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Abstract— The three national space centers DLR, CNES &
JAXA have joined their efforts in the project CALLISTO to
develop and mature key technologies for future operational
Reusable Launch Vehicles (RLVs). The goal of this project is
to develop, manufacture and test a reusable Vertical-Takeoff
Vertical-Landing (VTVL) first stage demonstrator, which will
be operated at the European Spaceport in French Guiana from
late 2024.

One important aspect in the development of RLVs, but also of
aerospace vehicles in general, is the generation of an Aerody-
namic Database (AEDB) which characterizes the aerodynamic
flying qualities of the vehicle. These databases are commonly
aggregated from Computational Fluid Dynamics (CFD) sim-
ulations and Wind Tunnel Tests (WTTs) via simple heuristic
models. Whereas this classical approach is suitable for the es-
timation of nominal aerodynamic coefficients, the quantification
of uncertainties in this pre-flight data with respect to the final
flight behavior is still a difficult task that involves a lot of human
expert knowledge and “gut feeling”. Particularly for launch
vehicles, these uncertainties are however essential to ensure
robust guidance and control algorithms, as well as sufficient
vehicle performance for a selected mission profile.

For CALLISTO, in parallel to a classical approach, a new
methodology has now been tested to estimate these uncertainties
within the AEDB: To apply Bayesian Inference to predict a
probability distribution over the aerodynamic coefficients, con-
ditional on the available test and simulation results and on prior
knowledge. This methodology has already been well-established
in other data science domains, but for aerospace engineering
only very few use-cases are known so far. With this new
approach an objectively traceable modelling of the aerodynamic
uncertainties should be possible.

This paper presents the current development state of the
Bayesian aerodynamic uncertainties model of CALLISTO. Af-
ter problem definition and a short introduction to the under-
lying dataset, the paper mainly focuses on the used modelling
techniques and the applicability of Bayesian methods to the
aerodynamic characterization problem. Selected results are
shown for Bayesian models and compared against the classical
modelling approach, while advantages and disadvantages of the
Bayesian methodology are discussed. It is shown that the imple-
mented Bayesian Gaussian process model can infer the typical
characteristics of the AEDB from the available datasets, while
having comparable prediction qualities as the reference model.
Observed differences in the variance and bias characteristics are
discussed for both models.
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ACRONYMS

AEDB Aerodynamic Database
ALS Approach and Landing System
AoA Angle of Attack
AoR Angle of Roll
ATDB Aerothermodynamic Database
CAL1B CALLISTO Aeroshape Version 1B
CAL1C CALLISTO Aeroshape Version 1C
CALLISTO Cooperative Action Leading to Launcher

Innovation for Stage Toss-back Operations
CFD Computational Fluid Dynamics
CNES Centre National d’Études Spatiales
CR Coregion Kernel
DLR Deutsches Zentrum für Luft- und Raumfahrt
DNW German-Dutch Wind Tunnels
DoF Degree of Freedom
ELV Expendable Launch Vehicle
ETI Equal-Tailed Interval
FCS/A Aerodynamic Flight Control System
FCS/R Reaction Flight Control System
FCS/V Vectoring Flight Control System
FEM Finite Element Method
FFN fins folded, legs folded, engine off
FFO fins folded, legs folded, engine on
GNC Guidance, Navigation & Control
GP Gaussian Process
HDI Highest Density Interval
HF High-Fidelity
HST High-Speed Wind Tunnel
JAXA Japan Aerospace Exploration Agency
KDE Kernel Density Estimation
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LF Low-Fidelity
LH2 Liquid Hydrogen
LOX Liquid Oxygen
M32 Matern-3/2 Kernel
M52 Matern-5/2 Kernel
MAD Median Absolute Deviation
MCMC Markov Chain Monte Carlo
MVN Multivariate Normal Distribution
PDF Probability Density Function
PDR Preliminary Design Review
RANS Reynolds-Averaged Navier-Stokes
ReFEx Reusability Flight Experiment
RLV Reusable Launch Vehicle
RMSE Root Mean Squared Error
RSR Reusable Sounding Rocket
RTLS Return-To-Launch-Site
SA Spalart-Allmaras turbulence model
SE Squared-Exponential Kernel
TAU TAU CFD Software
TMK Trisonic Wind Tunnel
TVC Thrust Vector Control
UFN fins unfolded, legs folded, engine off
UFO fins unfolded, legs folded, engine on
UUO fins unfolded, legs unfolded, engine on
VI Variational Inference
VTVL Vertical-Takeoff Vertical-Landing
WN White Noise
WTT Wind Tunnel Test

1. INTRODUCTION
Reusability of launch vehicle stages has been applied with
success for several years by SpaceX with the first stage of
the Falcon 9 rocket. It appears that this is at least partially
the reason for comparatively low launch service costs of-
fered to commercial customers. In order to maintain the
competitiveness of launchers in Europe and Japan, Deutsches
Zentrum für Luft- und Raumfahrt (DLR), Centre National
d’Études Spatiales (CNES) and Japan Aerospace Exploration
Agency (JAXA) have decided to collaboratively develop,
manufacture, integrate and test a small-scale reusable rocket
stage. The three national organizations pursue the following
common main goals:

• Develop and mature technologies required for reusable
Vertical-Takeoff Vertical-Landing (VTVL) rocket stages,
• Gather know-how, data and lessons learned on the system
design of reusable VTVL launcher stages,
• Gather know-how, data and lessons learned on the opera-
tion and refurbishment of reusable VTVL launcher stages on
an active spaceport.

To achieve these goals the Cooperative Action Leading to
Launcher Innovation for Stage Toss-back Operations (CAL-
LISTO) project has been initiated in 2017. Within this col-
laboration, a Reusable Launch Vehicle (RLV) demonstrator is
currently being developed around the already existing LOX-
LH2 Reusable Sounding Rocket (RSR) engine from JAXA
[1], [2]. This CALLISTO vehicle, as part of the overall
CALLISTO system, is designed for maximum performance
and therefore particular attention has been put on the mass
and aerodynamic characteristics during the development pro-
cess. In summary, the vehicle mass is less than 4 tons at
lift-off, with a diameter of 1.1 m and a length of about 14
m. The aspect ratio is kept similar to operational launch
vehicles, which is motivated by aerodynamic performance
considerations [3].

Figure 1. Overview of the CALLISTO vehicle; More
details are available at [4].

In figure 1 the CALLISTO vehicle is shown with the most
important auxiliary subsystems needed for a RLV. The most
dominant systems for flight control are:

• Aerodynamic Flight Control System (FCS/A): four actu-
ated and actively controlled aerodynamic fins [5];
• Reaction Flight Control System (FCS/R): based on H2O2
control thrusters;
• Vectoring Flight Control System (FCS/V): based on two
actuators for thrust vectoring of the main rocket engine;
• The engine itself, which can be throttled up and down
continuously between 40% and 115% of its nominal thrust
and be ignited and shut-down during the flight.

Additionally, the CALLISTO vehicle is also equipped with
two deployable systems, which are not common on conven-
tional Expendable Launch Vehicles (ELVs) [6]:

• The Approach and Landing System (ALS), with pneumat-
ically deployed legs;
• The Aerodynamic Flight Control System (FCS/A) with
electrically deployed fins.

Operations of the vehicle will be performed from the Euro-
pean Space Port in Kourou, targeting the maiden flight in late
2024. Therefore, the former Diamant launch pad, close to the
Ariane 5 launch pad, is currently being retrofitted to support
the CALLISTO ground segment [7], [8]. It will include a
vehicle preparation hall, a launch pad and a landing area. In
total, CALLISTO is designed to fly up to 10 times, while an
incremental flight test strategy has been defined.

The Preliminary Design Reviews (PDRs) of the systems and
of the products are concluded successfully and the consol-
idation of the design is ongoing, including detailed design,
analyses and breadboard testing of the systems and subsys-
tems. An overview and the progress of the project are given
in [9], [10], [11], [12].

