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Abstract—Road surface roughness is a major factor that is 

responsible for the skid resistance of vehicles and, thus, road 

safety. Therefore, it needs to be monitored regularly to ensure that 

the roughness values are in the optimal range and to perform 

maintenance actions when needed. Synthetic aperture radar 

(SAR) backscatter is sensitive to surface roughness and can 

provide large-scale estimates of road surface roughness. In this 

letter, a semi-empirical model for estimating road surface 

roughness using high-resolution spaceborne X-band SAR datasets 

from Germany's TerraSAR-X satellite is proposed for the first 

time. The method is capable of handling the low signal-to-noise 

ratio (SNR) of spaceborne SAR. To enhance the reliability of the 

results obtained from rather low SNR datasets, techniques such as 

SNR thresholding, multi-dataset fusion, and automatic road 

extraction were implemented. The study's results show good 

agreement with ground truth data. 

 
Index Terms—Synthetic aperture radar, spaceborne radar, 

surface roughness, vehicle safety, signal-to-noise ratio. 

I. INTRODUCTION 

HE road infrastructure is crucial for a country's 

development since it facilitates the movement of people 

and goods. The safety of people and vehicles using 

roads is also influenced by the quality of the road surface. Road 

surface roughness plays a significant role in road safety and 

quality [1]. The amount of friction between the road and the 

tires of vehicles is determined by the material and roughness of 

the road surface, which affects the grip and skid resistance of 

vehicles, influencing their acceleration, maneuverability, and 

braking performance [2]. To maintain the safety and quality of 

road surfaces, regular inspections are necessary to ensure that 

surface roughness values fall within acceptable limits [3]. 

Currently, measuring road friction involves driving survey 

vehicles with measuring devices over highways and important 

roads, which is time and personnel-consuming, and costly. As 

a result, this survey is usually conducted every few years, such 

as in Germany, where it occurs around every 4 years [4]. 

However, road wear happens annually, particularly during 

winter due to repeated freeze-thaw cycles [5]. Thus, more 

frequent monitoring of road surfaces is required. 

SAR remote sensing is suitable for estimating wide-area road 

surface roughness because the backscattered signal received by 

the SAR system is sensitive to the surface's dielectric constant 
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and roughness. In [3], high-resolution fully polarimetric 

airborne X-band SAR data acquired by the F-SAR sensor of the 

German Aerospace Center (DLR) were used to generate 

accurate road surface roughness images. Airborne SAR-based 

road monitoring, though effective, is constrained by the need 

for flight planning, high operational costs, and limited 

coverage. This can be addressed by high-resolution spaceborne 

SAR, which can efficiently perform repeated data acquisition 

of any area at a lower cost. 

This letter assesses the potential of high-resolution X-band 

spaceborne SAR data from the TerraSAR-X (TS-X) satellite for 

road roughness estimation. The semi-empirical road surface 

roughness estimation model developed for F-SAR, which is 

based on the assumptions from the Dubois model [6], is used as 

a basis [3]. Compared to F-SAR, TS-X datasets are generally 

single-polarized and have lower SNR and worse resolution. 

Thus, this study adapted the semi-empirical model and 

processing chain developed for F-SAR to estimate road surface 

roughness using TS-X datasets. The model and processing 

chain have been adapted to handle single-polarized TS-X data, 

and they utilize SNR improvement techniques such as 

multilooking. Additionally, the processing chain includes 

techniques such as high backscatter and low SNR thresholding 

to eliminate highly reflective and unreliable pixels from the 

final surface roughness images. To enhance the robustness of 

the processing chain, the fusion of multiple datasets and 

automatic generation of surface roughness images for roads of 

interest were added. The credibility of the results was also 

tested with reference data. 

II. TEST SITES 

Two test sites were chosen to represent road surfaces with 

varying materials and roughness values. The first site is the 

Kaufbeuren airfield in Bavaria, Germany, including asphalt and 

concrete surfaces like runways, taxiways, and parking areas. 

