̄�∑︁
𝑗=1

𝑝∑︁
𝑖=0

𝑤𝑖Σ
𝑘
𝑖

(
𝑡𝑘+1𝑓 − 𝑡𝑘𝑓

)
(56)

Constraints over 𝜎 in Eq. (52) are time dependant: however, it has been experimentally verified that imposing such

constraints with fixed final time does not sensibly alter estimated multipliers, which constitute the ultimate aim of the

convex direct optimization.

Remark 7: We stress that retaining the final-time-dependant factor
2�̄�
𝑡 𝑓

as multiplying the term 𝑫𝑖𝑿cvx allows to

decouple the final time from the dynamics RHS 𝒇cvx, with evident improvements over algorithm implementation

simplicity.

The problem PSCvx solved at the generic (𝑘 + 1)th direct convex step reads, therefore

min
𝑼𝑘+1 ,Σ𝑘+1 ,𝑡𝑘+1

𝑓

J 𝑘+1
cvx s.t.



Scaled‡dynamical constraints in Eq. (55)

Constraints in Eq. (52) fixing 𝑡 𝑓 at 𝑡𝑘
𝑓

𝑹 𝑓 = 03×1

𝑽 𝑓 = 03×1

(57)

Remark 8: The use of sequential convex methods may allow to adapt the convexification-based guess generation

employed in this work to more complex scenarios. High maturity has been indeed reached for what concerns both

attitude guidance and highly constrained formulations ([9, 54–57]).

D. Convex pseudospectral-based hybrid algorithm

Tools used in the hybrid method have been discussed and outlined. Starting from the algorithm end, the indirect

single shooting has the guess provided by the convex direct collocation scheme. Such scheme is outlined in the box

Convex pseudospectral-based guess generation in Fig. 4: the free-final-time formulation PSCvx is solved iteratively,
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hence requires a first guess; this is provided by a fixed-final-time lossless formulation PLCvx (solved exactly in a single

iteration thanks to its linear formulation). Final time for such last problem shall be fixed to a meaningful value 𝑡0
𝑓
. We

opt for solving the free-final-time Fuel-Optimal 1-DoF PDG problem obtained from Problem (13), retaining only the

dynamics and boundary conditions along the z-axis. 𝑡0
𝑓

is then fixed to the optimal final time of such 1-DoF problem,

and computed as explained in the next paragraph.

The optimal thrust profile for the 1-DoF case features one bang only [58], the first thrust arc being characterized by

idle-thrust level, the second arc by full-thrust level§. The system in Eq. (58) imposes that the initial height (ℎ0,frw)

and vertical speed ( ¤ℎ0,frw) propagated for time τ 𝑡 𝑓 shall be equal to the same physical quantities (ℎbkw and ¤ℎbkw),

propagated backwards in time for (1 − τ) 𝑡 𝑓 , from landing conditions. This allows to compute the initial guess 𝑡0
𝑓

for the

final time in few iterations, without heavily penalizing the computational time of the overall algorithm.


ℎ0,frw

(
τ, 𝑡 𝑓

)
− ℎbkw

(
τ, 𝑡 𝑓

)
= 0

¤ℎ0,frw
(
τ, 𝑡 𝑓

)
− ¤ℎbkw

(
τ, 𝑡 𝑓

)
= 0

(58)

The value tol for the stopping criterion of the successive convexifications iterations in Fig. 4 is imposed on the final

time variation, and fixed to 10−2 𝑠.

At last, discrete comass estimated from the convex step _̃�̃� is dual to the logarithmic mass �̃�: the following mapping is

applied to re-establish the duality with respect to the physical mass [59].

_̃𝑚 =
1
𝑒�̃�

_̃�̃� (59)

Algorithm is schematized in Fig. 4.

VI. Results and Performances

In this section we first compare the presented algorithms in terms of performance. We then analyze the accuracy

improvements provided by the indirect shooting after the convex direct step. Finally, we test the robustness of the

proposed hybrid strategy through Monte-Carlo analyses. We firstly verify how the algorithm handles uncertainties with

respect to guesses of final time computed as in Sec. V.D; then the full hybrid algorithm is tested against dispersions in

initial conditions.
‡Coherently with formulation in Eq. (46), the dynamical constraints are provided to the optimizer as multiplied by the factor 𝑡𝑘