One important aspect in the development of CALLISTO, but
also of RLVs and aerospace vehicles in general, is the genera-
tion of an Aerodynamic Database (AEDB) which is essential
to characterize the flying qualities of the vehicle. These
databases are commonly aggregated from Computational
Fluid Dynamics (CFD) simulations and Wind Tunnel Tests
(WTTs) via simple empirical-heuristic models. Whereas this
classical approach is suitable for the estimation of nominal
aerodynamic coefficients, the quantification of uncertainties
in this pre-flight data with respect to the final flight behavior is
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still a difficult task that involves a lot of human expert knowl-
edge and “gut feeling”. Particularly for launch vehicles,
these uncertainties are however essential to ensure robust
guidance and control algorithms, as well as sufficient vehicle
performance for a selected mission profile. On the other
hand, the determination of aerodynamic characteristics for
RLVs is especially difficult due to the variety of flight control
systems and deployable mechanisms onboard, as well as due
the complex flight maneuvers like the retro-propulsion phase.
Since RLV first stages need to perform a pinpoint landing
while carrying only minimal propellant reserves, there was a
strong demand during the CALLISTO development process
to have a reliable yet not over-constraining estimation of the
aerodynamic uncertainties.

For CALLISTO, in parallel to a classical AEDB generation
approach, a new methodology has therefore been tested to
estimate the uncertainties within the AEDB: Application of
Bayesian Inference to predict a probability distribution over
the aerodynamic coefficients, conditional on the available test
and simulation results and on prior expert knowledge. This
methodology has already been well-established in other data
science domains such as medicine, astronomy, chemistry,
economics and demographics, but for engineering only very
few use-cases are published so far. With this new approach
an objectively traceable modelling of the aerodynamic uncer-
tainties should be possible, which should incorporate more
information from the available datasets and be less effected
by subjective expert assessments. Also, such an approach
provides the capability to reduce the labor-intense manual
investigation of test and simulation datasets, which is nec-
essary during the classical AEDB generation process. Due
to this large amount of needed human workforce, classical
AEDBs are rarely refitted when new data arrives, whereas for
a Bayesian AEDB refitting could be performed in an almost
automated manner, requiring computational resources only.

In this paper we want to compare this new Bayesian approach
with the classical approach at the example of CALLISTO’s
AEDB. Here, the central research question that is addressed
in the following paragraphs can be posed as: Is Bayesian
inference a suitable method to generate an AEDB with quan-
tified uncertainties for RLVs like CALLISTO?

After the introduction to the CALLISTO system and the
motivation for a Bayesian AEDB in section 1, the available
aerodynamic datasets for CALLISTO and their characteris-
tics are described in section 2. The general methodology
of Bayesian and classical AEDB generation is explained in
3, together with references to related work. In section 4
this methodology is then applied to some select models for
CALLISTO’s aerodynamics, followed by some first inference
and prediction results in section 5 including a comparison
of both models. General discussion and conclusion of the
presented material is finally given in section 6, as well as an
outlook to future work.

2. DATASET DESCRIPTION
The general objective of aerodynamic studies during an
advanced vehicle design phase is to create an extensive
aerodynamic data set which covers all the relevant flight
configurations and conditions. This data set can then be
used to generate a database which provides (in the ideal case)
continuous data for all dependent variables. Such a database
can then be used for 6-DoF flight dynamics simulations.
The complexity of both the CALLISTO vehicle shape and

Figure 2. Sketch of the typical reference mission profile of
CALLISTO.

the number of configurations prohibits the use of classic
engineering aerodynamic prediction methods which cannot
provide the precision and reliability necessary for the estima-
tion of the aerodynamic coefficients. It is therefore necessary
to use advanced CFD methods and WTT experiments to
obtain the relevant data [13].

The main objectives during the CALLISTO aerodynamic data
generation were:

• Creation of the 6-DoF AEDB containing the aerodynamic
function for the calculation of the forces and moments for all
configurations.
• Creation of the 6-DoF Aerothermodynamic Database
(ATDB) containing the aerothermodynamic function for the
calculation of the thermal loads for all configurations (this
data is not considered for the current study).

In order to understand the complexity of the CALLISTO
flight in terms of aerodynamic configurations, a typical ref-
erence mission is visualized in figure 2. After launch the ve-
hicle flies forwards in the ascent phase with active engine and
aerodynamic control surfaces folded (FFO configuration).
After this powered phase follows a tilt-over maneuver in order
to reorient the vehicle for a Return-To-Launch-Site (RTLS)
trajectory. The fins are deployed and an aerodynamically
controlled gliding phase follows (UFN configuration). At the
end of this phase the engines are reignited and a retro-burn
maneuver is executed (UFO configuration). During the last
stage of this maneuver the legs are unfolded (UUO configu-
ration) and the vehicle touches down. Thus, the aerodynamic
data sets of CALLISTO have to be very extensive: Mach
number, altitude and dynamic pressure vary in a very broad
range, and also Angle of Attack (AoA) and Angle of Roll
(AoR) polars need to cover any orientation.

The aerodynamic coefficients and moments are needed for the
design of the guidance and control system as well as for the
design of vehicle components, such as fins, landing legs or the
fairing. Thus, the dependent variables are the following six
aerodynamic coefficient and moments which from the core
of the AEDB:

• Aerodynamic force coefficients Cx, Cy , Cz ,
• Aerodynamic moment coefficients CMx, CMy , CMz .

A wide space of parameters of the flow can influence these
aerodynamic coefficients. The following parameters have
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NS NS NS

0.5…2.0  0.5…2.0  0.5…2.0  0.5…2.0  0.266, 0.5   0.266, 0.5   0.266, 0.5   0.266, 0.5   0.266, 0.5  0.266, 0.5

Table 1. Overview of configurations, parameters and number of available CFD data.

been identified as most influential and thus have been chosen
as independent variables:

• Mach number Ma,
• Altitude H , encoding the air density ρ and Reynolds num-
ber Re,
• Angle of Attack α,
• Angle of Roll ϕ,
• Fin deflection angles δj=1..4,
• Fin deployment angles ηj=1..4,
• Leg deployment angles λj=1..4, and
• Engine thrust level τ .

In addition to the flow parameters the geometric configuration
of the vehicle also influences the aerodynamic forces. The
different configurations that have been considered are shown
in table 1. They are defined by a combination of deployment
status of the fins and the landing legs as well as the status of
the engine. Additionally, two versions of the aeroshape exist:
a preliminary version called CAL1B with a simpler geometry
with rotational symmetry; and a more mature version of
the aeroshape called CAL1C with higher detail including
protrusions from cable ducts and pipes.

In order to establish an extensive aerodynamic dataset for
CALLISTO’s AEDB, the aeroshape of each configuration has
been analyzed with various methods. The generated datasets
can roughly be classified in the following categories:

• WTT-sourced data: HST, TMK
• CFD-sourced data: TAU HF, TAU LF
• Semi-empirical data: DATCOM

The following sections will briefly highlight the generation
process for each aerodynamic dataset, particularly the simu-
lation setup for CFD data and the experimental configuration
for WTT data. Also, typical error characteristics inherent to
each method are shortly described.

Computational Fluid Dynamics

The numerical simulations are done using the DLR TAU
code [14]. TAU is a finite volume computational fluid dy-
namics code solving the Reynolds-Averaged Navier-Stokes
(RANS) equations on hybrid structured-unstructured grids.
For the generation of the AEDB the simulations were done
with second order temporal and spatial accuracy using a
AUSMDV upwinding difference scheme with least-squares
gradient reconstruction and an explicit Runge-Kutta scheme.
A modification of the variable reconstruction according to
Thornber [15] is employed to improve the computation for
low Mach numbers together with the one-equation Spalart-
Allmaras turbulence model (SA) [16]. For plume modelling a
gas mixture representing the exhaust gases and a gas mixture
representing air are used with a frozen chemistry assumption.

Two fidelity classes for the mesh size are used to be able to
fulfill two requirements: provide a large parameter space and
provide a good computational accuracy. The large amount of
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Figure 3. Visualization of CFD data for configuration UUO, Ma = 0.5, rho = 1.2kgm−3 AoA = 170◦, AoR = 0◦, Thrust
level = 100%. On the left: Mach number slice with streamlines, plume contour and cp on the vehicle surface. On the right:

visualization of the TAU HF grid.

simulations needed to cover all the above described indepen-
dent variables necessitates fast simulation times and thus a
smaller sized grid. A good accuracy, on the other hand, de-
pends on the grid resolution and thus necessitates a large grid.
The underlying AEDB generation logic combining these two
fidelity classes is described in detail in the following chapter.