Due to its inactive status, the airfield lacks regular maintenance, 

resulting in the presence of rough and cracked surfaces. Ground 

truth (𝐺𝑇) measurements of surface roughness were taken from 

multiple locations on the runway and parking area, 

encompassing various surface types and material compositions. 

Additionally, surface roughness images derived from airborne 

X-band F-SAR datasets are available for this test site, 

facilitating comparisons. Further details about this test site and 
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𝐺𝑇 data collection activity can be found in [3]. 

The second test site is the A2-A391 motorway crossing in 

Braunschweig, Germany, consisting of highways, flyovers, and 

bridges. While a relatively uniform surface roughness is 

expected, variations are anticipated at bridge locations due to 

different construction materials (cf. Fig. 7).  

III. DATASETS 

In this section, the details about the spaceborne SAR datasets 

and ground truth data used in this study are discussed. 

A. Spaceborne SAR datasets 

The TS-X satellite has multiple imaging modes: staring 

spotlight (ST), high-resolution spotlight (HS), stripmap (SM), 

and ScanSAR (SC). These modes provide approximate spatial 

resolutions (azimuth x range) of 0.24 x 0.60 m (ST), 1.1 x 1.2 

m (HS), 3.3 x 1.2 m (SM), and 18.5 x 1.2 m (SC). The swath 

coverage (azimuth x range) for each mode is 3.7 x 4 km (ST), 5 

x 10 km (HS), 50 x 30 km (SM), and 150 x 100 km (SC) [7]. 

 

   

 
Fig. 1. Comparison of TS-X imaging modes. (a) GE image of the 

Kaufbeuren runway. Intensity images in (b) SM, and (c) ST modes. 
 

TABLE I 

METADATA OF THE ST MODE TS-X DATASETS 

 

Fig. 1(a) presents the Google Earth (GE) image of a section of 

the Kaufbeuren runway, while Figs. 1(b) and (c) display TS-X 

HH polarized intensity images of the same section captured in 

SM and ST modes, respectively. The images have a scene 

center incidence angle of approximately 44 degrees. Since a 

dataset with a similar incidence angle range is unavailable, the 

HS mode image is not included in this comparison. Only the ST 

mode image owing to its highest spatial resolution shows 

clearly the reflectivity changes on the runway, which is evident 

when comparing it with the GE image. Hence, only ST-mode 

datasets are used in this study and their metadata are given in 

Table I. 

B. Ground truth data 

To train the semi-empirical surface roughness estimation model 

and validate the roughness values estimated using the TS-X 

datasets, 𝐺𝑇 surface roughness values were measured from the 

Kaufbeuren test site. Eight 1 m2 areas on the Kaufbeuren 

runway and taxiway were selected as 𝐺𝑇 spots [3]. The vertical 

surface undulation of the asphalt/concrete surface was 

measured using a handheld laser scanner with micrometer 

accuracy. Since Root Mean Squared (RMS) height (ℎ𝑟𝑚𝑠) is a 

commonly used metric to measure surface roughness, the height 

values obtained from the laser scanner measurements were used 

to compute a single ground truth surface roughness value 

(𝐺𝑇 ℎ𝑟𝑚𝑠) for each location. The RMS height was computed 

using the formula shown below (1) [8], [9]: 

 

ℎ𝑟𝑚𝑠 =  √
∑ (ℎ𝑖 − ℎ)²𝑛

𝑖=1

𝑛 − 1
 

 

(1) 

where 𝑛 represents the number of samples within a 1 m² area, 

ℎ𝑖 is the height of the ith sample and ℎ is the mean height over 

all samples.  

IV. METHODOLOGY 

This section explains the methodology for estimating road 

surface roughness using TS-X datasets. The flowchart of the 

complete processing chain is shown in Fig. 2. 

A. Radiometric calibration and multilooking 

The TS-X dataset is radiometrically calibrated to produce the 

sigma nought (𝜎𝑜) backscatter image. The 𝜎𝑜 values are 

estimated for each pixel without any spatial averaging, and the 

noise-equivalent beta nought (NEBN) values are estimated and 

subtracted from the 𝜎𝑜 values to minimize additive noise [10]. 

