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ABSTRACT
In the last decades, Unmanned Aerial Vehicles (UAVs) are find-
ing more and more fields of application. Their flexibility and cost-
efficiency make them useful to support complex operations in agri-
culture, remote sensing or construction, just to name a few. In the
Labyrinth project we aim at investigating the applicability of UAV
usage to critical scenarios like air, water and road traffic control
or emergency, with a strict focus on safety, security and efficiency.
This involves also the cybersecurity aspect, which is the main focus
of this work. UAVs used in critical applications are in fact poten-
tially exposed to a wide set of cyber threats. The NIST cybersecurity
framework [17] defines five different security functions which are:
identify, protect, detect, respond and recover. In this paper we ad-
dress the identify and detect functions with an approach involving
threat analysis and anomaly detection. Firstly, we identify which
threats pose a significant risk to the Labyrinth use case, for instance
leading to the collision of UAVs in case an attacker is successful.
Secondly, we present a machine learning-based pipeline aimed at
detecting deviations in the position reportings of the drone, to sup-
port the detect function during flight operations. The pipeline is
tailored to the Labyrinth system reporting needs and is based on
unsupervised machine learning to overcome the lack of labeled
data. Anomalous points, i.e., points deviating from a coherent path,
potentially because of a cyber-attack or a failure, are visually sep-
arated from the coherent ones and marked as noise. To prove its
robustness, we test the pipeline introducing artificial perturbations
in the data.
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1 INTRODUCTION
The trend in the usage of Unmanned Aerial Vehicles (UAVs) has
surged over the last decade and is constantly rising. Their flexibility
and cost-effectiveness allow to find applications in multiple fields,
such as disaster research and management [1], precision agricul-
ture [22], remote sensing [14], building inspection [13] and even
delivery [15], just to name some of the most used nowadays. In
this context, the EU H2020 project Labyrinth1 aimed at investigat-
ing UAV applications to enhance safety, security, and efficiency
in civil transport and services; but always under the tutelage of
an Unmanned Traffic Management system (UTM), which can be
seen as an automation of the service provided by air traffic con-
trol in general aviation. This UTM system was designed following
the guidelines of the U-space concept of operations (ConOps), the
European harmonized approach to manage air traffic below 120
m altitude, where the small drones will operate. In the Labyrinth
project, the U-space environment implemented was used to support
four use cases representing different final users willing to test the
integration of drones in their daily activities: i) road traffic con-
trol, including speed estimation, plate identification, or watching
for violations such as driving while using the smartphone or not
wearing a seatbelt; ii) waterborne transport, requesting drones for
security surveillance of the port, monitoring and documentation
of container loading operations, or to check dredge waste in the
waters; iii) air transport, to be used in bird shepherding tasks; and
iv) emergencies, to assist medical first responders in activities like
inspection of the area of work to determine actions required and
ways of access, deliver medical supplies or, with drones equipped
with lights and a megaphone, guide people to follow a escape route.

1https://labyrinth2020.eu/the-project/
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Use cases like the previous ones are exposed to cyberthreats
which could lead to severe consequences for humans and the en-
vironment. In this paper, we present the experiences and lessons
learned during the Labyrinth project, focusing on the practical
aspects required to identify potential threats, and the actions to
support their detection. The menaces identified target mainly the
position information constantly reported by the drones to the UTM
system during the flight; these attacks need to be detected in a
timely manner so that appropriate measures can be taken by the
UTM system (warning broadcast, delivering of tactical separation
instructions) and the drone operator. As a first step to support
the identification phase, we present a threat analysis executed us-
ing the ThreatGet tool [16] and refined according to the STRIDE
methodology [8]. Secondly, to support the detect function during
flight operations, we present a lightweight machine learning-based
pipeline aimed at detecting deviations in the transmitted location
data. The pipeline is tailored to both real-world and simulated data
collected by Labyrinth’s flight operator partners and relies on unsu-
pervised machine learning to overcome the lack of a labeled dataset.
During the flight, the UAVs reported their position once per second.
Anomalous points, i.e., locations deviating from the expected trajec-
tory, are visually separated from the coherent ones and marked as
noise by the algorithm. To prove the robustness of our pipeline, we
test the detection capabilities introducing artificial perturbations.