The High-Fidelity (HF) grid comprises 23 million elements
and is set up to have a dimensionless wall distance y+ < 1.0
in the first boundary layer cell and 20 prism layers at viscous
wall boundary conditions. The Low-Fidelity (LF) grid has
3 million elements and allows for y+ ≤ 2.0 in areas of
high geometric complexity and has been tailored towards
acceptable accuracy under minimal computational costs with
the help of HF simulations. The simulations on the HF
grid take about 24 hours on 512 cores to reach a converged
solution. The simulations on the LF grid take about 20 min
on a local workstation, allowing for a far greater amount of
parameter variations while keeping the accuracy acceptable.
A more detailed explanation of the numerical settings as well
as an analysis of the data can be found in [17], [18]. A
visualization of an example CFD result is shown in figure 3.

There are various error sources and uncertainties at play
when conducting CFD studies. In terms of errors associ-
ated with the solver, three recognized sources of numerical
errors exist: round-off errors, iterative convergence errors
and discretization errors [19]. While some of these errors
are controlled by methods within the code design, others are
covered by systematic trials and user expert knowledge. The
discretization errors are a direct result of the grid generation
process. For a simple grid this discretization error is easily
calculated from systematic grid convergence studies [20].
For complex geometries these studies are more elaborate
as unstructured grids with non-homogenous cell sizes and
cell growth rates used to resolve relevant flow phenomena

(boundary layer grids, regions with strong shocks and flow
gradients) add complexity to systematic mesh refinement. For
similar flows we have previously conducted grid convergence
index studies and found the discretization errors within the
asymptotic range [21].

Further sources of error constitute the physical modelling.
As the simulations are done as steady state RANS simula-
tions a major source of error is the turbulence modelling.
Furthermore, the steady state doesn’t represent unsteady
phenomena and also ignores the transient between trajectory
points. Another source of errors in the case of simulations
with an operational engine is the chemical modelling of
the plume. For the presented simulations an assumption of
frozen chemistry and two species mixtures representing air
and exhaust gases was made due to low presence of unburnt
hydrogen at the nozzle exit.

Wind Tunnel Tests

Two extensive WTT campaigns have been performed to cre-
ate and verify CALLISTO’s AEDB. A detailed description
of these tests for the CAL1C aeroshape in UFN and FFN
configuration can be found in [22].

The first test campaign was conducted with a 1:35 model in
the Trisonic Wind Tunnel (TMK) of the DLR in Cologne
for flow conditions in the range of Ma = 0.5..2 and Re =
0.38..1.11 × 106. The second campaign was conducted
in the High-Speed Wind Tunnel (HST) wind tunnel of the
German-Dutch Wind Tunnels (DNW) in Amsterdam with
a larger and more detailed 1:10 model, as shown in figure
4. Flow conditions in the range of Ma = 0.2..1.3 and
Re = 0.14..4.10× 106 have been investigated here.

5



Figure 4. UFN wind tunnel model during HST campaign.

In both wind tunnels the aerodynamic forces and moments of
the vehicle model have been measured for α = −10◦..10◦

for FFN configuration, respectively α = 170◦..190◦ for UFN
configuration, and all ϕ. Additional pressure measurements
and schlieren-imaging was performed but not directly used
for AEDB generation.

In total about 118 polars have been recorded during the TMK
campaign and about 490 polars during the HST campaign.
Due to this huge amount of experimental data, it has been re-
duced to multiple selected AoAs polars at constant roll angles
and Mach numbers in the scope of the analysis presented in
this paper.

The main source of uncertainties in the WTT datasets are
created from the uncertainties in the measurements of the
balance and in determination of the flow conditions. Further
systematic uncertainties are originating from the actual exper-
imental setup in the wind tunnel, like sting or wall influences
on the vehicle. Compared to the actual CALLISTO vehicle,
uncertainties can be also induced by deviations from geomet-
ric or dynamic similarities, e.g. due to simplification of the
aeroshape for subscale manufacturing or due to differences in
the Reynolds numbers between experiment and flight. Since
different models have been tested in different wind tunnels
with different measurement equipment, the influence of each
error contributor should also be different between TMK- and
HST-sourced data.

Semi-Empirical Correlations

In addition to the aerodynamic datasets generated by CFD
simulations and WTT experiments, which form the back-
bone of CALLISTO’s AEDB, some complementary data has
been generated from well-known semi-empirical correlations.
These correlations have been developed in the past from an
extensive range of experiments, in order to estimate aerody-
namic coefficients of a vehicle from a simple parametrization
of its geometry. Since these correlations require very little
computational resources but commonly imply high uncer-
tainty, these results are usually considered during the con-
ceptual design phase only [23]. For CALLISTO these results
have therefore only be used for cross-validation, particularly
in flight conditions where the other datasets are very sparse.

The dataset for CALLISTO has been generated with the soft-
ware tool Missile DATCOM [24]. So far, the FFN and UFN
configurations have been evaluated for 4736 flight conditions
each. This dataset covers the Mach range Ma = 0.5..2 for the
full AoA and AoR range. Fin deflections have not yet been

considered in this dataset. However, due to the short runtime
of Missile DATCOM this dataset could easily be extended,
if needed. Whereas Missile DATCOM provides also the
capabilities to model engine-on configurations, the analysis
of vehicle configurations with deployed legs will likely not
possible, since such surface features are not foreseen in the
geometry parametrization of this software.

Generally, it can be stated that these semi-empirical estimates
have often a significant uncertainty in its data. These errors
are especially large for complex aeroshapes, like CALLISTO,
and for unusual flight conditions, like α ≈ 90◦. This is
primarily caused by the fact that tools like Missile DAT-
COM have a very simple underlying mathematical model,
which has been fitted to experimental data from generic
aeroshapes for common flight conditions. Compared to
before-mentioned CFD- or WTT-sourced data, these esti-
mates can therefore be considered as least reliable for CAL-
LISTO. The qualitative behavior of the aerodynamic coeffi-
cients is however often represented adequately by these semi-
empirical models.

3. METHODOLOGY
The major motivation to create an AEDB is the prediction
of aerodynamic coefficients for arbitrary flight conditions
which could not explicitly covered by simulations or experi-
ments. For CALLISTO two approaches have been followed
to generate such a continuous aerodynamic model from the
aerodynamic datasets: a classical AEDB and a Bayesian
AEDB. Whereas the classical AEDB employed well-known
techniques and therefore serves currently as reference for
design and analyses, the Bayesian AEDB experimented with
several new approaches to overcome shortcomings in the
uncertainty quantification of the classical model. The applied
methodologies to generate these AEDBs will be explained in
the following paragraphs.

Formal Definition of AEDB Function

From a mathematical point of view, the generation of an
AEDB function can be seen as a classical curve fitting task
to find an appropriate regression function for the collected
aerodynamic datasets. As already highlighted in section 2,
the outputs of such an AEDB function are the aerodynamic
force and moment coefficients which are concatenated for
convenience to the coefficient vector c. These coefficients
depend on the flow characteristics, the vehicle orientation,
the parametrization of the aeroshape, as well as on any error
characteristics. Without loss of generality these dependencies
can be subsumed to a generalized input vector x. Together
with a generalized parameter vector θ, which contains any
regression parameters, the AEDB function can be formalized
as:

c = f(x;θ) (1)

With this notation the AEDB generation process, also known
as fitting or inference, can be described as the problem:

Select f,θ

such that c̃i ≈ f(x̃i;θ)

for all data (c̃i, x̃i)i=1..n

(2)

6



Please note that neither a solution algorithm nor a quality
metric for the regression is imposed by this formulation. In
practice, this fitting problem is therefore often solved man-
ually by expert assessments without following a formalized
mathematical approach.