This noise-minimized 𝜎𝑜 image facilitates comparison of 

backscatter measurements between surfaces and enables 

estimation of surface properties such as roughness. 

Subsequently, multilooking is applied in the spatial domain to 

reduce speckle and enhance the SNR by averaging neighboring 

pixels in both range and azimuth directions [11]. The sliding 

window size for the spatial averaging is determined based on 

the smallest multilooking factors necessary in azimuth and 

range directions to create approximately square pixels, 

facilitating easier image interpretation (e.g., a 5x1 window 

(azimuth x range) for the ST mode dataset with a 43.7 degrees 

incidence angle). The 𝜎𝑜 image and the local incidence angle 

values (𝜃) are used as input to the surface roughness estimation 

model. 

B. Adaptation of the road surface roughness estimation model 

In the previous section, it was shown that ℎ𝑟𝑚𝑠 is used as the 

measure of road roughness. However, ℎ𝑟𝑚𝑠 cannot be estimated 

from the SAR data. Instead, the effective vertical surface 

roughness parameter (𝑘𝑠) can be estimated from the SAR data 

and it can then be inverted to estimate ℎ𝑟𝑚𝑠 as shown below (2) 

[3], [8]:  

 
ℎ𝑟𝑚𝑠 =  

𝑘𝑠

(2𝜋/𝜆𝑐)
 

 

(2) 

where 𝜆𝑐 is the wavelength of the SAR system.  

The mathematical formulation of the semi-empirical road 

surface roughness estimation model developed at DLR for the 

airborne SAR case is given as (3): 

 

𝑘𝑠 =  10
[
log(𝜎𝑝𝑞

𝑜 ) − log(𝛿(cos (𝜃))𝛽)

 𝑠𝑖𝑛(𝜃)
]

. 

 

(3) 

where 𝑘𝑠 is the effective vertical surface roughness, 𝜎𝑝𝑞
𝑜  is the 

𝜎𝑜 value for the 𝑝 transmitted and 𝑞 received polarization and 

Test site Date Pol Incidence 

angle (o) 

Use 

Kaufbeuren 16.03.2014 HH 43.7 Train 

Braunschweig 30.04.2015 HH 39.3 Test 

Kaufbeuren 13.08.2022 VV 31.6 Train 

Kaufbeuren 23.09.2022 VV 43.7 Train 

Kaufbeuren 29.09.2022 VV 31.0 Test 
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𝜃 is the local incidence angle. 𝛿, 𝛽, and 휀 are the model 

coefficients. This model has a validity range of 𝑘𝑠 < 2.5 and 

for 𝜃 > 30𝑜. For the X-band SAR used in this study, this 

translates to an ℎ𝑟𝑚𝑠 validity range of ℎ𝑟𝑚𝑠 < 12.43 mm. More 

details on the development of this model can be found in [3]. 

 
TABLE II 

COEFFICIENTS OF THE ROUGHNESS ESTIMATION MODEL FOR TS-X DATASETS 

Coefficients Polarization 

HH VV 

𝛿 0.16373946 0.17887929 

𝛽 -0.10682052 -3.95021343 

휀 1.99490104 3.38223192 
 

To make this model suitable for TS-X data, it's necessary to 

estimate a new set of 𝛿, 𝛽, and 휀 coefficients that are specific to 

the TS-X datasets. It's worth noting that the TS-X ST mode 

datasets used in this study have different characteristics than the 

F-SAR datasets since they are single-polarized with a coarser 

resolution. To estimate the new coefficients, a least square-

based curve fitting algorithm is used to train the model using 

the 𝐺𝑇 ℎ𝑟𝑚𝑠, 𝜎𝑝𝑞
𝑜 , and 𝜃 values at the 𝐺𝑇 spots from the TS-X 

datasets selected for model training (see Table I). Due to the 

limited availability of 𝐺𝑇 spots (only eight), the ℎ𝑟𝑚𝑠 values 

estimated using the F-SAR datasets from selected locations on 

the Kaufbeuren runway were used as additional 𝐺𝑇 values for 

estimating the model coefficients. Table II shows the model 

coefficients estimated for the TS-X data. The coefficients are 

estimated separately for the HH and VV polarized datasets. 

