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Summary
In engineered systems, the architecture of a system describes how the components of a system
work together to fulfill the system functions and meet stakeholder expectations (Crawley
et al., 2015). As the architecture is developed in early conceptual design stages, decisions
involving architecture often have a large influence on final system performance, for example,
in terms of how well the functions are fulfilled, or at what cost and in what timeframe.
However, architecture design spaces (i.e., the set of all possible architecture alternatives) can
be very large due to the combinatorial nature of architecture decisions, making it infeasible
to compare all alternatives to each other. Additionally, for new systems there might not be
any prior experience to start from, requiring the use of (typically) computationally-expensive
physics-based simulation to estimate system performance.

The field of system architecture optimization aims to enable the use of physics-based simulation
for exploring the large combinatorial architecture design space, by formulating the system
architecting process as a numerical optimization problem (Bussemaker & Ciampa, 2022).
In optimization, the goal is to minimize (or maximize) one or more objective functions by
modifying design variables, while ensuring that design constraints are satisfied. For example,
for an aircraft propulsion system, the objectives could be to minimize energy consumption and
operating costs, by changing number of propellers, mechanical power generation source, fuel
type, and operating strategy (i.e., the design variable), while ensuring that thermodynamic
stress and reliability constraints are satisfied. By applying architecture optimization, more
architecture alternatives can be considered in the early design phase with the expected result
of better understanding of the design space and more informed decision-making.

Architecture optimization problems feature several behavioral characteristics that make them a
particularly challenging class of optimization problem (Bussemaker, Bartoli, et al., 2021):

• Evaluation functions are non-linear black-box functions that are expensive to evaluate: it
might for example take several hours to evaluate the performance of only one architecture
alternative.

• There might be multiple conflicting objectives (i.e., design goals) to optimize for, meaning
that rather than one optimal design, there might be a Pareto-set of optimal designs.

• Simulations used in performance evaluation might fail to converge, yielding Not-a-Number
as evaluation result; this phenomenon is called hidden constraints, because they can be
seen as design constraints that are “hidden” when defining the problem.

• The design space might contain both continuous and discrete variables, making the
optimization problem a mixed-discrete problem.

• Decisions can be conditionally active based on other decisions: there is a hierarchy
between decisions.

Such optimization problems can be readily solved by Multi-Objective Evolutionary Algorithms
(MOEAs). However, these need many function evaluations to converge (Chugh et al., 2019),
which is a problem for expensive evaluation functions. Surrogate-Based Optimization (SBO)
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algorithms and in particular Bayesian Optimization (BO) algorithms (Garnett, 2023) instead
build a surrogate model (also known as response surface or regression function) of the design
space, use that model to suggest new design points to evaluate, and repeat the process after
updating the surrogate model. This approach is powerful, although existing SBO algorithms
need to be extended to support all architecture optimization challenges described above.

Statement of need
Several open-source Surrogate-Based Optimization (SBO) libraries already exist, in particular
BoTorch (Balandat et al., 2020), Trieste (Picheny et al., 2023), SMAC3 (Lindauer et al.,
2022), and HEBO (Cowen-Rivers et al., 2022). These libraries support multi-objective and
mixed-discrete optimization; however, they do not all support hidden constraints and decision
hierarchy. The latter requires the automatic correction and imputation of design vectors to
ensure no duplicate design vectors are generated (Bussemaker, Bartoli, et al., 2021).

The purpose of SBArchOpt is to provide a one-stop solution for solving architecture optimization
problems, by:

1. providing a common interface for implementing architecture optimization problems,
ensuring that all information needed by optimization algorithms is available; and

2. providing several options for optimization algorithms that work out-of-the-box for most
architecture optimization problems.

SBArchOpt implements experience with solving architecture optimization problems (e.g.,
(Bussemaker, Bartoli, et al., 2021; Bussemaker et al., 2023)) in an open-source Python library.
Target users are systems engineers and researchers in the field of (architecture) optimization.

SBArchOpt will be used as the go-to library for solving architecture optimization problems
modeled using ADORE (Bussemaker et al., 2022), software developed by the German Aerospace
Center (DLR) and applied in several German and European research projects. ADORE already
implements the problem definition API of SBArchOpt.

Library features
The problem definition API ArchOptProblemBase extends the Problem class of pymoo (Blank
& Deb, 2020), an evolutionary optimization framework, with several additional features:

1. a unified way to define continuous, integer, and categorical design variables;
2. an interface for accepting modified design vectors from the evaluation function;
3. a function for correcting design vectors without running an evaluation;
4. a function for returning which design variables are conditionally active;
5. an interface for storing and loading problem-specific intermediate results; and
6. several functions for compiling statistics about the design space, such as the number of

valid architectures, the average number of active design variables, and more.

Optionally, the hierarchical design space structure can also be specified using the
ExplicitDesignSpace class, which then relieves the user from implementing correction,
conditional-activeness and statistics-related functions. The explicit design space definition uses
ConfigSpace (Lindauer et al., 2022) to model conditional activation and value-pair constraints.

Then, SBArchOpt implements several features that may be used by any optimizer, using
pymoo’s API:

1. a sampling algorithm for hierarchical design spaces;
2. a repair operator that calls the correction function of the problem class; and
3. intermediate results storage and restart capabilities.
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To solve optimization problems, SBArchOpt implements the following (interfaces to) optimiza-
tion libraries/algorithms:

1. pymoo: SBArchOpt provides a pre-configured version of the NSGA2 evolutionary opti-
mization algorithm;

2. ArchSBO: a custom implementation of a mixed-discrete, multi-objective Surrogate-Based
Optimization algorithm, with support for design variable correction, hidden constraints,
and restart, using state-of-the-art mixed-discrete, hierarchical Gaussian Process models
(Saves et al., 2023);

3. three open-source Bayesian Optimization libraries: BoTorch (Ax) (Balandat et al., 2020),
Trieste (Picheny et al., 2023), and HEBO (Cowen-Rivers et al., 2022);

4. two proprietary Bayesian Optimization libraries: SEGOMOE (Bartoli et al., 2019) and
SMARTy (Bekemeyer et al., 2022); and

5. a Tree Parzen Estimator (TPE) algorithm with support for hidden constraints.

Finally, to support development of optimization algorithms, SBArchOpt also provides a database
of test functions:

1. many analytical test problems with various combinations of characteristics: continuous vs
mixed-discrete, single- or multi-objective, with or without constraints, hierarchy, and/or
hidden constraints;

2. a Guidance, Navigation and Control (GNC) optimization problem from (Apaza & Selva,
2021) trading-off system mass against reliability, and a little over 79 million possible
architectures; and

3. an aircraft jet engine architecture optimization problem from (Bussemaker, De Smedt, et
al., 2021) that uses a realistic engine simulation framework for performance evaluation,
features hidden constraints, and trades fuel consumption against engine weight and
emissions.
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