Once a suitable AEDB function has been found in terms
of f and θ, it can be evaluated to continuously predict
the aerodynamic coefficients ĉ of the vehicle for new flight
conditions x̂ that could not be observed so far. This prediction
capability is requested from other technical domains and the
major motivation for generating AEDBs:

ĉ = f(x̂;θ) (3)

The parametrization of the input vector x is however not
uniquely determined, so for CALLISTO the following de-
scription has been chosen to encode the AEDB:

x = (Ma, H, α, ϕ, δj , ηj , λj , τ,Setup)j=1..4 (4)

For some aerodynamic studies of CALLISTO this parametriza-
tion has been further simplified. If, for example, the contin-
uous transition between the vehicle configurations need not
be considered, the continuous shape parameters ηj , λj and τ
can be replaced by a discrete categorical variable Config as
indicated in table 1:

Config ∈ {FFO,FFN,UFN, ...} (5)

Besides that, the categorical variable Setup has been added
to indicate the data generation processes behind the different
aerodynamic datasets. It allows to encode possible differ-
ences in the expected error characteristics of the aerodynamic
datasets during the inference phase:

Setup ∈ {TAUHF,TAU LF,HST,

TMK,DATCOM,FLIGHT}
(6)

However, since most information about error characteristics
are implicit expert knowledge, and furthermore this variable
will be fixed to Setup = FLIGHT for the prediction phase,
this variable might not always be listed explicitly.

In its simplest and most common realization, problem (2) is
solved in a way that the prediction function (3) provides a
point estimation for the nominal aerodynamic coefficients.
This is often acceptable during the conceptual design phase of
launch vehicles. However, when the design further matures,
quantified uncertainties for these estimates will be required,
especially to design a robust Guidance, Navigation & Control
(GNC) system and to ensure a reliable mission architecture.

A common technique to quantify uncertainties is to extend the
AEDB function (1) to interval arithmetic, so that estimated
minimum and maximum values of the aerodynamic coeffi-
cients can be predicted:

c ∈ [cmin, cmax] = f(x;θ) (7)

Another technique is to apply (Bayesian) probability theory
to predict a probability distribution over the aerodynamic
coefficients:

c ∼ p(c | x;θ) = f(x;θ) (8)

Which approach is most practical to quantify uncertainties
depends on the actual use case. Interval models are well-
suited for (worst) case studies and are often easier to develop
due to their simple mathematical structure. Probabilistic
models on the other hand are essential for Monte Carlo
analyses and encode more information about parameter cor-
relations. Here it should be noted that with a given confidence
level a probabilistic model can be easily transformed into an
interval model; for a reverse transformation addition assump-
tions about the shape of the distributions would be needed.

Classical AEDB Generation

Classically, the AEDB generation problem (2) is solved by
expert assessments, which manually inspect the available
aerodynamic datasets to determine a suitable functional re-
lationship based on heuristics and heritage knowledge. Here,
the data generation and fitting processes are often intertwined,
so that test condition matrices are already selected to support
easy fitting. Due to this manual approach, the classical AEDB
generation process is however not standardized nor identical
for every vehicle. Nevertheless, the generalized approach
described in this paragraph has been observed by the authors
as typical in many development projects that have reached
sufficient maturity to produce flight hardware.

To simplify the fitting process, the AEDB function will be
separated in a first step into a baseline functional relationship
fip plus multiplicative and additive correction terms:

fnom(x;θ) = s(x;θ)fip(x;θ) + b(x;θ) (9)

The baseline function fip is then determined by low-degree
interpolation, such as piecewise linear or Hermite interpo-
lation, between a coherent subset of the available aerody-
namic datapoints x̃. This subset is commonly chosen as
an equidistant grid which should cover most of the relevant
flight conditions. The remaining aerodynamic datapoints
will then be used to validate the generated baseline function
and to determine any correction terms for scale s or bias
b, if the need for corrections seems indicated. In order to
not overfit the data and to limit the workload during expert
assessment, these correction terms are commonly chosen as
simple constant or linear functions, which depend only on
very few dimensions of the independent variables x. For
the nominal aerodynamic coefficients these terms are even
frequently neglected with s = 1 and b = 0, to consider
deviations between the aerodynamic datasets only during the
uncertainty assessment.

In order to provide quantified uncertainties, this nominal
AEDB function can be extended in a next step to determine
a credible interval (7). To achieve this, minimum and max-
imum values for scale s or bias b are determined, which
represent relative and absolute error bars around the nominal
estimate fnom. Please note that in this context multiplication
and addition are understood in terms of interval arithmetic:
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[cmin, cmax] = [smin(x;θ), smax(x;θ)]fnom(x;θ)

+[bmin(x;θ), bmax(x;θ)]
(10)

These relative and absolute error terms are frequently selected
by graphical methods, where the nominal estimate and all
relevant datapoints are plotted together. Again, simple low-
dimensional constant or linear functions are commonly cho-
sen for s and b.

If required by the use case, the interval model for the aero-
dynamic uncertainties can be further extended to provide
a probability distribution over the aerodynamic coefficients
(8). Here, scale sMC and bias bMC are modeled as ran-
dom variables which probability distributions approximate
the credible intervals determined in (10):

c = sMCfnom(x;θ) + bMC (11)

The simplest approach is to draw these random variables from
uniform distributions U(l, r) over the credible interval:

sMC ∼ U(smin(x;θ), smax(x;θ))

bMC ∼ U(bmin(x;θ), bmax(x;θ))
(12)

However, this model creates a distribution with sharp bound-
aries without any probability mass outside the interval, which
is often undesirable in practice. Such a model also neglects
any concentration of probability mass close to the nominal
value. Therefore, is also common to approximate the credi-
ble interval with the zασ-interval of a Gaussian distribution
N (µ, σ) for a given confidence level α:

sMC ∼ N
(
smax(x;θ) + smin(x;θ)

2
,

smax(x;θ)− smin(x;θ)

2zα

)
bMC ∼ N

(
bmax(x;θ) + bmin(x;θ)

2
,

bmax(x;θ)− bmin(x;θ)

2zα

)
(13)

The classical approach has the main advantage to generate
AEDB functions with a simple mathematical structure. This
way, good understanding of the implemented error terms
can be ensured to avoid overfitting or hidden issues. Also,
heritage and expert knowledge can be easily incorporated
without complicated mathematical formalization. The re-
sulting prediction function for the aerodynamic coefficient
usually has a high computational performance, so that it
can be evaluated online during simulations of other technical
domains or even during flight on the onboard computer.

On the other hand, the fitting process for this classical ap-
proach is difficult to automate, particularly the selection of
error terms s and b as noted in (10). Therefore, a lot of
expert’s workforce needs to be invested, which make frequent
refitting to new data not practical. Also, the actual selection of

error term is not traceable and may subjectively vary between
experts. Due to the simple mathematical structure and the
manual fitting process, complex error contributors, which de-
pend on multiple dimensions, are relatively difficult to iden-
tify and to consider. Particularly regarding the probabilistic
uncertainties model (11) - (13), statistical correlation between
errors are completely neglected by this simple extension of
the interval model.

Introduction to Bayesian Inference

The other approach for AEDB generation, which will be pre-
sented in this paper, applies Bayesian Inference to solve the
AEDB generation problem (2). In the following paragraphs a
short introduction will be given to this methodology.

Bayesian Inference is a general method to update the proba-
bility distribution of a statistical model based on observations
by the application of Bayes’ law. In contrast to classical fre-
quentest statistics, where models and parameter are assumed
to be fixed and fitted to a number of repeated experiments,
uncertainties in Bayesian statistics are explicitly quantified by
probability distributions over all levels of the model, which
can be updated with any amount of observable data. Due to
this very general approach, also non-repeatable phenomena
can be modeled statistically with Bayesian inference. In
the last decades, this approach has found a wide range of
applications through various fields of science, engineering,
medicine, philosophy, sport and others.

The general Bayesian workflow can be summarized in the
following steps:

1. To specify a statistical model for the phenomena under
investigation and to determine the likelihood function of this
model, which relates the model specific parameters to the
observable data;
2. To encode a-priori expert knowledge on the model param-
eters through a prior probability distribution which represents
the available information before data collection;
3. To combining the prior distribution and the likelihood
function for an observed set of data via Bayes’ Theorem, to
determine the posterior distribution which represents the now
updated knowledge about the model parameters.
4. To predict the expected distribution of new, unobserved
data via calculating the posterior predictive distribution from
the posterior distribution

For the inference step, which derives the posterior distribution
as a consequence of the prior probability and the likelihood
function, Bayes’ theorem can be formulated as:

p(θ | z̃i=1..n,α) =
p(z̃i=1..n | θ,α)p(θ | α)∫
p(z̃i=1..n, | θ,α)p(θ | α) dθ

(14)

where

• z̃i=1..n is the set of observed data samples;
• θ is the vector of parameters for the data point’s distribu-
tion, i.e. z ∼ p(z|θ);
• α is the vector of any hyperparameters for the parameter’s
distribution, i.e. θ ∼ p(θ|α);
• p(θ | α) is the prior distribution which is the expected
probability of the model parameters before inference
• p(z̃i=1..n | θ,α) is the likelihood function, which de-
termines the relationship between observed datapoints and
model parameters
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• p(θ | z̃i=1..n,α) is the posterior distribution which is the
probability of the model parameters that has been inferred
from the data.