C. Upper sigma nought and lower SNR thresholding 

 High backscattering from objects such as lane dividers, 

flyover/bridge walls, overhead signboards, etc., can cause very 

high 𝜎𝑜 values from the road surface. This may result in 

incorrect and invalid surface roughness (ℎ𝑟𝑚𝑠) estimation in 

these regions. To remove these values from the ℎ𝑟𝑚𝑠 image, an 

upper 𝜎𝑜 thresholding approach is utilized. In this study, all 

ℎ𝑟𝑚𝑠 image pixels with a 𝜎𝑜 value above -10 dB are considered 

invalid for the analyzed TS-X datasets. This is because the 

highest observed 𝜎𝑜 value on the road surfaces is just below -

10 dB in the TS-X datasets. 

 

 
Fig. 3. Surface roughness vs. SNR plot for lower SNR threshold estimation 

Low SNR pixels can also cause incorrect estimates of ℎ𝑟𝑚𝑠, 

since they contain more noise than the actual backscattered 

signal. Therefore, these noisy pixels must be removed from the 

ℎ𝑟𝑚𝑠 image by applying an SNR threshold. To determine this 

threshold, a high SNR area on the Kaufbeuren runway was 

selected, and random Gaussian noise was gradually added to the 

data until the SNR reached a lower value of 2.5 dB. Below this 

value, a significant increase in ℎ𝑟𝑚𝑠  was observed (cf. Fig. 3). 

Therefore, all pixels with an SNR below 2.5 dB were masked 

out from the ℎ𝑟𝑚𝑠 image. 

D. Multi-dataset fusion 

The ℎ𝑟𝑚𝑠 image obtained from a TS-X dataset with a specific 

acquisition geometry can have unreliable ℎ𝑟𝑚𝑠 values due to 

various factors such as a very shallow incidence angle, speckle, 

and very low SNR regions. These errors can be minimized by 

fusing ℎ𝑟𝑚𝑠 images obtained from multiple TS-X datasets with 

different incidence angles and acquisition geometries to create 

a single ℎ𝑟𝑚𝑠 image.  

Two fusion methods were implemented in this study. Before 

fusion, both methods exclude pixels with invalid ℎ𝑟𝑚𝑠 values 

using upper 𝜎𝑜 and lower SNR thresholds for reliability. The 

first, highest SNR method, relies on ℎ𝑟𝑚𝑠 values from the TS-

X datasets with the highest SNR, as noise in the radar signal, is 

the least. It involves a pixel-wise SNR search across datasets. 

The final ℎ𝑟𝑚𝑠 image comes solely from the highest SNR pixels 

in all datasets. This enhances fine road details but is sensitive to 

local backscatter variations from oriented features. The second 

method, multi-dataset averaging, treats all TS-X-derived ℎ𝑟𝑚𝑠 

values as reliable. It generates the final ℎ𝑟𝑚𝑠 image by 

averaging ℎ𝑟𝑚𝑠 values from all datasets, resulting in a smoother 

image that may lose some small road details [3]. 

E. Road extraction and Google Earth visualization 

The ℎ𝑟𝑚𝑠 image provides roughness information for the entire 

area, including roads, fields, houses, and forests. However, it is 

important to note that the roughness model is exclusively 

trained for estimating the millimeter scale roughness values that 

can be expected on road surfaces. As a result, ℎ𝑟𝑚𝑠 values 

beyond the road surfaces may fall outside the model’s validity 

range and may not be trustworthy. Moreover, for end-users, it 

Radiometric calibration & 

multilooking 

 

TS-X data 

Surface roughness 

estimation 

 

