
S. Costantini, E. Pontelli, A. Russo, F. Toni,
R. Calegari, A. D’Avila Garcez, C. Dodaro, F. Fabiano,
S. Gaggl, A. Mileo, (Eds.): ICLP 2023
EPTCS 385, 2023, pp. 300–313, doi:10.4204/EPTCS.385.29

© Jakob Suchan and Jan-Patrick Osterloh
This work is licensed under the
Creative Commons Attribution License.

Assessing Drivers’ Situation Awareness in
Semi-Autonomous Vehicles

ASP based Characterisations of Driving Dynamics for Modelling Scene

Interpretation and Projection

Jakob Suchan Jan-Patrick Osterloh
German Aerospace Center (DLR)

Institute for Systems Engineering for Future Mobility, Oldenburg, Germany

jakob.suchan@dlr.de, jan-patrick.osterloh@dlr.de

Semi-autonomous driving, as it is already available today and will eventually become even more
accessible, implies the need for driver and automation system to reliably work together in order to
ensure safe driving. A particular challenge in this endeavour are situations in which the vehicle’s au-
tomation is no longer able to drive and is thus requesting the human to take over. In these situations
the driver has to quickly build awareness for the traffic situation to be able to take over control and
safely drive the car. Within this context we present a software and hardware framework to asses how
aware the driver is about the situation and to provide human-centred assistance to help in building
situation awareness. The framework is developed as a modular system within the Robot Operating
System (ROS) with modules for sensing the environment and the driver state, modelling the driver’s
situation awareness, and for guiding the driver’s attention using specialized Human Machine Inter-
faces (HMIs).

A particular focus of this paper is on an Answer Set Programming (ASP) based approach for
modelling and reasoning about the driver’s interpretation and projection of the scene. This is based
on scene data, as well as eye-tracking data reflecting the scene elements observed by the driver. We
present the overall application and discuss the role of semantic reasoning and modelling cognitive
functions based on logic programming in such applications. Furthermore we present the ASP ap-
proach for interpretation and projection of the driver’s situation awareness and its integration within
the overall system in the context of a real-world use-case in simulated as well as in real driving.

1 Introduction

With the rise of automated and semi-automated driving, a range of new challenges have moved into
sight of developers. In particular semi-autonomous vehicles pose important questions when it comes
to the interplay between driver and vehicle, since for these systems it is critical that the cooperation of
the human and the automation system is seamless. To ensure this, the automation system needs to be
designed with the needs of the human in mind and ideally have the functionality to asses the mental
state of the driver and the driver’s interaction with the system. Such functionality is especially important
in situations when the driver and the automation have to function together, in order to safely operate
the vehicle. A particular challenge in this context, and of importance with respect to this paper, is the
question of how to enable the driver to quickly take over control from the automation system in situations,
in which the automation cannot ensure safe driving, e.g., in unforeseen situations, or in situations outside
of the Operational Design Domain (ODD) of the automation.

http://dx.doi.org/10.4204/EPTCS.385.29
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


Jakob Suchan and Jan-Patrick Osterloh 301

The SituWare project presented in this application paper aims at developing a system to provide the driver
with assistance in such situations, by modelling the driver’s awareness of the situation and guide their
attention to critical elements of the situation possibly missed by the driver. The focus of this paper is on
highlighting the application of declarative logic programming methods as a means to model the driver’s
mental processing of the situation and demonstrate its integration within a large-scale modular assistive
system. The work presented in this paper is driven by considerations in the fields of human-centred
design, cognition, and formal semantic reasoning.

Human-centred design for (semi-)autonomous vehicles. With the above challenges in mind human
factors play a central role in the development of novel mobility systems and autonomous vehicles [12]
and development of novel systems is often accompanied and driven by empirical research investigating
how humans interact with these systems, either for external communication with vulnerable road users,
e.g. [18, 26], and for internal communication e.g. in handover scenarios [7, 8, 16] or for acceptance and
user experience [20].

Cognitive abilities for driving assistance systems. Research in the area of cognitive systems and
cognitive modelling is concerned with developing methods and tools that reflect cognitive abilities. Most
directly connected to the topic of this paper and the development of SituSYS is the research on Situation
Awareness and its modelling in computational systems [3]. In the context of driving assistance systems
research on Situation Awareness has mostly been concerned with modelling e.g. by [11, 17, 19].

Semantic reasoning about dynamic situations. A key factor in developing such capabilities is the
ability to abstractly represent the driving environment and the traffic dynamics within it, to interpret and
reason about them on a semantic level. In this context logic programming and Answer Set Programming
(ASP) [4, 5, 6] in particular has evolved as a powerful tool for semantic reasoning about dynamic scenes.
For instance, ASP has been used in the area of stream reasoning [2] as a general tool for reasoning about
large scale dynamic data, e.g, in the driving domain [13], for decision-making [9], or for recognition
and reasoning about events [24]. Furthermore, [23] has developed a general method for visual abduction
based on ASP, and applied it in the area of online semantic sense-making with commonsense knowledge
in the context of safety-critical situations in driving [21, 22].