In most use cases the inferred posterior distribution over the
model parameters is not the primary quantity of interest, but
rather the expected distribution for new datapoints. This
information can be retrieved from posterior predictive distri-
bution, which depends on the posterior distribution:

p(ẑ | z̃i=1..n,α) =

∫
p(ẑ | θ,α)p(θ | z̃i=1..n,α) dθ (15)

For most real-world problems, equations (14) and (15) can-
not be solved analytically, but need to be approximated by
numerical algorithms. PyMC [25], [26] is a probabilistic
programming package for Python that allows users to fit
Bayesian models using a variety of numerical methods, most
notably Markov Chain Monte Carlo (MCMC) and Variational
Inference (VI) algorithms. Along with core sampling func-
tionality, PyMC includes methods for summarizing output,
plotting, goodness-of-fit and convergence diagnostics. Its
development began in 2003, as an effort to generalize the pro-
cess of building Metropolis-Hastings samplers, with an aim to
making MCMC more accessible to non-statisticians. PyMC
includes a large suite of well-documented statistical distri-
butions and also includes a module for modeling Gaussian
processes. In the scope of this study, PyMC will therefore be
used to implement Bayesian models and to conduct inference
and predictions tasks.

Introduction to Gaussian Processes

A common class of models that are used in Bayesian contexts
are Gaussian Process (GP) models. Here, a Gaussian process
is applied to model a functional behavior within the provided
dataset. Gaussian processes are formally an extension of
the Multivariate Normal Distribution (MVN) to infinite di-
mensions, therefore defining a probability distribution over
a function space. With a mean function m(x) and a covari-
ance function or kernel k(x, x′), such a model is commonly
denoted as:

f(x) ∼ GP (m (x) , k (x, x′)) (16)

The selection of m(x) and k(x, x′) restricts the shape of
functions f(x) that can be drawn for this distribution. There-
fore, GP models are often used for Bayesian Inference, since
plenty different functional relationships can be modeled just
by adequate selection of m(x) and k(x, x′). Heuristically it
has be observed, that most of the information about a Gaus-
sian process is encoded in the covariance function, so that
without loss of generally m(x) = 0 can often be assumed.

Many well-known kernels are described in literature, which
can be further combined to more complex covariance func-
tion [27], [28]. This way, it is common for Bayesian models
to encode a-priori knowledge via combined and tailored
covariance functions. A short overview of the kernels that
are used in the scope of this paper, is given in the following
paragraphs.

Squared-Exponential (SE) kernel, also known as the Radial
Basis Function kernel, is one of the most popular kernels for
GP. It has the form:

kSE (x, x′) = exp

(
− (x− x′)

2

2l2

)
(17)

Here l is the length scale which determines the length of the
’wiggles’ in the function. No significant correlation is given
between function values that are more than l units away from
each other.

The class of Matern kernels is a generalization of the afore-
mentioned SE kernel. It has an additional parameter ν which
controls the smoothness of the resulting function: The smaller
ν, the less smooth the approximated function. It can be
shown that the sampled functions are t-times mean-square
differentiable if and only if ν > t. As ν → ∞, the
kernel becomes equivalent to the SE kernel. [27] For the
approximation of physical processes, Matern-3/2 (M32) with
ν = 3/2 and Matern-5/2 (M52) with ν = 5/2 are popular
kernel choices. The M52 kernel is for example defined as:

kM52 (x, x
′) =

(
1 +

√
5

l
∥x− x′∥+ 5

3l2
∥x− x′∥2

)

exp

(
−
√
5

l
∥x− x′∥

) (18)

The White Noise (WN) kernel represents independent and
identically distributed noise added to the Gaussian process
distribution:

kWN(x, x
′) = ν2δ(x, x′) (19)

where ν2 is the variance of the noise and δ(x, x′) is the
Kronecker delta, returning 1 if x = x′ else 0. This results
in a covariance matrix with zeros everywhere except on its
diagonal, which contains the variances.

Coregionalization is an idea used in situations where not all
function outputs could be observed for a particular input.
However, the resulting Coregion (CR) kernel is also well
suited to construct kernels over discrete categorical variables.
For a matrix B defined as

B = WW⊺ + diag (κ) (20)

the CR kernel returns the element of the matrix which index
is given by the input variables:

kCR(x, x
′) = B[x, x′] (21)

Warped Input kernel can be used to transform the inputs
of any kernel to another domain by applying an arbitrary
function w(x).

k̃(x, x′) = k(w(x), w(x′)) (22)
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This approach is commonly used to transform input data
from a periodical domain to kernels that are operating on an
euclidean domain. [29]

Combining Kernels is a common way to fit the data accord-
ingly if more than one type of feature is present. Multiplying
Kernels is the standard way to combine two different kernels
especially if they are defined on different inputs dimensions
of the function. This operation reflects a standard AND
operation. So if two kernels are multiplied, then the resulting
kernel will have a high value if and only if both the base
kernels have a high value. Adding Kernels analogously can
be thought of as an OR operation. That is, if two kernels are
added, then the resulting kernel will have a high value if either
of the two base kernels has a high value.

Bayesian AEDB Generation

In contrast to the classical approach for AEDB generation,
the Bayesian approach is an inherently probabilistic method
which incorporates the description of uncertainties right from
the beginning. As such, the AEDB function is modeled as
a probability distribution over the aerodynamic coefficients
vector c, dependent on the generalized input vector x, the
generalized parameter vector θ and hyperparameter vector α,
as well as on the datapoints that have been used for fitting
(c̃i, x̃i)i=1..n:

c ∼ p(c | x; (c̃i, x̃i)i=1..n,θ,α) (23)

To generate such a Bayesian AEDB, at first a prior predictive
model is developed to determine the actual parametrization
of θ, which shall be fitted during Bayesian Inference:

p(c,x | α) =

∫
p(c,x | θ)p(θ | α) dθ (24)

At this stage expert knowledge can be encoded in the model,
either by selecting the structure of the likelihood p((c,x)|θ)
and the prior distribution p(θ|α), or by the provision of
values for the hyperparameters α. Especially GP models
have been proven here as an effective class of likelihood
functions, since they can be adapted to model very different
functional behaviors but still provide good interpretability for
experts. The encoded a-priori knowledge can remain very
broad, just encoding some general properties of the AEDB
function.

It should be noted that in Bayesian models also the parameter
vector θ is treated as a random variable. According to
equation (14) the posterior distribution over these parameters
can be inferred from the likelihood over the provided training
data and from the prior distribution:

p(θ | (c̃i, x̃i)i,α) =
p((c̃i, x̃i)i | θ,α)p(θ | α)∫
p((c̃i, x̃i)i | θ,α)p(θ | α) dθ

(25)

Since for most Bayesian models this equation cannot be
solved analytically in a closed form, several approximation
methods have been developed and implemented in software
libraries, such as PyMC. The inference process for the
Bayesian AEDB can therefore be fully automated, requiring
computational resources only.

Once the posterior distribution p(θ|(c̃i, x̃i)i,α) has been
inferred (or sufficiently approximated), it can be used to cal-
culate the posterior predictive distribution, which determines
a probability distribution over the aerodynamic coefficients c
for any flight condition x.

p(ĉ, x̂ | (c̃i, x̃i)i,α) =

∫
p(ĉ, x̂ | θ)p(θ | (c̃i, x̃i)i,α) dθ

(26)

For subsequent statistical analyses, e.g. Monte Carlo simu-
lations of the flight trajectory, the posterior predictive distri-
bution or samples thereof can directly be used as input. If
however an interval model as in (7) is requested, the Highest
Density Interval (HDI) or Equal-Tailed Interval (ETI) can be
calculated from the distribution for a given confidence level.
Furthermore, a point-estimate of the nominal AEDB value
can be determined by the mean or median of the distribution.