Upper 𝜎𝑜 & lower SNR 

thresholding 
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Noise & SNR 
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𝜎𝑜, 𝜃 
 

Georeferencing 

 

Multi-dataset fusion 
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Fig. 2. Flowchart showing the complete processing chain. 
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is more relevant to see only the roughness information of the 

roads. To achieve this, Open Street Map (OSM) road layers are 

used to create a mask for the roads of interest within the TS-X 

dataset extent. Finally, KML files are generated to visualize the 

ℎ𝑟𝑚𝑠 images on Google Earth. Furthermore, a geoTIFF image 

is also provided. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental results obtained using the methods described 

in the previous section are discussed here. 

Fig. 4 shows SNR plots created for the Kaufbeuren runway, 

indicating the SNR at 40 arbitrarily selected locations from one 

end of the runway to the other for datasets with different 

incidence angles and polarizations. Fig. 4 indicates that the 

concrete surface has a higher SNR compared to the asphalt 

surface, implying that it is rougher and reflects more signals to 

the radar. The HH polarization dataset, especially in asphalt 

areas, has the lowest SNR, making it unsuitable for accurate 

roughness estimation. However, the VV polarization data 

display higher SNR, with the VV dataset at 31.6𝑜 having the 

highest SNR among them. Hence, TS-X VV polarization 

datasets at 30-35 degrees incidence angles are ideal for road 

surface roughness estimation, ensuring the minimum required 

SNR of 2.5 dB (cf. Fig. 3) in both concrete and asphalt regions. 

This also aligns with the roughness estimation model's validity 

range, starting from 30 degrees onward. 

Fig. 5 presents ℎ𝑟𝑚𝑠 images of a section of the Kaufbeuren 

runway. After road extraction and KML file creation, the 

images were overlaid on GE. In Fig. 5(a), the GE image shows 

the runway with areas of asphalt, smooth concrete, and rough 

concrete with repeated cuts. The ℎ𝑟𝑚𝑠 image in Fig. 5(b) is 

estimated using the F-SAR dataset (resolution: approximately 

25 x 25 cm). Comparing Fig. 5(b) with Fig. 5(a), asphalt areas 

appear blue indicating low ℎ𝑟𝑚𝑠 values, while smooth concrete 

areas appear rougher and are indicated by cyan. Concrete areas 

with repeated cuts exhibit the highest roughness level, 

represented by yellow. Fig. 5(c) displays the ℎ𝑟𝑚𝑠 image 

generated using the TS-X HH polarization dataset. Most pixels 

from asphalt and smooth concrete areas are masked out due to 

an SNR lower than the 2.5 dB threshold. In Fig. 5(d), the ℎ𝑟𝑚𝑠 

image is estimated using the TS-X VV polarization dataset. Fig. 

5(d) has more valid pixels compared to Fig. 5(c) due to the 

higher SNR provided by the VV polarization dataset. Asphalt 

areas are indicated by blue, while smooth concrete areas appear 

rougher in cyan. The concrete areas with cuts have the highest 

roughness level, represented by yellow with a value of 

approximately 2.25 mm. These findings align with the ℎ𝑟𝑚𝑠 

results from the F-SAR dataset in Fig. 5(b). Fig. 5(e) and (f) 

show the ℎ𝑟𝑚𝑠 images obtained by fusing multiple datasets 

using the highest SNR method and the multi-dataset averaging 

method, respectively. The fusion involves all three VV-

polarized TS-X datasets listed in Table I. In both images, 

asphalt areas are represented in blue to cyan colors, and smooth 

concrete areas appear entirely in cyan. Fig. 5(e) exhibits more 

yellow pixels in the concrete area with cuts compared to Fig. 

5(f), indicating a higher level of surface roughness. In both 

cases, the results closely agree with the F-SAR results. 