Within this paper we build on these works to develop an ASP-based approach for assessing the
driver’s situation awareness by characterising driving dynamics for modelling and reasoning about the
driver’s interpretation and projection of the scene dynamics.

2 SituWare: An Online System for Assessing Situational Awareness

The general focus of the SituWare project is f build and evaluate the technological basis for developing
a usable software and hardware system (SituSYS), targeted at the reliable detection, interpretation, and
consideration of the driver’s situational awareness. In this section we discuss the relevance of situation
awareness in (semi-)autonomous driving and provide an overview of the full system and its components.

2.1 Situation Awareness in (Semi-)Autonomous Driving

Today, in the automotive domain and within the framework of the SAE J3016 automation level system,
it is generally assumed that the driver observes the environment and is thus immediately available as
a fallback level (SAE level 2 - partial automation), can react to a request to intervene (SAE level 3 -



302 Assessing Drivers’ Situation Awareness in Semi-Autonomous Vehicles

conditional automation) or can take over the vehicle control outside the operational area of the automation
(SAE level 4 - high automation). Previous studies on handover scenarios, especially in the context of
conditional automation, show that a considerable amount of time of at least 7 to 10 seconds must be
reserved for the driver to safely take over the driving task. This time is needed by the driver(s) to gain an
accurate situation awareness so that a safe handover is accomplished. Current approaches for handover
scenarios from the system to the driver consider the current driver’s state only peripherally and very
roughly. However, the potential of such recognition and interpretation is very large. Adaptive interaction
sequences can be used to optimally return the driver to the driving task. In addition, a more detailed
picture of the driver’s state also allows for the adaptation of the driving behavior of the automation
system, so that larger time reserves can be kept available for a highly distracted driver, while time reserves
can be reduced for an attentive driver without reducing safety. One of the most prominent models for
Situation Awareness is the one developed by Mica Endsley [3]. The idea behind this model is that
Situation Awareness is built in three Stages, namely the Perception, Interpretation, and Projection stage,
also known as Level 1 to Level 3 Situation Awareness (L1 - L3):

L1. At Level 1, the data and elements of the environment that build the current situation are perceived.
The main factor that influences Level 1 Situation Awareness is the focus of attention that is apparent in
the situation, which in turn is guided by the goals and objectives of the user, as well as their expectations.
Previous Experience and Training can influence the attention process and thus the ability of the user to
perceive the environment correctly. Drivers need to perceive the cars around their own car, signs along
the road, the road curvature and condition, and lots of other things.

L2. Level 2 Situation Awareness builds upon Level 1 through interpretation and comprehension of the
perceived elements. At Level 2, a holistic picture of the environment including the significance of objects
and events is formed. This interpretation is influenced by the goals of the user, previous experience as
well as the workload and stress. In the automotive example, drivers need to understand that proximity of
other cars might indicate a risk, that there are speed limits to keep, or the importance of the other signs
on the road.

L3. At Level 3, the user builds a projection of the current situation into the future, based on the com-
prehension built at Level 2. Level 3 Situation Awareness is mainly influenced by the previous experience
and training of the user, since this builds his knowledge on how the entities in the environment may act in
the near future. For drivers, this could mean to predict the future speed and positions of other cars as well
as possible actions the other drivers might take (like changing lanes, or breaking) as well as upcoming
speed limits and the risk associated with the road conditions ahead.

2.2 A Modular System implemented in ROS

Objective of the SituWare project is to build SituSYS, a system that predicts the situation awareness of
a driver, calculates possible deviations from an optimal situation awareness and finally uses specialized
interaction techniques to improve the driver’s situation awareness. Figure 1 shows a conceptual overview
of the architecture of SituSYS: SituSYS consists of three parts, the sensor layer SituSENSORS which mea-
sures the driver and environment, the model layer SituMODEL which calculates the situation awareness,
and SituHMI for the interaction. Starting at the sensor-layer SituSENSORS, multiple Vehicle Sensors are
used to sense the environment and vehicle state, i.e. surrounding objects, signs, current vehicle speed
and automation state. In addition to the vehicle sensors, an eye-tracker is used to detect the gaze of the
driver. The calculated gaze vector is then used in the Perception-Model within SituMODEL to predict
which elements in the environment and in the car has been looked at, i.e. other cars, street signs, or



Jakob Suchan and Jan-Patrick Osterloh 303

SituMODEL Situa�on Awareness

SituHMI

Telemetry Environment Object Detection

Vehicle Sensors
Eye-Tracker

Memory

Model Comparision

Interpreta�on

Percep�on

Projec�on

SituSYS

SituSENSORS

ENVIRONMENT

DRIVER

Figure 1: SituSYS: Conceptual Overview

any cockpit elements. Based on this information, the objects that have been perceived are then written
into the Memory-Model. The Memory-Model implements retrieval and forgetting processes, and can be
accessed by the other SituMODEL components. The Interpretation- and Projection-Models are for the
calculation of the situation interpretation and the projection of the future state (A detailed description
can be found in Section 3.2). The outputs of the Perception-, Interpretation-, and Projection-Models are
then used by the Model Comparison to calculate the overall situation awareness (Level 1, Level 2 and
Level 3 in Endsley’s Model), by comparing the content in the memory, that has been produced by the
components of the SituMODEL, with the data gathered by the vehicle sensors. Although the vehicle sen-
sors have an error probability associated with them, we assume in this case that this is the ground truth
for SituSYS. The Model Comparison then weights the differences between the memory and the ground
truth and calculates a list of diverging elements sorted by priority. This list is then used by SituHMI to
direct the focus of attention to the most important element. In SituWare we tested different interaction
methods for that purpose [1].