𝑓
/2

§[58] considers null lower bound on thrust magnitude; however, it also demonstrates that fuel consumption is minimized if the final time is
minimized; in doing so, the hypothesis of null lower bound on thrust magnitude is not employed. The optimal thrust profile features then an idle-thrust,
full-thrust profile even for non-null lower thrust magnitude bounds.
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Start Compute 𝑡0
𝑓

with (58) · Solve PLCvx(54) with 𝑡0
𝑓

· 𝑘 = 1
· Save solution as
𝑿0

cvx, 𝑼
0, Σ0

· 𝑿𝑔𝑢𝑒𝑠𝑠
cvx = 𝑿𝑘−1

cvx
· 𝑼𝑔𝑢𝑒𝑠𝑠 = 𝑼𝑘−1

· Σ𝑔𝑢𝑒𝑠𝑠 = Σ𝑘−1

· 𝑡𝑔𝑢𝑒𝑠𝑠
𝑓

= 𝑡𝑘−1
𝑓

Solve PSCvx (57)
· Save solution as
𝑿𝑘

cvx, 𝑼
𝑘 , Σ𝑘 , 𝑡𝑘

𝑓

· Save multipliers as 𝚲
|Δ𝑡𝑘

𝑓
| < tol

𝑘 = 𝑘 + 1

Apply CMT
in Eq. (51)

Map _̃�̃� according
to Eq. (59)

· 𝝀guess
0 = �̃�0

· 𝑡guess
𝑓

= 𝑡𝑘
𝑓

Solve PI
Use PMP to

extract 𝑢∗
𝑇
, 𝒊∗

𝑇

End

No

Yes

Acceleration optimal indirect shooting

Convex pseudospectral-based guess generation loop

Fig. 4 Convex-based hybrid algorithm overview

A. Hybrid and Fully Indirect algorithms comparison

Results in this subsection are related to values of the trust region radius b in Eq. (23) equal to 1. No convergence

issues are indeed observed for nominal initial conditions. As previously mentioned, the continuation scheme shall be

correctly tuned to grant successful convergence at each iteration. For our purpose, it is sufficient using 10 homotopic

steps, i.e. the 11th coinciding with the Acceleration-Optimal problem. Moreover, the homotopic parameter associated

with the last step results Y𝑛 = 0.998. The continuation steps of the control and mass profiles are reported in Fig. 5. For

the considered boundary conditions and problem parameters, the optimal thrust magnitude profile appears from the

results to require a single-bang control program; the full-thrust arc damps kinetic energy and the minimum-thrust arc is

kept as long as possible so to minimize fuel consumption while guaranteeing correct landing site targeting.

Exhaustive comparison between the two guess generation mechanisms shall both consider computational time and

accuracy; the latter indirectly affects the required iterations to solve the Acceleration-Optimal shooting. As far as the

convex approach is considered, a discretization with 5 segments and 10 collocation points for each segment is chosen to
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(a) Optimal mass profile convergence
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(b) Optimal control profile convergence

Fig. 5 Homotopic approach - Mass and control

grant good accuracy without penalizing computational times; the solver ECOS is used to solve each convex subproblem

[60]. The absolute, relative and optimality tolerance parameters are fixed to 10-5. The integration step employed in each

indirect shooting integration is fixed to 0.1 s. Computational times are summarized in Tab. 2; for the hybrid algorithm

fixed initial conditions are used, as it has been observed that the 1-DoF 𝑡 𝑓 computation always converges in a few

iterations; within the indirect approach, instead, the initial costates are guessed within an interval [−1, 1] with a random

multi-start technique. Reported data correspond to a batch of 300 optimization runs for what concerns the hybrid

Table 2 Acceleration Optimal powered landing computational times

Computational time†[s]

Hybrid algorithm

1-D 𝑡 𝑓 computation 4.1 10-3

Convex Guess Generation 5.15 10-1

CMT and costate mapping 8.3 10-4

Indirect step 1.66 100

Purely Indirect algorithm
Homotopic Guess Generation 2.47 101

Indirect step 1.20 100

† Relative to Dell XPS w/ 2.6 GHz Intel Core i7-9750H, 16 GB 2666 MHz DDR4.

algorithm; considering the purely indirect, the population for the data in Tab. 2 is made up by the successfully converged

135 optimization runs out of a batch of 200. The computational time required for the homotopic scheme approximately

amounts to the 2000% of the time needed for the Acceleration-Optimal shooting; the improvement attainable with a

different guess generation mechanism is evident, bearing in mind that the overall computational time scale of the purely

indirect algorithm is higher than 25 s. For what concerns the hybrid approach, instead, the guess generation time is

drastically reduced, for an overall computational time smaller than 2.3 s. In addition to this, the CMT and costate
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mapping feature negligible computational times, thus confirming the computational efficiency of the presented hybrid

approach. At last, the estimation of the 1-D final time adds a degree of complexity to the guess generation algorithm

without relevantly affecting the overall CPU time.