The remainder of this paper is organized as follows: Section 2
provides an overview of the related work; Section 3 introduces
the architecture of the UTM environment developed in Labyrinth
and the format of the collected data; Section 4 discusses the threat
analysis methodology and results; Section 5 presents the anomaly
detection pipeline and results; and Section 6 concludes the paper.

2 RELATEDWORK
Many works targeting various types of UAV anomaly detection can
already be found in the literature. UAVs are equipped with different
kinds of sensors required for flight control - like GPS chips, as well
as the so-called Internal Measurement Unit (IMU), consisting of
accelerometers and gyroscopes tomeasure acceleration and rotation
- or sensors needed for fulfilling its final task, like cameras or laser
scanners. Moreover, the UAV communicates remotely with the
Ground Control Station (GCS), which sends control commands to
the UAV and receives location reports over communication links.
Thus, for detecting attacks different types of information can be
used.

A very relevant type of attack in the UAV domain is GPS spoofing
[20]. GPS spoofing refers to different approaches to generating a
fraudulent GPS signal so that the GPS receiver provides an incorrect
position. GPS spoofing can even be used to hijack UAVs [18]. Panice
et. al. propose in [12] an approach for detecting GPS spoofing
attacks on UAVs based on the analysis of state estimation using a
Support Vector Machine (SVM).

Other works focus on detecting anomalies in the records of
various UAV sensors. Sun et al. [19] propose an Adaptive Neuron
Fuzzy Inference System (ANFIS)-based approach for the detection of
on-board navigation sensor faults in UAVs. They, however, require
an offline database of labeled data to train the model. Authors of [5]
use Structured Sparse Subspace Learning to detect anomalies in the

navigation altitude in simulated data. In [21],Wang et al. apply Long
Short TermMemory (LSTM) Recurrent Neural Network to real UAV
sensor data points. This technique requires a training dataset of
normal behaviors to be effective. Finally, Bu et al. [3] combine GNSS
sensors and IMU sensors data to develop an integrated algorithm for
detecting UAV on-board navigation sensor anomaly, by combining
particle filter (PF) estimated state residuals with fuzzy inference
system (FIS) decision system.

Attacks targeting the communication links between the UAV
and the GCS, are often successful due to the lack of complex crypto-
graphic measures, required for a high level of security. The reason
for such lack is sometimes the limited processing power of the
onboard computers and the battery economy. For this reason, some
works propose the usage of lightweight intrusion detection and
prevention system (IDPS) modules for UAVs. The one presented
in [2] is trained using Deep Reinforcement Learning (DRL), specif-
ically Deep Q-learning (DQN), to enable UAVs to autonomously
detect suspicious activities and to take necessary action to ensure
the security of the UAV communication networks and UAV sensor
information. An intrusion detection system (IDS) based on a recur-
rent neural network using LSTM cells is used in [7] to analyze and
detect suspicious sequences of Micro-Air-Vehicle communication
(MAVlink) [9] message identifiers. The authors present moreover
the implementation of application layer Denial of Service (DoS) at-
tacks usingMAVlink heartbeat flooding, ping flooding andMAVlink
request flooding.

In our paper, the anomaly detection function is strictly related to
the threat identification phase. The anomaly detection pipeline is
tailored to the output of the threat analysis and to each use case’s
specificities. In the case of the data analyzed in this project, only
timestamped, unlabelled location data are available, which makes
some of the previously analyzed methodologies ineffective or non-
applicable. The specific design of the use cases calls therefore for
unsupervised, lightweight algorithms.

3 ARCHITECTURE AND SYSTEM
MONITORING

In this Section we introduce the high-level system architecture
of the Labyrinth environment. Figure 1 shows it as modeled by
ThreatGet [16]. Its four main components are: the UAV, the GCS,
the UTM cloud system, and the Bridge server. Table 1 describes
the functionality of the different components. The diagram depicts
them as nodes connected through different link communication
options to perform their information exchanges. A mobile GCS
would communicate with the UAV and the Bridge Server through
wireless communication channels, while not necessarily of the same
type. We could also have a stationary GCS connecting the Bridge
via ADSL. Both Bridge and UTM are hosted in the same cloud
infrastructure; this makes them independent of the connectivity
option chosen by the operators: 4G, 5G, SATCOM, or ADSL.