To organize and coordinate the implementation of the different components of SituSYS, the ROS
framework has been used. Each component of SituSYS has been implemented as separate node, allowing
a modularization of the system. ROS messages describing the data exchanged between the components
are used to provide a standardised interface between the different modules. The use of the ROS frame-
work also facilitates the use of different sources for the input, i.e. we connected SituSYS to two different
driving simulators as well as to a real car, by implementing a dedicated node that collects the data from
the simulator or car and then sends them in the defined messages to SituSYS, and receives the messages
from SituHMI to implement the selected interaction method in the vehicle/simulator.

2.3 Technical Setup and Data

The SituWare project integrates SituSYS within two different simulators and one real semi-autonomous
vehicle and provides the hardware basis for sensing the ego vehicle and the environment together with
mobile tracking of the driver’s gaze. Figure 2 shows the simulated scenario within one of the two simu-
lators used within the SituWare project.



304 Assessing Drivers’ Situation Awareness in Semi-Autonomous Vehicles

a) Simulated scene of construction site after takeover b) Driving Simulator

Figure 2: Simulation Environment: The simulated scene and the simulator setup.

I Scene Data The vehicle sensors implemented in the specific platform are used to sense the state
of the ego vehicle and to sense the environment including the vehicles within it. This information is
published as ROS messages and used by the modules of SituSYS. The messages contain data on the ego
vehicle, the automation system, and other vehicles in the scene as listed in table 1.

I Eye-Tracking Data The driver’s perception is sensed using mobile eye-tracking that provides
gaze coordinates and fixations within an ego view of the scene, as captured by the camera of the eye
tracker. These coordinates are translated to the 3-dimensional space of the scene, which allows mapping
of gaze data to scene elements. Within SituSYS the gaze data is provided as a 3D vector. The modular
design of the system abstracts from the actual eye-tracking system, however, in the case study presented
in this paper the PupilLabs mobile eye-tracker is used, which is equipped with a eye camera capturing
the gaze with up to 120Hz and providing an accuracy of 0.60◦.

3 Assessing the Driver’s Situation Awareness

Within SituSYS situation awareness is modelled by the perception module and the interpretation & pro-
jection module. The perception module implements 1st level Situation Awareness using scene data from
the SituSENSORS together with eye-tracking data to calculate fixation probabilities for each scene object.

2 Perception

Level 1 Situation Awareness – perception of the scene1– is estimated based on the gaze data of the driver
which is recorded by SituSENSORS. From this information a probability is computed for each scene
object giving the likelihood that the driver has fixated the object together with a fixation time providing
the duration of the fixation on the object. These measures are then published within the ROS message as
an input for the interpretation & projection module, as well as the model comparison.

2nd and 3rd level Situation Awareness are implemented together in the interpretation & projection mod-
ule. These consist of:

• Level 2 Situation Awareness – interpretation of the scene – models the awareness of the driver
regarding scene elements in the current situation;

1Technical details on the used method for calculating the probabilities are out of the scope of this paper. For the examples
of this paper we consider the perception module to be a black-box system providing the information if an object was perceived
by the driver.



Jakob Suchan and Jan-Patrick Osterloh 305

Attribute Type Description
Ego Vehicle

ID string The ID of the ego vehicle.
type string The type of the ego vehicle.
position {float, float, float} The position of the ego vehicle as 3D vector.
orientation {float, float, float} The orientation of the ego vehicle as 3D vector.
velocities {float, float, float} The velocity of the ego vehicle as 3D vector.
indicator_left bool Truth value whether the le f t indicator is active.
indicator_right bool Truth value whether the right indicator is active.
acceleration float The acceleration of the ego vehicle.
current_speed_limit int The current speed limit holding for the ego vehicle.
current_lane float The current lane the ego vehicle is on.

Ego Automation
takeover_request bool Truth value whether the takeover request is active.
time_until_odd_boundary float Time until the driver has to take over.
criticality_level int Criticality level of the takeover request.
takeover_reason string Reason for the takeover request.
ego_automation_state bool Truth value whether the automation is active.

Other Vehicles
ID string The ID of the traffic vehicle.
type string The type of the traffic vehicle.
position {float, float, float} The position of the traffic vehicle as 3D vector.
orientation {float, float, float} The orientation of the traffic vehicle as 3D vector.
velocities {float, float, float} The velocity of the traffic vehicle as 3D vector.
acceleration {float, float, float} The acceleration of the traffic vehicle as 3D vector.
dimension {float, float, float} The dimension of the traffic vehicle as 3D vector.
lane int The lane the traffic vehicle is on.
fixation_probability float The probability that the driver fixated the vehicle.
fixation_time int The duration of the driver’s fixation on the vehicle.