The accuracy of the guess-generation mechanisms is at last compared. Figure 6 highlights the performances of the

convex-based guess generation, being the relative guesses associated with the dashed lines. Comass and cospeed

accuracies are respectively better than the last and of the second-last iteration of the continuation scheme; coposition

accuracy depends on the components, and is approximately comparable to the seventh step of the homotopic continuation.

For what concerns the final time, not reported in Fig. 6, the percentual normalized error amounts to the 0.3% for the

convex approach, and to 0.14% for the last iteration of the homotopic step. The guesses computed with the convex

PS approach ensure convergence of the following Indirect Acceleration-Optimal Shooting; the lower accuracy with

respect to the ones computed with the indirect continuation explains the difference in average computational time of the

Indirect step for the hybrid algorithm. The advantages of the proposed hybrid algorithm are evident: computational

Fig. 6 Comparison of iterations of continuation scheme and costate guesses generated via the convex-based
approach
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time is sensibly improved with respect to a purely indirect approach tailored to the specific problem, while accuracy is

nearly left unaltered. The validity of the presented convex pseudospectral-based guess generation algorithm is therefore

confirmed for nominal initial conditions.

B. Convex direct step and indirect step comparison

The indirect step proves fundamental for refining the solution estimated with the convex direct step. The control

profiles after both steps are represented in Fig.7a. Dots correspond to the collocation points employed within the direct

(a) Thrust magnitude
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(b) Thrust direction

Fig. 7 Thrust obtained at the end of the direct and the indirect steps of the hybrid algorithm

step, while the control profile after the indirect step is continuous, as obtained with a shooting strategy. The discontinuity

point makes an exception. Final control is not represented for the direct step, as dynamics is not collocated at final
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time. The change from a nearly discontinuous profile, estimated with the convex step, to a completely discontinuous

one can be appreciated; uncertainty over ignition time within the convex guess corresponds approximately to the 3%

of the total time of flight. Thrust directions are instead reported in Fig. 7b, where it is shown that the direct step

already provides a thrust direction close to the optimal. Moreover, the indirect step guarantees a sensitive improvement

over final conditions satisfaction. Results are reported in Tab. 3. Dynamics has been propagated with a variable

order Adams-Bashforth-Moulton propagator (propagation relative tolerance fixed to 10−12) being thrust commands

approximated with zero-order hold scheme.

Table 3 Final conditions† of propagated guess solution and final solution

Propagated final state Convex Direct Step Indirect Step

𝒓𝑛𝑑
𝑓

[0.83; −7.50; −9.67] 10−3 [1.05; −0.01; 3.27] 10−3

𝒗𝑛𝑑
𝑓

[0.37; −2.88; −3.43] 10−2 [0.31; 0.14; 1.89] 10−3

† 𝒓𝑛𝑑
𝑓

and 𝒗𝑛𝑑
𝑓

are both fixed to [0; 0; 0] within the optimization.

C. Hybrid Algorithm Robustness analysis

Given the architecture of the direct convex step of the hybrid algorithm, the only physical quantity that can not be

handled exactly by solving PLCvx is the free final time 𝑡 𝑓 . The first MC campaign focuses therefore on dispersions in 𝑡0
𝑓

values; it is then verified that chaining the solutions of problems PLCvx − PSCvx is an efficient approach to handle such

guess uncertainties. Results are reported in Fig. 8, where successful runs are depicted in light blue, and infeasibilities

are highlighted with red lines.
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Fig. 8 Monte-Carlo analysis - Convergence of final time as function of iterations
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The nominal final time 𝑡0
𝑓

found according to Sec. V.D is perturbed with a normal gaussian distribution of 1-sigma

uncertainty of 0.15𝑡0
𝑓
. 500 runs are executed and for each run it is retrieved 1) the history of convergence of 𝑡 𝑓 and 2)

the number of iterations of the convex guess generation loop.

A few considerations can be outlined analyzing Fig. 8. In first instance all the successful runs converge to the same 𝑡 𝑓

value: the consistency of the final time values found through the convex guess generation loop is therefore confirmed.