It should be noted that all the components consist of different
sub-components. In fact, following the U-space philosophy, some
UTM services could be outsourced, provided by different, special-
ized companies. This was the case in Labyrinth of the path planner,
which was provided by the partner Universidad Carlos III de Madrid
(UC3M), while the rest of UTM services where hosted in DLR’s
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Figure 1: Labyrinth system high-level model.

cloud, from which the UC3M service was called when necessary.
Anyway, regarding the application of the anomaly detection in the
Labyrinth system, the sub-component architecture can be obviated,
since the depicted high-level model is enough to grab the concept.
However, according to IEC 62443 [6], which has been applied for
defining security requirements, we use a slightly different terminol-
ogy, since IEC 62433 uses the term zone for what has been called
component in the following.

As can be seen in Figure 1, there are different points in the en-
vironment where data exchange can be monitored. Location and
timestamp are packed together with other telemetry values like
speed, altitude, accuracy or the drone and flight unique identifiers
in the same report message type. Given the relevance of this in-
formation — especially for the UTM, since it takes decisions and
broadcasts traffic information updates based on the UAV reports —
it is important both to protect the integrity of this data and to detect
possible deviations. The reasons for a deviation might be found
in data tampering, spoofing, or technical failures of the sensors.
The possibility of each event and its impact on the system needs to
be identified during the threat analysis phase. Subsequently, our
anomaly detection algorithm needs to detect said deviations. For
the present work, the messages scanned in the anomaly detection
phase are those received by the UTM from the GCS, but our algo-
rithm could be also applied to the messages received by the UTM
directly from the UAV, since their content should be exactly the
same; operators decide if they prefer to report from the UAV, fromo
the GCS of from both redundantly.

4 THREAT ANALYSIS
In the following, we performed a threat analysis for the information
flows in between the different components with the aim to identify
the most critical flows and components.

4.1 Methodology
The threat analysis is based on the usage of the ThreatGet tool,
developed by AIT, together with the STRIDE model developed by
Microsoft. ThreatGet employs a database of common cybersecurity
threats in the UAV domain to understand how vulnerabilities and
attacks could propagate across the system. We initially test the
security of Labyrinth’s high-level structure (see Figure 1) without
applying any security mechanisms because wewant to see potential
security vulnerabilities in the system model, including components,
assets, and communication channels. The outcome provides a better
understanding of the system’s cyber risks and determines the most
suitable security measures to implement. We subsequently focus
on more specific functionalities of the system, classified by means
of the STRIDE model. This model is necessary to analyze how the
individual threats affect the single components or assets and their
connection to other components. A distinction is made between 6
categories of threats, explained in Table 3.

4.2 Results
4.2.1 ThreatGet High Level Findings. ThreatGet identifies 230
threats in the high-level Labyrinth system model. The output of
the analysis is the so-called Threat List. A snippet of the list is
reported in Figure 2. Some of the identified threats could impact
multiple components and the applied security properties for each
component in the system design; they could be propagated through
the communication channels between interconnected components.
For this reason, some threats could appear more than once in the
Threat List. An example is threat - T66:73, "Protocol flooding for
node bombarding", which impacts the GCS as single Target, but
multiple Sources (UTM, Bridge, UAV, etc.).
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Table 1: Labyrinth components and their functionality.

Component Description
UAV The UAV is able to support different kinds of applications. It is controlled via

the GCS. Trajectories are uploaded to the UAV by the GCS. It sends location
information directly to the UTM and to the GCS.

GCS The UAV is controlled by the GCS. Trajectories are received from the UTM
system and uploaded to the UAV for execution.

WebApp Optional web interface of the UTM services. Provided to avoid operators modi-
fying the GCS graphic interface to embed the UTM dialogues and information.

UTM Conglomerate of coordinated services like strategic and tactical deconfliction,
tracking, monitoring, flight plan processing or traffic information. Keeps the
UAVs separated by providing 4D trajectories and geofence provision.