Table 1: Scene Data: Relevant data-points from SituSYS.

• Level 3 Situation Awareness – projection of scene dynamics – models the expectations of the driver
how the scene will evolve, i.e., the scene dynamics with respect to the task of the driver.

The implementation of these levels is based on semantic characterisations of the dynamics of the driving
domain, which are declaratively defined within answer set programming (ASP) [4, 5, 6]. In particular,
the interpretation & projection module of SituSYS consist of an online Python process maintaining a
representation of the scene and uses an integrated ASP solver to generate interpretation and projection
models based on the scene data from the SituSENSORS and the perception data from the perception
module. In the following we provide the formal characterisation of the driving domain, and describe the
interpretation and projection process in detail.

3.1 The Driving Domain

The domain is characterised by Σ<O, E , R, T , Φ, Θ>, which is used to formalise the driver’s repre-
sentation of the scene dynamics. In particular, the driver’s belief state is represented on the one hand by
the static and dynamic properties of the scene and the elements within it given by the domain objects,
the basic entities representing these objects, and the spatial and temporal aspects of the scene < O, E ,
R, T >. On the other hand it is represented by the high-level event dynamics of perceived events and
possible future events given by < Φ, Θ >.



306 Assessing Drivers’ Situation Awareness in Semi-Autonomous Vehicles

Events Description
change_lane(Entity,Lane1,Lane2,Location) An Entity changing the lane from Lane1 to Lane2 to

a specific Location.
audio_signal_start The audio signal indicating that the driver has to

take over started.
audio_signal_end The audio signal indicating that the driver has to

take over ended.
takeover_manual The driver takes over control of the vehicle.
takeover_automation The automation takes over control of the vehicle.

Fluents Description
curr_task(Task) The current task, the driver has to perform.
automation If the driving automation of the vehicle is on or not.
audio_signal If the audio signal indicating that the driver has to take over control of the

vehicle is on or not.
on_lane(Entity, Lane) The lane a scene entity is driving on.

Table 2: Event Dynamics: Exemplary events and fluents applicable in take-over situations of the use-
case described in section 3.2.

I Domain Objects (O) and Spatial Entities (E). The scene consists of different scene elements,
in particular we are considering the ego vehicle and other vehicles in the scene, as well as the lanes on
the road and gaps between vehicles.

Vehicles. We distinguish between the ego vehicle and other vehicles in the scene, constituting the traffic.
We use the following objects for representing vehicles:

• The ego vehicle: Oego = ego;

• other vehicles in the traffic: Otr f = {tr f1, ..., tr fn}.

These elements are geometrically represented as spatial entities E = {ε1, ...,εn} within the 3-dimensional
scene space. Additionally they are assigned dynamic and static attributes as obtained from the egos
driving system (for the attributes of the ego vehicle) and the ego vehicle sensors (for estimated attributes
of other vehicles) as detailed in section 2.3.

Lanes. These are based on the OpenDRIVE standard [25] , in which lanes are numbered with positive
and negative numbers and 0 represents the middle of the road. Lanes are adjacent when the lane ids are
consecutive.

• Lanes: Olanes = {lane1, ..., lanen}∪{lane−1, ..., lane−n}.

We define the adjacency of lanes lanei, lane j ∈Olanes on the road using the predicate ad jacent(lanei, lane j).

Gaps. Of particular interest for the task at hand are gaps between vehicles in the scene. Therefore we
introduce objects representing these gaps.

• Gaps: Ogaps = {gaptr fi,tr f j , ...,gaptr fp,tr fq}.

Gaps are declaratively defined based on the vehicles in the scene using the predicate gap(tr fi, tr f j),
where tr fi, tr f j ∈Otr f . Additionally we define the predicate gap_size(gaptr fi,tr f j ,size), where gaptr fi,tr f j ∈
Ogaps and size is a number representing the distance between tr fi and tr f j.



Jakob Suchan and Jan-Patrick Osterloh 307

I Spatial Con�guration (R). The spatial arrangement of the entities in the scene is represented
from an egocentric perspective in the context of the road, i.e., representing whether vehicles are ahead
or behind the ego vehicle, on the same lane, or on the lane to the left or right of the ego vehicle, and
how many other vehicles are between a vehicle and the ego vehicle. To this end we define the following
relations inR holding between the ego vehicle and the other scene elements.

• Relative longitudinal direction: Rrel_long = {ahead,behind,overlapping}, representing the direc-
tion of an object on the longitudinal axis based on the road layout.

• Relative lane: Rrel_lane = {same, le f t,right}, representing the lane an object is on, relative to the
lane the ego vehicle is on.

• Relative ordering: Rrel_order = n+1, where n is the number of other vehicles between the vehicle
and the ego vehicle, representing the position of an object with respect to the ego vehicle and the
other vehicles on the road.

I Time (T ). We represent time using time points T = {t1, ..., tn}. These are used to denote that
dynamic object properties and spatial relations between basic entities representing scene objects hold at
a certain time, as well as to describe temporal aspects of event dynamics.