Fig. 6 shows the comparison of ℎ𝑟𝑚𝑠  plots from TS-X and F-

SAR datasets with 𝐺𝑇 ℎ𝑟𝑚𝑠 plot. The black plot shows the 

𝐺𝑇 ℎ𝑟𝑚𝑠 values for the eight 𝐺𝑇 spots, while the blue plot 

shows the estimated ℎ𝑟𝑚𝑠 values for the 𝐺𝑇 spots from the F-

SAR dataset. Although the blue plot correlates with the 

𝐺𝑇 ℎ𝑟𝑚𝑠 plot, over- and underestimations are evident for some 

𝐺𝑇 spots. Overall, the plots have an RMSE of 0.30 mm. The 

green plot represents ℎ𝑟𝑚𝑠 values estimated using the VV-

polarized TS-X dataset with an incidence angle of 31.6𝑜, which 

closely matches the 𝐺𝑇 ℎ𝑟𝑚𝑠 plot with an RMSE of 0.32 mm. 

It should be noted that this dataset was used to estimate the 

model coefficients and the F-SAR ℎ𝑟𝑚𝑠 data with an RMSE of 

0.30 mm was used as additional reference data. Therefore, the 

RMSE of the TS-X roughness data cannot be smaller than 0.30 

mm. The orange plot generated by the multi-dataset fusion 

using the highest SNR method overestimates the ℎ𝑟𝑚𝑠 values 

and gives the highest RMSE of 0.51 mm, which is probably due 

 
Fig. 4. SNR plot for the Kaufbeuren runway 

  
  

  
  

  
 

 
Fig. 5. Images of the Kaufbeuren runway. (a) GE image. ℎ𝑟𝑚𝑠 images from 

(b) F-SAR, (c) TS-X HH pol, (d) TS-X VV pol, multi-dataset fusion using 

(e) highest SNR method and using (f) multi-dataset averaging method. 



5 

 

to the sensitivity to local backscatter variations. The purple plot, 

produced by the multi-dataset averaging fusion method, has an 

RMSE of 0.42 mm with the 𝐺𝑇 ℎ𝑟𝑚𝑠  plot. It should be noted 

here that the dotted lines connect the ℎ𝑟𝑚𝑠 values between the 

𝐺𝑇 spots, which facilitates the comparison of variability and 

trends between the estimated ℎ𝑟𝑚𝑠 and 𝐺𝑇 ℎ𝑟𝑚𝑠 values without 

implying a continuous relationship between the 𝐺𝑇 spots. In 

short, Fig. 6 indicates that the TS-X VV polarized datasets can 

reliably estimate the ℎ𝑟𝑚𝑠 values with a comparable RMSE to 

the F-SAR and 𝐺𝑇 data. 

The ℎ𝑟𝑚𝑠 image for the Braunschweig test site generated using 

the TS-X HH polarized dataset is shown in Fig. 7. Due to the 

unavailability of VV polarized datasets, a HH polarized dataset 

was used for this example. The lower SNR thresholding was not 

applied to this image due to the low SNR of the HH polarized 

dataset for roads. As a result, the absolute values of ℎ𝑟𝑚𝑠 are 

less accurate. However, qualitative comparisons of ℎ𝑟𝑚𝑠 values 

can still be made. The south-north highway exhibits a lower 

ℎ𝑟𝑚𝑠 (blueish color) compared to the west-east highway, which 

shows a higher ℎ𝑟𝑚𝑠 (primarily cyan). Zooming in on the bridge 

of the west-east highway reveals a lower ℎ𝑟𝑚𝑠 (blue) compared 

to the connecting roads at either end of the bridge (cyan). This 

suggests a sharp change in ℎ𝑟𝑚𝑠, potentially due to the use of 

materials with lower surface roughness for bridge construction 

(see GE image in zoomed view). 