The main advantage of this Bayesian approach is that the
model inference and prediction steps can be fully automated,
so that the required workforce from experts might be reduced
significantly. This way frequent refitting of the AEDB func-
tion would be possible whenever new data arrives. Also, more
complex relationships and correlations of the uncertainty
contributors can be inferred directly from the available data,
depending on very broad a-priori knowledge only.

On the other hand, the translation of available expert knowl-
edge is more complicated than for the Classical AEDB, since
it needs to be mathematically formalized and encoded in the
prior distributions. Therefore and due to the quite complex
structure of the model, the results might also be more difficult
to interpret which increases the risk for hidden issues in
the model structure or in the fitting process. Even though
less human workforce is required for fitting the Bayesian
model, significant computational performance is required for
inference and prediction, which makes it likely difficult to be
executed online during simulation or flight.

Related Work

Generating an aerodynamic database is an intrinsic part of
every launch vehicle development program and for the design
of a robust GNC system, the uncertainties of the AEDB
have to be assessed. With regard to RLVs, the extensive
work done for the AEDB generation, including estimation
of the uncertainties, for the Space Shuttle program is the
most completely published example [30]. The aerodynamic
coefficients in this case were derived based solely on WTT,
with extensive campaigns in multiple facilities in order to
cover the entire flight envelope of the vehicle. The scatter
within the data of multiple WTT facilities was defined as the
so-called tolerance, the lower uncertainty bound. Additional
uncertainties, to account for systemic errors in wind tunnel
tests compared to full scale vehicles, were defined as an
upper uncertainty bound, called variations. These were sized
based on the comparison of pre-flight WTT data with post-
flight data from previous similar configurations. A challenge
with this approach is the limited number of applicable and
available datasets, especially in the hypersonic regime [31].

In modern vehicle developments the massive effort of this
extensive WTT approach is usually not undertaken. Instead,
CFD data is often combined with data from WTTs in order
to reduce costs and accelerate the development program.
However, the number of modern development programs that
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have published their methodology is limited. Current winged
flight experiments, like ReFEx [32] or HEXAFLY-INT [33],
rely heavily on CFD data of various fidelity for the generation
of their AEDB. Here, WTT data is mostly used to crosscheck
the CFD data and to estimate the uncertainty associated with
the resulting database. The AEDB of the expandable launcher
VEGA-C [34] has been developed with a similar approach,
but used the generated WTT polars as the underlying dataset
for sub- and supersonic velocities. Correction terms and un-
certainty levels were subsequently estimated by comparison
with various CFD results.

Stradtner et al. [35] presented a surrogate modelling frame-
work to obtain aerodynamic stability and control data sets at
an early design phase based on the data fusion of low and
high fidelity CFD data. In contrast to the work presented
herein with datasets generated a-priori, an adaptive sampling
process is employed to reach a required uncertainty level.
This approach could be used in a future extension of the
current work in order to select additional points of interest
for further CFD simulations or WTT experiments. The
automated process presented within [35] is limited to CFD
data, since WTT datasets cannot easily be generated in the
loop.

Renganathan et al. [36] have applied Bayesian methods for
data fusion of WTT and CFD data in the context of aerody-
namics. In contrast to this work, the focus was on the local
pressure distribution along an airfoil, not on the aerodynamic
coefficients of an entire vehicle. The two datasets were fused
with Bayesian Inference in order to estimate the true field that
best matches the measured quantities. The work shares the
same fundamental challenge with the study shown herein that
this true field is unknown and can only be estimated.

Specific to vehicles using retro-propulsion, while commercial
vehicles similar to CALLISTO are currently operational, their
workflow and methods are not published.

Work on aerodynamic datasets is, of course, not limited to the
descent of the vehicles, the ascent of launch vehicles is also
analyzed, albeit with different goals. The focus is usually
less on controllability, due to the large control authority
achieved through the active rocket engines, and more on the
characterization on mechanical and thermal loads [37].

While not commonly used for the assessment of uncertainties
of launch vehicles AEDBs, Bayesian Inference and Gaussian
Process Models have been successfully applied to several
interdisciplinary tasks for science, engineering, philosophy,
medicine, sport, and law applications. The following list
highlights some selected use cases that share similarities with
the approach described above.

Gaussian Processes have been shown to be very useful in the
problem avoidance of scrap and adherence to tolerances in
forging super-alloys. Hoffer et al. [38] have shown that they
can be used to replace the established Finite Element Method
(FEM) models which require extensive computational re-
sources. The Gaussian process model acted as a robust
substitute which resulted in a fast estimation that adequately
depicts reality and was shown to be over 3000 times faster
compared to FEM simulations, with an acceptable loss of
accuracy and information.

Morita et al. [39] have shown that Bayesian optimization
with Gaussian process regression can be successfully used for
CFD aeroshape optimization problems. It should be noted

that the Bayesian optimization is among the gradient-free
approaches and hence only requires forward evaluation of the
quantities of interest, i.e. running of resource-intensive CFD
code.

Deep Bayesian Gaussian Processes have also been used for
uncertainty estimation in electronic health records. Through
a series of experiments on prediction of the first incidence
of heart failure, diabetes and depression applied to large-
scale electronic medical records, Li et al. [40] demonstrate
that their method is better at capturing uncertainty than deep
Bayesian neural networks in terms of indicating data insuffi-
ciency and identifying misclassifications, with a comparable
generalization performance.

Bayesian Inference and Gaussian Processes are also used for
quite novel methods in sports like the work by Zhao et al.
[41] which analyzed kernel based machine learning methods,
specifically Gaussian Process, to analyze the forces in cross
country skiing races.

In general, the Bayesian approach developed in this paper is
novel for the generation of AEDBs regarding the prediction
of coefficient for entire vehicles including the quantification
of uncertainties. In other fields with similar problem types,
the applied methodologies have shown considerable effec-
tiveness.

4. MODEL DEFINITION
During the detailed design phase of CALLISTO several
Bayesian models have been tested on different aspects of the
AEDB. In this paper, we will focus on the comparison of one
typical Bayesian Model with the classical Reference Model to
assess the feasibility of the Bayesian approach. The selected
Bayesian model incorporates many common characteristics
that have also been observed in other tested models.

In order to focus on the actual comparison of methodologies,
we have furthermore restricted the problem space to model
the normal force coefficient Cz in dependency of the Angle
of Attack α for the UFN configuration only. For the following
chapters the considered models and datasets will therefore be
limited to the below-mentioned ranges or values:

Ma = 0.5

H = 1000m

α ∈ [0◦..360◦]

ϕ = 0◦

δj=1..4 = 0◦

Config = UFN

(27)

The rationale for this restriction is to maintain a relatively
simple model structure and to present well-interpretable first
results. More complex models have been tested, but due to
the curse of dimensionality the computational requirements
for inference and prediction, as well as the challenge of
visualizing the results significantly increase with the number
of input and output dimensions. For the initial comparison
of methodologies this complexity is however not required.
A full Bayesian characterization of CALLISTO’s AEDB is
planned for future publication.
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The choice of the flight conditions in (27) has been driven by
two aspects. First, these conditions correspond to a typical
point on the descent trajectory of CALLISTO during the
aerodynamically controlled flight phase. Uncertainties in
this domain can be considered most critical for CALLISTO’s
design, since a pinpoint landing on the landing pad needs to
be reached even under off-nominal conditions. Therefore, the
GNC design relies on a robust quantification of uncertainties
in this domain. Second, a relatively large number of aerody-
namic datapoints are available for these conditions, from all
CFD and WTT sources as shown in section 2. This supports
the validation of the inference results, allowing conclusions
with regard to the model quality to be drawn.