I Driving Event Dynamics (<Φ, Θ>). We use the event calculus notation to define the event dy-
namics in the driving domain. Towards this we define fluents Φ= {φ1, ...,φn} and events Θ= {θ1, ...,θn}
to characterise dynamic properties of the scene objects and high-level events (e.g., Table 2). We use the
axioms occurs_at(θ , t) denoting that an event occurred at time t and holds_at(φ ,v, t) denoting that v
holds for a fluent φ at time t.

3.2 Reasoning about Situation Awareness Level 2 & 3: Interpretation and Projection

The interpretation and projection module is based on declarative characterisations of driving dynamics
(as defined in section 3.1 ) implemented in ASP, using Event Calculus [10] for reasoning about events
in the scene. In particular, we are building on the Event Calculus (EC) as formalised in [14, 15]. The
module is implemented as a hybrid system, in which an online Python process maintains a representation
of the mental belief state of the driver and uses an integrated ASP solver for generating the interpretation
and the projection model. For this, the module uses the scene data S containing the ego vehicle data and
the environmental data including the gaze data of the driver, together with the characterisations of the
driving domain in Σ.

Application: The Case of Take-Over Situations in a Construction Environment

As a use case we have applied SituSYS in the context of a case study conducted in the driving simulator.
The case study implemented a situation in which a driver had to take over the control of a highly auto-
mated vehicle at a section of a highway, where the current lane ended because of a construction site and
the vehicle had to change lanes. The driver got notified about the upcoming take-over and had a certain
time window to get familiar with the situation and take over control to manually perform the lane change.

As a test case the overall system is applied in the context of the above case study, in which the driver has
to take over control from the automation to safely drive the vehicle. Fig. 3 shows an exemplary situation
in the context of the case study and depicts the interpretation and the projection step.



308 Assessing Drivers’ Situation Awareness in Semi-Autonomous Vehicles

80

80

Car

Id 1

Speed 85

lane 1

probability 46% / 230ms / 0%

Car

Id 3

Speed 84

lane 1

probability 0% / 0ms / 0%

Car

Id 2

Speed 86

lane 1

probability 97% / 300ms / 0%

80

PROJECTION

INTERPRETATION

EYE-TRACKING BASED ESTIMATION OF DRIVER'S SCENE PERCEPTION

Perceived scene elements and attributes (position of
vehicles, speed, etc.)
Spatio-temporal configuration

Intention / task of the driver

Anticipation of scene dynamics (e.g., lane changes)

Expectations of the driver on how the scene will evolve

The Driver's awareness of the current situation

Ego

speed 82

Automa�on off

Task change lane

Own_lane blocked

Next_task none

Figure 3: Application Example: Interpretation & Projection

Computational Steps for Situation Awareness Level 2 & 3. The overall process for interpretation
and projection consists of the following steps (S1-S3, also refer to Alg. 1) performed at each time point:

S1. Update Scene Elements and Predict Current State. Update the driver’s mental belief
state (MBS) with the scene elements for which the fixation probability is above the fixation threshold,
and predict the current position of all scene elements that are part of the driver’s mental belief state, using
a Kalman Filter base motion model, assuming constant velocity.

S2. Generate the Problem Speci�cation. Generate an ASP problem statement, containing the
scene elements that are part of the driver’s mental belief state, and the characterisations of the driving
domain in Σ.

S3. Integrated ASP Solving. Generate the interpretation model (IM) and the projection model
(PM) by solving the generated problem specification using the Clingo solver integrated within the
Python process.

Within this process the interpretation and the projection are implemented as follows:

I Interpretation. The interpretation level of situation awareness is modelled as an extrapolated
representation of the scene, consisting of the perceived scene elements, together with the arrangement of
these elements and the events happening in the scene. When the probability that the driver has fixated
a particular object exceeds a certain threshold we register it within the scene representation and use a
Kalman Filter based motion model assuming constant velocity to maintain a representation of the object



Jakob Suchan and Jan-Patrick Osterloh 309

Algorithm 1: Interpret_and_Project(S, Σ)
Data: Scene data (S), and the characterisation of the driving domain Σ

Result: Interpretation Model (IM), Projection Model (PM)

1 MBS←∅
2 for t ∈ T do
3 for ob ject ∈MBS do
4 positionob ject ← kalman_predict(ob ject)

5 for ob ject ∈ S ∧not ob ject ∈MBS do
6 if f ixation_probabilityob ject > f ixation_threshold then
7 MBS←MBS ∪ob ject

8 for ob ject ∈ S ∧ob ject ∈MBS do
9 if f ixation_probabilityob ject > f ixation_threshold then
10 positionob ject ← kalman_update(ob ject)

11 < IM,PM>← ASP_solve(MBS,Σ)

12 return < IM,PM>

while the driver is not fixating on it. When the driver is fixating the object again the estimated position is
updated with the sensed one. In this way we estimate the driver’s mental belief state about the movement
of scene elements.

This estimated mental representation of the scene is then used together with the characterisations of the
driving domain in Σ to generate the interpretation model (IM). To this end we declaratively model
scene artefacts, spatial configuration, and events.

Scene Artefacts. These are elements of the scene that are indirectly obtained from the sensed objects.
For instance, gaps between vehicles the driver is aware of, are declaratively defined using the following
rule, stating that there is a gap between two entities if they are on the same lane and there is no other
entity between these two entities.