Bridge server Required to coordinate the actions in the web with the associated message
delivery from the UTM to the GCS. Also keeps updated each user view of a
same operator. Hosts a drone simulator.

Table 2: STRIDE Categories.

Threat Affected property Definition
Spoofing Authentication Pretending to be something else or another person
Tampering Integrity Changing data or code
Repudiation Non-Repudiation Pretending not to have performed an action
Information Disclosure Confidentiality Exposing information to someone not authorized to see it
Denial of Service Availability Denial or degradation of quality of service to users
Elevation of Privileges Authorization Acquisition of rights without proper authority

4.2.2 Location Report STRIDE Analysis. We report here an example
of STRIDE analysis focused on threats to location reporting. The
analysis takes into account the reporting from the UAV to the GCS,
from the UAV to the UTM, and from theGCS to the UTM. The results
are reported in Table 3. From the Table, we recognize that the three
types of location reporting practically share the same threats: the
attacker is likely to Spoof or Tamper information and/or perform
Information disclosure or Denial of service attacks. The lowest score
is assigned to the Information disclosure threat, as the location of
the UAV is generally a public information (in fact, the U-space
ConOps contemplates the need of the drone electronic conspicuity,
the need to be visible and identifiable by citizens, operators or other
drones). The remaining threats are assigned an impact from 2 to 4
(2 to 3 in the case of Spoofing from UAV to UTM). The actual rating
strongly depends on the situation in which the attack takes place,
e.g., if the UAV exposed to a DoS attack is in an isolated area or not,
or if the drone can receive tampered or spoofed commands from
the attacker. In this latter case, the risk will be maximum.

5 ANOMALY DETECTION
In this Section, we present the framework for anomaly detection
that has been tested in the Labyrinth project. We develop a light-
weight unsupervised Machine Learning framework to detect tam-
pered or unavailable location measurements —- sent and collected
during flight operations — within a time frame that can be tuned to
guarantee the implementation of adequate security measures. We
choose an unsupervised clustering algorithm, DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) [4], to avoid

the need for labeled and large datasets, as well as to avoid poten-
tially long training phases.

5.1 Machine Learning Pipeline
The implemented pipeline follows the standard steps. We first ac-
quire the spatial coordinates together with their timestamp; we
then tune the algorithm parameters, proceed with the iterative clus-
tering step and eventually verify the model robustness artificially
introducing new anomalous points.

As previously stated, the final aim of this task is to provide an
automatic framework to detect errors in the coordinate’s transmis-
sions, possibly coming from cyberattacks or defects in the com-
munication channel. Given the unavailability of labelled data, we
choose to apply DBSCAN, a density-based clustering algorithm.
DBSCAN is designed to identify clusters of data points in a dataset
based on their density. Unlike traditional clustering algorithms like
K-means [10], DBSCAN does not require a pre-defined number of
clusters. Instead, it groups together data points that are close to
each other and have sufficient density while considering other data
points as noise or outliers. The underlying assumption for applying
DBSCAN to the Labyrinth use case is that the coordinate points
sent by the UAV within a given, short enough, time window form
one or more dense clusters, and that coordinates clearly deviating
from the original path will be easily marked as noise. For this rea-
son, we decide to apply DBSCAN iteratively, over a time window
𝑡 defined by the final user. For example, for a flight lasting a total
of 3′, with 𝑡 = 1′, we will run three DBSCAN iterations, clustering
the points which are recorded within the current window.
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Figure 2: ThreatGet results based on the Labyrinth’s high-level model.

By definition, the algorithm requires two other input parameters:
𝜖 and𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , respectively the distance threshold used to de-
fine the neighborhood of a data point, and the minimum number
of points required to form a cluster. While we decide to accept min-
imum size cluster, setting𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 2 for every use case, the
estimation of the parameter 𝜖 requires a more extensive discussion.
There are a few approaches to estimating the appropriate value for 𝜖
in DBSCAN: one could rely on expert knowledge, visual inspection
of the data, or trial and error. We decided to estimate the parameter
by means of the k-distance plot [11]. This method requires sorting
all points by their distance to their k-th nearest neighbor and plot-
ting the distances. The value of k can be determined based on the
characteristics of the dataset. In the plot, a significant change in the
distance at which points transition from being in dense regions to
sparse regions can be seen. This can be typically visualized as a flat
region in the distance curve. We then fine-tune the 𝜖 after a visual
inspection. The 𝜖 parameter estimation is assumed to be performed
on anomaly-free, regular flight paths.