VI. CONCLUSION 

In this letter, a novel method for estimating road surface 

roughness using high-resolution spaceborne SAR datasets is 

proposed. The TS-X datasets used in this study exhibited good 

sensitivity to changes on road surfaces, indicating their 

potential for large-scale roughness estimation. The proposed 

semi-empirical model showed good agreement with both F-

SAR results and 𝐺𝑇 data. However, the low SNR at the road 

areas in TS-X data, particularly for HH-polarized datasets, 

presents a significant challenge. For road surface roughness 

estimation, the best suitable data are VV polarized datasets 

acquired in ST-mode with steeper incidence angles of 30 to 35 

degrees. This is because the ST mode can provide the highest 

spatial resolution, while the VV polarization and steeper 

incidence angles can ensure a higher SNR for road surfaces, 

thus providing better accuracy of the ℎ𝑟𝑚𝑠 values. To remove 

incorrect values, it is necessary to apply upper 𝜎𝑜 and lower 

SNR thresholding on the ℎ𝑟𝑚𝑠 images. Furthermore, when ℎ𝑟𝑚𝑠 

images from multiple datasets with different incidence angles 

are available, multi-dataset averaging can be applied to enhance 

the quality of the results. Road extraction and Google Earth 

visualization of the surface roughness images can help end 

users to interpret the results. A future high-resolution wide-

swath SAR system (HRWS) with up to 1200 MHz bandwidth 

and better noise-equivalent sigma zero (NESZ) has the potential 

to improve road surface roughness estimation accuracy. 

Furthermore, systematic and repeated monitoring could also be 

used to detect road surface changes before and after winter, 

which could increase the robustness of road damage detection. 

REFERENCES 

[1]   C. Y. Chan, B. Huang, X. Yan, and S. Richards, “Investigating effects of 

asphalt pavement conditions on traffic accidents in Tennessee based on 

the pavement management system (PMS),” J Adv Transp, vol. 44, no. 3, 
pp. 150–161, 2010. 

[2]   H. Liu, Z. Zhang, D. Guo, L. Peng, Z. Bao, and W. Han, “Research 

progress on characteristic technique of pavement micro-texture and 
testing technology of pavement skid resistance at home and abroad,” in 

2011 International Conference on Remote Sensing, Environment and 

Transportation Engineering, 2011, pp. 4368–4372. 
[3]   A. Babu, S. V. Baumgartner, and G. Krieger, “Approaches for Road 

Surface Roughness Estimation Using Airborne Polarimetric SAR,” IEEE 
JSTARS, vol. 15, pp. 3444–3462, 2022. 

[4]  E. Parliament et al., EU road surfaces: economic and safety impact of the 

lack of regular road maintenance. Publications Office, 2014. 

[5]   M. I. Bani Baker, R. M. Abendeh, and M. A. Khasawneh, “Freeze and 

Thaw Effect on Asphalt Concrete Mixtures Modified with Natural 

Bentonite Clay,” Coatings, vol. 12, no. 11, p. 1664, Nov. 2022. 
[6]   P. C. Dubois, J. van Zyl, and T. Engman, “Measuring soil moisture with 

imaging radars,” IEEE TGRS, vol. 33, no. 4, pp. 915–926, Jul. 1995. 

[7]   Airbus Defence and Space, “TerraSAR-X Image Product Guide,” Mar. 
2015. 

[8]  I. Hajnsek, “Inversion of Surface Parameters Using Polarimetric SAR,” 

Friedrich Schiller University Jena, 2001. 
[9]   M. Callens, N. E. C. Verhoest, and M. W. J. Davidson, “Parameterization 

of tillage-induced single-scale soil roughness from 4-m profiles,” IEEE 

TGRS, vol. 44, no. 4, pp. 878–888, 2006. 
[10]  Airbus Defence and Space, “Radiometric Calibration of TerraSAR-X 

Data,” Mar. 2014. 

[11]   A. Braun and L. Veci, “Sentinel-1 Toolbox SAR Basics Tutorial,” 2020. 

 

 
Fig. 6. Comparison of ℎ𝑟𝑚𝑠 plots from TS-X and F-SAR datasets with 

𝐺𝑇 ℎ𝑟𝑚𝑠 plot 

 
 

 

Fig. 7. ℎ𝑟𝑚𝑠 image from TS-X HH polarized dataset for Braunschweig test 

site (A2-A391 motorway crossing). 