Spatial Configuration. The relational spatial structure holding between the scene elements the driver
is aware of, is represented using the spatial relations defined inR.

Events. We use the event calculus to detect driving events based on the driver’s mental belief state
of the scene. Towards this we define fluents representing dynamic scene properties, e.g, the fluent
on_lane(entity(ID), lane(Lane)) denotes that an entity is on a particular lane, or the fluent curr_task(Task)
denotes the current task of the driver.

Additionally, we define events changing these scene properties. For instance the following definition of
the event takeover_manual states that the event occurs if the fluent automation is true and the sensed
state of the automation is false. Further, it states that the event initiates the fluent curr_task(changelane),
and terminates the fluent automation and curr_task(build_sit_aware).



310 Assessing Drivers’ Situation Awareness in Semi-Autonomous Vehicles

Generating the Driver’s Scene Interpretation. Solving this Answer Set Program with the scene el-
ements the driver is aware of results in a model of the scene based on the drivers subjective perception,
which constitutes the interpretation model (IM).

In particular this model includes the following elements:

This generated interpretation model (IM) serves as input to the model comparison module to compare
the drivers interpretation of the scene to the scene sensed by the SituSENSORS. Additionally these serve
as abstractions needed for the projection step.

I Projection. Within SituWare the projection step is used to explore possible future states by
generating the set of events, which are possible in the current situation, and which are consistent with
the task of the driver. For instance in our use-case the driver has to perform a lane change after taking
over control from the automation system. To model this we define the lane change event within our
domain characterisation and use the event calculus to generate possible lane change events the driver
could perform for each time point. This set of possible events constitute the projection model (PM)
and can be used to identify scene elements the driver needs to be aware of in order to safely perform the
given task.

Event Anticipation. To anticipate scene events we define the events relevant for the driving task within
the event calculus. For instance, the lane change event is defined based on the changes the event causes
to the fluents and the constraints defining in which situations the event is possible.

Jakob Suchan and Jan-Patrick Osterloh 11

event(takeover_manual).
initiates(takeover_manual, curr_task(change_lane), T) :- timepoint(T).
terminates(takeover_manual, automation, T) :- timepoint(T).
terminates(takeover_manual, curr_task(build_sit_aware), T) :- timepoint(T).

occurs_at((takeover_manual, T) :- holds_at(automation, T), ego_automation_state(false), timepoint(T).

Generating the Driver’s Scene Interpretation. Solving this Answer Set Program with the scene el-
ements the driver is aware of results in a model of the scene based on the drivers subjective perception,
which constitutes the interpretation model (IM).

In particular this model includes the following elements:

Driving events the driver is aware of.
occurs_at(audio_signal_start,119208). ... occurs_at(takeover_manual,135258).

Fluents representing the driver’s belief state about the properties of the scene.
holds_at(curr_task(lane_change),136275). ...
holds_at(on_lane(entity(trf(1)),lane(1)),136275). holds_at(on_lane(entity(trf(2)),lane(1)),136275). ...

Gaps between the vehicles the driver is aware of.
gap(entity(trf(1)),entity(trf(2))). gap(entity(trf(2)),entity(trf(3))). ...

The qualitative spatial configuration of the vehicles the driver is aware of.
rel_longitudal_direction(ahead, entity(3)). rel_lane(left, entity(3)). rel_order(0, entity(3)). ...

This generated interpretation model (IM) serves as input to the model comparison module to compare
the drivers interpretation of the scene to the scene sensed by the SituSENSORS. Additionally these serve
as abstractions needed for the projection step.

I Projection. Within SituWare the projection step is used to explore possible future states by
generating the set of events, which are possible in the current situation, and which are consistent with
the task of the driver. For instance in our use-case the driver has to perform a lane change after taking
over control from the automation system. To model this we define the lane change event within our
domain characterisation and use the event calculus to generate possible lane change events the driver
could perform for each time point. This set of possible events constitute the projection model (PM)
and can be used to identify scene elements the driver needs to be aware of in order to safely perform the
given task.

Event Anticipation. To anticipate scene events we define the events relevant for the driving task within
the event calculus. For instance, the lane change event is defined based on the changes the event causes
to the fluents and the constraints defining in which situations the event is possible.

event(change_lane(entity(ego(ID)), lane(Lane1), lane(Lane2), Location)) :-
entity(ego(ID)), entity(lane(Lane1)), entity(lane(Lane2)),
gap(entity(ID1), entity(ID2)).

initiates(change_lane(entity(ego(ID)), lane(Lane1), lane(Lane2), Location),
on_lane(entity(ego(ID)), lane(Lane2)), T) :-

entity(ego(ID)), entity(lane(Lane1)), entity(lane(Lane2)), timepoint(T).
terminates(change_lane(entity(ego(ID)), lane(Lane1), lane(Lane2), Location),

on_lane(entity(ego(ID)), lane(Lane2)), T) :-
entity(ego(ID)), entity(lane(Lane1)), entity(lane(Lane2)), timepoint(T).

poss(change_lane(entity(ego(ID)), lane(Curr_Lane), lane(Lane), Location)) :-
holds_at(on_lane(entity(ego(ID)), lane(Curr_Lane)), T), curr_time(T),
adjacent(lane(Lane), lane(Curr_Lane)), free(Location),
on_lane(gap(entity(ID1), entity(ID2)), lane(Lane)).