Finally, we validate the anomaly detection capabilities of our
pipeline. We introduce artificial anomalous points to evaluate the

algorithm’s output. For each flight, we first select 10 random data
points for whichwe alter latitude and/or longitude — both separated
and combined — adding a perturbation in a range from 10−6 to 1
decimal degree. We do the same with altitude, adding a perturbation
from 10 to 120 meters. We then report the fraction of detection. An
example scenario and its results are presented in the following.

5.2 Anomaly Detection Results
By means of the DBSCAN clustering algorithm we aim at isolating
anomalous data points in an unsupervised and quasi-real time –
– depending on the selected time frame —- fashion. The whole
pipeline has been implemented using Python 32 and the pandas3
library; the DBSCAN algorithm is provided by the clustermodule
of the scikit_learn4 library.

5.2.1 Flight Data Characterization. For testing our scenario, we
profit from a total of 24 recorded flights of different lengths, both

2https://www.python.org/about/
3https://pandas.pydata.org/
4https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
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Table 3: Threat Analysis for Location Report.

Entity Type Source Destination Threat Impact Rating

Location Report Flow UAV GCS

S Attacker is taking over the communica-
tion channel from the UAV to the GCS.

2 - 4

T Change of location information by
launching e.g. a man-in-the-middle at-
tack.

2 - 4

R - -
I Interception of location reports 1
D Interruption of communication channel

by DoS attack (e.g. flooding or jamming)
2 - 4

E - -

Location Report Flow UAV UTM

S Attacker is taking over the communica-
tion channel from the UAV to the UTM.

2 - 3

T Change of location information by
launching e.g. a man-in-the-middle at-
tack.

2 - 4

R - -
I Interception of location reports 1
D Interruption of communication channel

by DoS attack (e.g. flooding or jamming)
2 - 4

E - -

Location Report Flow GCS UTM

S Attacker is pretending to be a legitimate
GCS.

3 - 4

T Attacker changing location information
sent from the GCS to the UTM.

3 - 4

R - -
I Interception of location reports 1
D Interruption of communication channel

by DoS attack (e.g. flooding or jamming)
2 - 4

E - -

from simulated and real flight tests. During each flight, the UAVs
report almost always a number of location points in the order of
several hundreds, with amaximumvalue of 913measurements and a
minimum of 78. The flight length is always reported in minutes and
spans from 1h14’ to 2’52”. Each file contains the spatial and temporal
information required to train the algorithm: latitude, longitude,
altitude (recorded as alt, alt_rel or alt_MSE depending on the
file and referring to the altitude relative to the ground or to the sea
level), and timestamp. Note that sometimes multiple timestamps are
indicated in the trace. This could depend on where the information
exchange is registered or how it was implemented. We have the
timestamp provided by the drone indicating when the telemetry
was registered, the operator could register the moment when the
report reaches the GCS, and the UTM registers when the report
arrives to it.We use as a reference the utm_ts, but, depending on the
specific scenario requirements, also other timestamp indications,
e.g., gcs_timestamp can be used. We hereby discuss the results
for a single flight having a total of 780 points, lasted 24′39′′. For
this flight, we analyse the distribution of altitude, speed and points
per minute to provide and example of the standard behavior of
an UAV. Figure 3 reports the cumulative distribution function of
the UAV’s altitude (Figure 3(a)), speed (Figure 3(b)) and points
per minute (Figure 3(c)). Note that the lowest values in the three

measurement categories correspond to the initial and final phases
of the flights, namely start-of-flight and eof, with its specific
report messages.