Secondly, employed dispersions in 𝑡0
𝑓

are extremely conservative, and are easily overcame by the 1-DoF strategy proposed

in Sec. V.D. Nonetheless, the sequence PLCvx − PSCvx handles such dispersions well, demonstrating the efficiency of

the convex guess generation loop, with a total number of successful runs higher than the 96%. We stress, however,

that the proposed 1-DoF strategy grants even higher accuracy with respect to the one used to generate dispersions.

In third instance, more than the 92% of the runs converges within 6 optimizations, i.e. 1 LCvx iteration and 5 SCvx

iterations, while nearly all the infeasibilities are detected within the LCvx step. Such results demonstrate the accuracy of

the sequential approach with respect to management of the final time contributions. At last, we highlight that the 17

infeasibilities are not intrinsic to the physical problem, but are associated with the way the convex PDG problem is

posed. 1) Infeasibilities detected at the LCvx step can be handled by inserting virtual controls, as widely demonstrated

in literature [8, 11]; these would allow the LCvx problem to be solveable. 2) The remaining 2 infeasibilities arise as the

final time becomes negative at the first iteration of the SCvx; inserting trust regions to handle 𝑡 𝑓 linearization error [61]

has been proven successful in previous works as well [8, 11]. Still, the 1-DoF strategy is conceived to avoid the previous

numerical infeasibilities; the application of the suggested solutions is therefore out of the scope of this work.

The hybrid algorithm is then tested against initial conditions uncertainty. Specifically, considered dispersions are

reported in Tab. 4: uncertainty over initial position, velocity and mass is taken into account.

Table 4 Monte-Carlo analysis - Uncertainties in initial
conditions

Initial state Dispersion†

Downrange [0.228, 0.252]
Crossrange [0.117, 0.123]

Height [0.95, 1.05]
Downrange rate [−0.686,−0.634]
Crossrange rate [−0.013, 0.013]

Height rate [−2.02,−1.94]
Mass [0.98, 1.02]

† Corresponding to uniform distribution.

Dispersions in initial physical states sensibly impact on the evolution of costates; this in turn affects the accuracy of

the STM in approximating dynamics of perturbations. Eventually, inaccuracies result in solution divergence within

the indirect shooting. However, it has been verified that a trust region radius b in Eq. (23) smaller than 1 can handle
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approximation errors, hence preventing from divergence. Fixing b, Tab. 5 reports computational times and number of

successful runs for different b values: performances for the Indirect Shooting step are reported; trust region is indeed

applied within the indirect step only.

Table 5 Correlation between b and AO Shooting performance

b AO Shooting CPU Time†[s] Successful runs‡

1 1.97 100 93 %
0.5 5.40 100 96 %
0.25 7.66 100 100 %

† Relative to Dell XPS w/ 2.6 GHz Intel Core i7-9750H, 16 GB
2666 MHz DDR4.
‡ Batch of 500 as statistical sample.

Results are graphically reported in Figs. 9 and 10. Fig. 9b highlights the sensitivity of the optimal switching time

with respect to initial conditions; Fig. 9a shows instead that the final masses feature smaller dispersions with respect

to the initial ones: final masses approximately lie in the interval [0.83, 0.86]. Considering instead Fig. 10, landing

trajectories are represented on the left, while the speed components envelopes are reported on the right. The free final

time and switching time formulation can be as well appreciated considering the velocity components.

(a) Mass profiles (b) Control profiles

Fig. 9 Monte-Carlo analysis - Mass and control profiles
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Fig. 10 Monte-Carlo analysis - Trajectories and velocity profiles

VII. Conclusions

In the present paper a novel hybrid strategy has been introduced and compared to a state-of-the-art purely indirect

continuation-based technique. Both the two steps characterizing the hybrid scheme and the continuation-based technique

have been extensively presented; results have been finally outlined for a landing scenario, modelled as a 3-D point mass.

Rapidity of the hybrid strategy highlights its suitability for preliminary solution generation purposes; in addition, the

gain with respect to the purely indirect homotopic approach demonstrates the superiority of the combination of convex

optimization and indirect shooting over the state-of-the-art of offline guidance strategies.

Results from the Monte-Carlo analyses offer a clear view of algorithm performance under dispersions. Accuracy of

costate generation mechanism fused with a trust region-augmented indirect step successfully initialize and handle the

highly nonlinear flow of primal-dual dynamics; convergence percentages of the considered statistical sample seal the

reliability of the proposed hybrid technique.
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