Jakob Suchan and Jan-Patrick Osterloh 311

In particular, a lane change is possible, when the lanes are adjacent to each other and there is a free
location on the target lane. This free location may be either a gap between two vehicles, a free space
behind or in front of a vehicle, or a completely empty lane. For the projection of the scene we generate
all events that initiate the goal of a particular task and that are possible in the current situation.

12 Assessing Drivers’ Situation Awareness in Semi-Autonomous Vehicles

In particular, a lane change is possible, when the lanes are adjacent to each other and there is a free
location on the target lane. This free location may be either a gap between two vehicles, a free space
behind or in front of a vehicle, or a completely empty lane. For the projection of the scene we generate
all events that initiate the goal of a particular task and that are possible in the current situation.

anticipate(Event) :-
initiates(Event, Goal, T), holds_at(curr_task(Task), T), goal(curr_task(Task), Goal), curr_time(T).

:- anticipate(Event), not poss(Event).

For the example scene this results in two possible lane changes.
anticipate(change_lane(ego(1),lane(2),lane(1),gap(entity(trf(1)),entity(trf(2))))).
anticipate(change_lane(ego(1),lane(2),lane(1),gap(entity(trf(2)),entity(trf(3))))).

4 Results and Future Directions

We presented an online and real-time capable approach for modelling drivers’ situation awareness in the
context of takeover situations as they happen in semi-autonomous driving. The approach is based on
declarative characterisations of driving dynamics and is implemented as a ROS module within Python
and Answer Set Programming (ASP) as a part of SituSYS, a modular system for measuring the drivers’
situation awareness and guiding their attention based on the results. We highlighted the application of
the presented approach as part of the SituSYS framework, which has been integrated in simulated as well
as real-world driving. And we presented a case study concerned with situation awareness in take-over
situations.

I Application Results. Application of the interpretation and projection model in the context
of the case study has shown that the model is capable of maintaining a representation of the scene and
provide the necessary information for comparing the estimated scene representation of the driver with the
sensed information, and to provide individual guidance using the specialized attention guidance devices
implemented in the SituHMI. The module works in real-time (approx. 30 Hz) with up to 20 vehicles
plus the ego vehicle in the scene. However, to fully assess the effectiveness of the system it is required
to perform a long term empirical study with the complete integrated system and measure the effect of
SituSYS on the driving performance in take-over situations. To conduct such a study is not in the scope
of this paper and subject of ongoing and future research.

I Future Directions. The presented SituSYS framework constitutes an ideal basis for applying
logic based reasoning within simulated and real-world driving tasks. In this context future developments
are aiming for more elaborate approaches for projecting scene dynamics, including the generation of pos-
sible and expected trajectories. Aside from this, an ongoing effort is the long term empirical assessment
of the performance of SituSYS with respect to the cognitive adequacy of the generated mental models
within simulated as well as real-world driving.

Acknowledgments

We acknowledge partial funding by the Federal Ministry for Economic Affairs and Climate Action
(BMWK) as part of the SituWare project (reference no. 19A19011C and 19A19011F).

4 Results and Future Directions

We presented an online and real-time capable approach for modelling drivers’ situation awareness in the
context of takeover situations as they happen in semi-autonomous driving. The approach is based on
declarative characterisations of driving dynamics and is implemented as a ROS module within Python
and Answer Set Programming (ASP) as a part of SituSYS, a modular system for measuring the drivers’
situation awareness and guiding their attention based on the results. We highlighted the application of
the presented approach as part of the SituSYS framework, which has been integrated in simulated as well
as real-world driving. And we presented a case study concerned with situation awareness in take-over
situations.

I Application Results. Application of the interpretation and projection model in the context
of the case study has shown that the model is capable of maintaining a representation of the scene and
provide the necessary information for comparing the estimated scene representation of the driver with the
sensed information, and to provide individual guidance using the specialized attention guidance devices
implemented in the SituHMI. The module works in real-time (approx. 30 Hz) with up to 20 vehicles
plus the ego vehicle in the scene. However, to fully assess the effectiveness of the system it is required
to perform a long term empirical study with the complete integrated system and measure the effect of
SituSYS on the driving performance in take-over situations. To conduct such a study is not in the scope
of this paper and subject of ongoing and future research.

I Future Directions. The presented SituSYS framework constitutes an ideal basis for applying
logic based reasoning within simulated and real-world driving tasks. In this context future developments
are aiming for more elaborate approaches for projecting scene dynamics, including the generation of pos-
sible and expected trajectories. Aside from this, an ongoing effort is the long term empirical assessment
of the performance of SituSYS with respect to the cognitive adequacy of the generated mental models
within simulated as well as real-world driving.

Acknowledgments

We acknowledge partial funding by the Federal Ministry for Economic Affairs and Climate Action
(BMWK) as part of the SituWare project (reference no. 19A19011C and 19A19011F).