5.2.2 Parameter Estimation. We then proceed with the parame-
ter estimation phase. As mentioned above, our implementation
of DBSCAN requires 3 parameters: t, the time window for each
clustering iteration, depending on each flight’s characteristics; 𝜖 ,
the maximum distance from the cluster centroid; and𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 ,
the minimum number of neighboring samples to form a cluster.
Considering the points per minute distribution in Figure 3(c), we
set the parameter 𝑡 = 1′, as a smaller time window would lead to an
excessively high number of iterations for a very low set of points
per iteration. We set𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 2, as we decide to accept also
clusters of minimum dimension. The evaluation of 𝜖 requires a
closer analysis. We use the k-distance plot method and further tune
𝜖 by means of trial and error on the perturbation-free flight path.
We set 𝑘 - the number of neighbors – to 9, as 9 is the minimum
number of points per minute in our example flight (see Figure 3(c)).
Figure 4 reports the results. From the figure, we observe that a
reasonable value of epsilon could be estimated at 20 m. This is the
distance identified by the flat area from data point 500 on.
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(a) Altitude (m) - Avg: 99,62, Max: 104,03, Min: 83,78, Median: 100,17. (b) Speed (m/s): Avg: 7,51, Max: 12,06, Min: 0, Median: 8,71.

(c) Points per minute - Avg: 29,96153846, Max: 33, Min:9, Median: 32.

Figure 3: Data distribution for altitude, speed, and points per minute.
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Figure 4: k-Distance plot.

5.2.3 Clustering results verification. We initiate the clustering
phase with the chosen set of parameters. Figure 5 shows three
examples of clustering results on the flight without perturbations:
in all the three cases all the points are correctly assigned to a single
cluster.

We then verify the algorithm detection capabilities by adding
artificial perturbations to 10 randomly chosen samples. The devia-
tions in latitude and longitude vary from 10−6 to 1 decimal degrees,
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(a) Start of flight
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(b) Flight
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(c) End of flight

Figure 5: Example of clustering without noisy points.

both on a single coordinate and combined, while the ones in alti-
tude span from 1 to 120 meters (the limit imposed by law). Figure
6(a) shows the fraction of correctly detected perturbations versus
the perturbation’s order of magnitude. The algorithm is able to
correctly detect all the points showing a variation in latitude, lon-
gitude, or in both coordinates from 0.0001 decimal degrees ( 11.1𝑚,
concordant to the choice of 𝜖). Perturbations in longitude turned
out to be slightly harder to detect (0.9 with a perturbation of 0.0001
decimal degrees). Changes in altitude, on the other hand, proved
to be harder to detect: Figure 6(b) reports the fraction of correctly
classified perturbations in altitude. As we can see, the algorithm
detects only the 60% of perturbations, and variations within 5 me-
ters are going undetected. Note that we avoided testing banned or
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Figure 6: Algorithm detection capabilities in case of perturbations.

unfeasible values above the limit imposed by law, as those would
be detected by Labyrinth’s UTM just as the report arrives. The
UTM performs lexical and semantic analysis of the reports as they
are received. In the case of lexical errors it would deliver an error
message; if the error is semantic — values not allowed like altitude
over 120 m; values non conformant with respect to the trajectory
assigned, like deviations; impossible values considering the capa-
bilities of the drone, etc. — the UTM would trigger an appropriate
procedure. Therefore we could say that the UTM also provides a
first filter for anomaly detection.

6 CONCLUSION
In this paper we presented a framework for threat identification and
anomaly detection in the UAV domain defined during the Labyrinth
project. We used ThreatGet as a threat modelling tool to investigate
any possible cyber-threat propagating within our Labyrinth system
design. We then refined our threat analysis by means of the STRIDE
approach. The security analysis is complemented by a lightweight
machine learning tool supporting threat detection during flight
operations. We focused on detecting significant deviations in the
coordinate data points in an unsupervised fashion, given the lack of
labelled data points. The process has been considered lightweight
enough to be embedded also in the drone; this would allow to detect
abnormalities immediately and warn the UTM, increasing its mar-
gin of time to apply non-nominal measures and therefore increasing
the safety of the airspace. The result validation phase showed ad-
vantages and limitations of the framework, proving that it should
be perceived as an aiding tool in a broader cybersecurity-oriented
scenario, but not used as a standalone detection tool. Nevertheless,
Labyrinth introduces different technologies for significant improve-
ments in cybersecurity in the UAV domain and provides a strong
foundation for future research and development in cybersecurity
in this field.
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