Bayesian Model

The Bayesian model that is analyzed in this paper is defined
as a GP over normal force coefficient Cz in dependency of the
Angle of Attack α and the categorical variable Setup. The
later dependency is used to model the fact that aerodynamic
datasets from different sources do not share identical error
characteristics. For mathematical convenience, this categori-
cal variable has been encoded as a discrete integer m which
enumerates each element of the domain (6) with a unique
value:

Cz(α,m) ∼ GP(0, k) (28)

Whereas a zero mean function is assumed for the GP, the
covariance function is constructed by the combination of
several elementary kernels:

k(α,m, α′,m′) = η2kSE(w(α), w(α
′); ls)

+ kCR(m,m′;B)kM52(w(α), w(α
′); ln)

+ kWN((α,m), (α′,m′); ν)

B = diag(σ2
m=1..6)

w(α) = (sinα, cosα)
⊺

(29)

Here, the SE kernel models the underlying global behavior
of the AEDB function. The M52 kernel on the other hand
models any deviation of the aerodynamic data points from
this global behavior. Due to the multiplication with the
CR kernel, this error behavior is treated separately for each
Setup. Furthermore, both continuous kernels have been
warped to the periodic AoA domain via w(α). The selection
of these two kernels was driven by the assessment that both
induce relatively smooth functions [27], since a discontinuous
or non-differentiable behavior of the AEDB is not expected.
The final WN kernel models any remaining variability, for
example due to measurement noise or truncation errors, and
helps to stabilize the numerical convergence of the inference
algorithm. Its inferred variance is however very low, so this
term could be neglected for most practical considerations.

Regarding the prior distributions, it is assumed that all param-
eters in (29) are drawn from an Inverse Gamma distribution
IG:

η, σm=1..6, ν, ls, ln ∼ IG(a, b) (30)

This selection has been made by heuristic considerations
to have a positive domain for each parameter with very

small probability mass close to zero. [42] The shape a and
scale b parameters have been selected individually by expert
assessment, so that weakly informative priors are constructed
with mean values in the expected order of magnitude for each
parameter. [43]

The full Bayesian Model (28) - (30) has been implemented
with PyMC in Python. This implementation supports pa-
rameter inference and posterior prediction via an MCMC
algorithm. With this approach, all prior, posterior and pos-
terior predictive distributions are approximated via sampling.
For diagnostic purposes, metrics about the approximation
and convergence quality are also directly provided by this
implementation.

Reference Model

As reference for the Bayesian Model, the classically gener-
ated AEDB model will be used which is so far the global
baseline for the development process of CALLISTO. A de-
tailed description about the development and the structure of
this model is given in [13].

This Reference Model is constructed from a piecewise linear
interpolation of the TAU LF dataset. Few correction terms
to this interpolation, as denoted in (9), have been identified
and complemented, e.g. to model the impact of engine
throttling or Thrust Vector Control (TVC). In this context,
also the applied superposition principle to model the fin
deflections can be interpreted as correction terms. However,
due to the restriction of the problem space (27) none of these
corrections will be active in the scope of this paper, so that the
interpolated function flip can directly be seen as the estimator
for the nominal value. This way, the Reference Model can be
formulated as:

Cz(α) = flip(α; (C̃z,i, α̃i)TAULF ) + bMC(α) (31)

In order to quantify the uncertainty in this model, constant
absolute error eabs and relative error erel terms have been
defined by expert assessments. However, both terms have
formally been applied as a bias b, since only the maximum
effective error in dependency of the AoA shall be considered:

b(α) = ±max{|erelflip(αi; (C̃z,i, α̃i)TAULF )|, |eabs|}
(32)

Applying the probabilistic approximation of this interval (13)
under consideration of 3σ-confidence for its estimation, the
probabilistic bias bMC can be defiend as:

bMC(α) ∼ N (0,
1

3
|b(α)|) (33)

The full classical Reference Model has been implemented
and validated in Matlab, primarily to be use for Monte Carlo
campaigns of different subsystems. This implementation
supports predictive sampling, but also nominal and interval
estimates can be generated for any flight conditions. It should
be noted that this implementation supports all flight condi-
tions of CALLISTO, not only from the restricted problem
space (27). Since this model has been classically generated,
automated parameter inference is obviously not supported.

12



Figure 5. Comparison of prior and posterior distributions
over some selected parameters of the Bayesian Model.

5. INFERENCE RESULTS
To allow a first comparison of the Bayesian approach with
the classical approach for generating AEDBs, the software
implementation of the Bayesian Model and Reference Model
described in section 4 have been evaluated and further ana-
lyzed. These results are presented in the following paragraphs
and compared.

Since Bayesian Inference is a new approach in this field,
the intention is on one hand to demonstrate the behavior of
the Bayesian Model during inference, so that the validity
of the model and its results can be concluded. For the
Reference Model such a demonstration cannot be done, since
this model is inherently provided in a (manually) fitted state.
On the other hand, it shall be assessed whether the predictive
capabilities for unknown flight conditions are equally good
for both models, or if advantages or issues can be observed
for one or the other model. Finally, a very short comparison
of the resources necessary for inference and prediction with
both models is given.

Comparison of Prior and Posterior Distributions

By application of Bayes Law (25) during the inference phase,
the probability distribution over the model parameters will
be moved from the prior distribution (30) to the posterior
distribution.

For the PyMC implementation of the Bayesian Model, this
posterior distribution is approximated with a MCMC algo-
rithm. This way equation (25) does not need to be solved
analytically, but rather a set of samples is generated which
converges towards the searched posterior distribution. For
the scope of this study, all probability distributions are ap-
proximated by 4000 samples which have been drawn by 4
independent chains. The usage of few independent chains is
quite common for this class of algorithms to avoid, or at least
to discover, any possible convergence issues of the algorithm.

Figure 5 illustrates the approximated Probability Density
Function (PDF) of the posterior distributions for some se-
lected model parameters, compared to their prior distribu-
tions. It can be seen that due to inference on the provided
aerodynamic datasets, the distributions over the parameter
space have evolved in location, scale and shape. However,
a significant overlap in the probability mass distribution can
still be observed for each posterior and prior, with a slight
exception for length scale ln. This overlap can be interpreted

Table 2. Summary statistics of the prior and posterior
distributions over all model parameters of the Bayesian

Model.

Parameter Mean SD 95% HDI

η prior 25.533 22.037 6.404 64.674
posterior 14.327 4.924 6.943 23.655

σTMK
prior 0.205 0.094 0.064 0.385
posterior 1.311 0.492 0.563 2.311

σHST
prior 0.199 0.109 0.068 0.375
posterior 2.013 0.581 1.016 3.158

σTAU HF
prior 0.203 0.102 0.067 0.402
posterior 0.444 0.161 0.172 0.756

σTAU LF
prior 2.027 0.954 0.790 4.166
posterior 2.804 0.629 1.673 4.032

σDATCOM
prior 19.408 10.032 6.989 38.449
posterior 2.038 0.287 1.519 2.593

ls
prior 0.592 0.295 0.212 1.158
posterior 1.162 0.240 0.712 1.630

ln
prior 0.156 0.115 0.036 0.349
posterior 0.447 0.040 0.370 0.524

ν
prior 0.102 0.081 0.024 0.235
posterior 0.005 0.000 0.004 0.006

as an indicator that the prior distributions were chosen well.
Whereas for some parameters like η the uncertainty has been
narrowed down by the dataset, the uncertainty of other param-
eters like σTAU HF has increased during inference. Further-
more, it should be noticed that for some prior distributions
a small probability mass fraction is plotted over slightly
negative values. This is however just an artifact of the shown
visualization, as the drawn MCMC samples are smoothed by
Kernel Density Estimation (KDE) for illustration purposes.
The definition of the prior (30), as well as all prior and
posterior samples are in the positive domain.

A summary statistic of the prior and posterior distributions
for all model parameters is given in table 2.

Comparison of Posterior Predictive Distributions

The main application of any AEDB function, and the ma-
jor motivation for their development, is the prediction of
aerodynamic coefficients for flight conditions not specifically
covered by the existing dataset. In a Bayesian setup this is
done by the posterior predictive distribution (26), but also
classical probabilistic models (11) can be used similarly.

For the Bayesian Model, the posterior predictive distribution
is visualized in figure 6 for the full AoA domain. Here, the
PDF is shown by the reddish colormap, while a selection of
sample realizations are plotted in light gray. It can be seen
that the distribution has adapted the typical periodic behavior
during inference, which is expected for the normal force
coefficient Cz in dependency on α. Globally, all datapoints
have been fitted quite well, just for the DATCOM data a bias
can be observed. Whereas the spread of the distribution is
relatively large for most AoA, it significantly narrows down
in the region α ≈ 160◦...200 where HST, TMK and TAU
HF data are available for inference. Furthermore, the plotted
sample realizations show some noise and variability with
respect to the AoA, but most realizations remain close to the
mean function.

13



Figure 6. Posterior predictive distribution of the Bayesian Model in comparison with the aerodynamic datasets.

Figure 7. Posterior predictive distribution of the classical Reference Model in comparison with the aerodynamic datasets.
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Figure 8. Comparison of the posterior predictive distributions for α = 160◦...200. Left: Bayesian Model; Right: Classical
Reference Model.

For direct comparison, a similar plot of the posterior predic-
tive distribution of the Reference Model is given in figure
7. Also here, the typical periodic behavior is reflected by
the probability distribution. Whereas the TAU LF datapoints
are fitted perfectly by the mean function, as expected by the
construction of the Reference Model, again a bias towards
the DATCOM dataset can be observed. As for the Bayesian
model, the spread of the distribution is relatively large around
α ≈ 90◦ and α ≈ 270◦, while it narrows down around
α ≈ 180◦ In contrast however, the spread of the Reference
model also narrows down around α ≈ 0◦ This can be a sign
that additional high fidelity data is available here for fitting,
that has just not been provided to the Bayesian Model, or
that this is just an artifact from the simple structure of the
Reference Model. It can however be observed that the spread
of Reference Model is generally smaller than the spread of
the Bayesian Model, for all AoA. Looking at the plotted
sample realizations, it can be seen that they are all parallel
to the mean function, showing no variability with respect
to the AoA besides the global behavior. This indicates a
very strong correlation between predictions from neighboring
AoAs. Whether such a variability is a desired feature of the
AEDB or not, is a point that should be further elaborated with
the AEDB users.

A more detailed investigation of the posterior predictive
distributions in the region α ≈ 160◦...200 is given in figure
8. Again, it can be observed that the spread of the Bayesian
Model is significantly larger than for the Reference Model.
However, all datapoints (with exception of DATCOM) are
well-covered by the 95% HDI interval of the Bayesian Model,
whereas for the Reference Model several HST and TAU HF
datapoints are outside this interval. This different behavior
of both models can be seen as a typical instantiation of the
well-known bias-variance dilemma. [44] According to this
principle, it is not possible for any regression problem to
minimize the variance and the bias at the same time. If
the variance is decreased by different parameter selections,
the bias will automatically increase at the same time. Since
this trade-off is difficult to solve, a clear statement which
model better represents the aerodynamic dataset in this range
is difficult to make.

In order to better assess the goodness of fit of both mod-
els, the Root Mean Squared Error (RMSE) and the Median
Absolute Deviation (MAD) have been calculated between
the posterior predictive distributions and each aerodynamic
dataset. These results are presented in figure 9 and 10 for
the high-fidelity datasets. Whereas the RMSE is one of the
most common error metrics in statistics, the MAD metric
is similar but less sensitive to outliers. It can be observed
that the Reference Model has a smaller error to the TMK
dataset than the Bayesian Model, in terms of both RMSE and
MAD. Regarding the error to the HST dataset, the Reference
Model seems to have a lower MAD, whereas the Bayesian
Model might have a slightly lower RMSE. The RMSE of
the Reference Model with respect to the TAU HF dataset
is however higher than for the Bayesian Model, while both
MADs are almost comparable.

Considering these error metrics, it could be concluded that
the Reference Model slightly better fits the TMK dataset than
the Bayesian Model. For all other measures the observed dif-
ferences between the models are however not so significant,
which can be also be seen by the wide overlap of their HDIs.
Therefore, it can at least be concluded that the Bayesian
Model and the Reference Model fit the aerodynamic datasets
with roughly comparable quality. Furthermore, it can be
observed that the spread of each error metric is lower for the
Reference Model than for the Bayesian model. This basically
supports the hypothesis that the deviations of the Reference
Model are mostly caused by its bias, whereas the deviations
of the Bayesian Model are more caused by its variance. It
should be noted, that a smaller uncertainty spread does not
indicate a better model. For the users of the AEDB underes-
timation of the uncertainties can lead to other subsystems not
being designed robust enough, while an overestimation can
lead to effort being spent to achieve a level of robustness not
actually necessary for the mission. While both approaches
include prior knowledge in the assessment of the uncertain-
ties, the classical approach relies more on expert judgement,
than the more data-driven Bayesian approach. Since such a
vehicle has not been flown in Europe, the transfer of expert
judgement from other aerodynamics configurations, has to be
done with care. One of the goals of the CALLISTO project is
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Figure 9. Forest plot of RMSE between posterior predictive
distributions and different aerodynamic datasets for each

model. Each bar indicates the mean value, the interquartile
range and the 95% HDI.

Figure 10. Forest plot of MAD between posterior predictive
distributions and different aerodynamic datasets for each

model. Each bar indicates the mean value, the interquartile
range and the 95% HDI.

the generation of experience with this specific type of vehicle,
which might lead to changed judgement of the uncertainty
after the flights have been evaluated.

In summary, it can be concluded that although both models
show slightly different characteristics, they have both the
capabilities to adequately predict aerodynamic coefficient for
unknown flight conditions with roughly comparable quality.

6. CONCLUSIONS AND OUTLOOK
In the scope of this paper the methodology to apply Bayesian
Inference for the predictions of aerodynamic coefficients for
unknown flight conditions has been developed. It could be
shown that a Bayesian model for the generalized AEDB
generation problem can be constructed. For CALLISTO this
has been exemplified by a simple Gaussian Process model
for the AoA dependency of the normal force coefficient.
A software implementation of this model has be provided,
which is able to automatically infer its parameters from the
available aerodynamic datasets, and which is able to provide
reasonable predictions of aerodynamic coefficients for new
flight conditions, including quantified uncertainties. This

demonstration showed already that the Bayesian approach is
a noteworthy alternative to the classical AEDB generation.

For the implemented Bayesian model some first inference
and predictions results have been presented and compared
with the reference AEDB model of CALLISTO. It could
be shown that all CFD and WTT results are covered well
within the estimated uncertainties of the model. In direct
comparison with the reference model, a larger variance has
been observed in the predicted coefficients. However, the
relatively low variance of the reference model is realized at
the expense of a larger bias: Several aerodynamic datapoints
are not covered by the estimated uncertainties of the refer-
ence model. Whether a higher variance or a higher bias is
preferable for the AEDB model is a clear trade-off which
needs further discussion with AEDB users and aerodynamic
experts. Therefore, a clear statement which of both models
better represents the uncertain aerodynamic behavior of the
vehicle is not yet possible.

Furthermore, the fitting qualities for the predictive results of
both models have been evaluated with different error metrics.
Depending on the selected metric and the aerodynamic subset
used for evaluation, one or the other model has shown slightly
better results. However, significantly better performance
could not be shown for any model. It can therefore at least
be concluded, that the fitting qualities of both models are
comparable.

Even though these observations are supporting the suitability
of Bayesian Inference for the AEDB generation process, this
study should only be interpreted as a first demonstration of
this approach. As only one simple Bayesian model has been
presented and examined in this paper, further tests would
be necessary to generalize the results. Models for other
aspects of CALLISTO’s AEDB have already been tested by
the authors, but not yet assessed to the presented degree
of detail. Furthermore, the applicability of this approach
should also be validated for other aerospace vehicles. At
least for CALLISTO it is intended to prepare a full Bayesian
characterization of the vehicle aerodynamic for an upcoming
publication.

Finally, it should be noted that the presented Bayesian ap-
proach is not limited to the prediction of aerodynamic un-
certainties only. These principles can also be applied to
other field of engineering, where estimates with quantified
uncertainties are required. Possible use cases are for example
the vehicle mass estimation or the estimation of operational
costs. Since Bayesian inference is not so common yet in
engineering, the main difficultly is here the translation of
classical approaches into suitable Bayesian models.
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F. Krziwanie, I. Petkov, E. Dumont, A. Schneider,
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R. Schwarz, D. Seelbinder, M. Stief, J. Windelberg,
and S. Woicke, “Towards a reusable first stage
demonstrator: Callisto - technical progresses &

challenges,” in Proceedings of the International
Astronautical Congress, IAC, October 2021. [Online].
Available: https://elib.dlr.de/147143/

[12] E. Dumont, M. Illig, S. Ishimoto, C. Chavagnac,
Y. Saito, S. Krummen, S. Eichel, H. Martens,
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