312 Assessing Drivers’ Situation Awareness in Semi-Autonomous Vehicles

References

[1] Mark Colley, Lukas Gruler, Marcel Woide & Enrico Rukzio (2021): Investigating the Design of
Information Presentation in Take-Over Requests in Automated Vehicles. In: Proceedings of the 23rd
International Conference on Mobile Human-Computer Interaction, MobileHCI ’21, Association for
Computing Machinery, New York, NY, USA, doi:10.1145/3447526.3472025.

[2] Thomas Eiter & Rafael Kiesel (2020): Weighted LARS for Quantitative Stream Reasoning. In
ECAI 2020 - 24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain,
Frontiers in Artificial Intelligence and Applications 325, IOS Press, doi:10.3233/FAIA200160.

[3] Mica R. Endsley (1995): Toward a Theory of Situation Awareness in Dynamic Systems. Human
Factors 37(1), pp. 32–64, doi:10.1518/001872095779049543.

[4] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub & Philipp
Wanko (2016): Theory Solving Made Easy with Clingo 5. In Technical Communications of the
32nd International Conference on Logic Programming (ICLP 2016), OpenAccess Series in Infor-
matics (OASIcs) 52, SchlossDagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp.
2:1–2:15, doi:10.4230/OASIcs.ICLP.2016.2.

[5] Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2012): Answer Set
Solving in Practice. Morgan & Claypool Publishers, doi:10.1007/978-3-031-01561-8.

[6] Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2014): Clingo = ASP +
Control: Preliminary Report. CoRR abs/1405.3694, doi:10.48550/arXiv.1405.3694.

[7] Remo MA van der Heiden, Shamsi T Iqbal & Christian P Janssen (2017): Priming drivers before
handover in semi-autonomous cars. In: Proceedings of the 2017 CHI conference on human factors
in computing systems, ACM, New York, NY, USA, pp. 392–404, doi:10.1145/3025453.3025507.

[8] Lei Hsiung, Yung-Ju Chang, Wei-Ko Li, Tsung-Yi Ho & Shan-Hung Wu (2022): A Lab-Based
Investigation of Reaction Time and Reading Performance Using Different In-Vehicle Reading In-
terfaces during Self-Driving. In: Proceedings of the 14th , AutomotiveUI ’22, ACM, New York,
NY, USA, p. 96 – 107, doi:10.1145/3543174.3545254.

[9] Suraj Kothawade, Vinaya Khandelwal, Kinjal Basu, Huaduo Wang & Gopal Gupta (2021): AUTO-
DISCERN: Autonomous Driving Using Common Sense Reasoning. In: Proceedings of the Inter-
national Conference on Logic Programming 2021 Workshops, Porto, Portugal (virtual) , CEUR
Workshop Proceedings 2970, CEUR-WS.org, doi:10.48550/arXiv.2110.13606.

[10] Robert Kowalski & Marek Sergot (1989): A Logic-Based Calculus of Events, pp. 23–51. Springer-
Verlag, Berlin, Heidelberg, doi:10.1007/978-3-642-83397-7_2.

[11] Josef F. Krems & Martin R. K. Baumann (2009): Driving and Situation Awareness: A Cogni-
tive Model of Memory-Update Processes. In Masaaki Kurosu, editor: Human Centered Design,
Springer Berlin Heidelberg, pp. 986–994, doi:10.1007/978-3-642-02806-9_113.

[12] M. Kyriakidis, J. C. F. de Winter, N. Stanton, T. Bellet, B. van Arem, K. Brookhuis, M. H. Martens,
K. Bengler, J. Andersson, N. Merat, N. Reed, M. Flament, M. Hagenzieker & R. Happee (2019): A
human factors perspective on automated driving. Theoretical Issues in Ergonomics Science 20(3),
pp. 223–249, doi:10.1080/1463922X.2017.1293187.

[13] Danh Le-Phuoc, Thomas Eiter & Anh Le-Tuan (2021): A Scalable Reasoning and Learning Ap-
proach for Neural-Symbolic Stream Fusion. Proceedings of the AAAI Conference on Artificial
Intelligence 35(6), pp. 4996–5005, doi:10.1609/aaai.v35i6.16633.

https://doi.org/10.1145/3447526.3472025
https://doi.org/10.3233/FAIA200160
https://doi.org/10.1518/001872095779049543
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.1007/978-3-031-01561-8
https://doi.org/10.48550/arXiv.1405.3694
https://doi.org/10.1145/3025453.3025507
https://doi.org/10.1145/3543174.3545254
https://doi.org/10.48550/arXiv.2110.13606
https://doi.org/10.1007/978-3-642-83397-7_2
https://doi.org/10.1007/978-3-642-02806-9_113
https://doi.org/10.1080/1463922X.2017.1293187
https://doi.org/10.1609/aaai.v35i6.16633


Jakob Suchan and Jan-Patrick Osterloh 313

[14] Jiefei Ma, Rob Miller, Leora Morgenstern & Theodore Patkos (2014): An Epistemic Event Calculus
for ASP-based Reasoning About Knowledge of the Past, Present and Future. In: LPAR: 19th
International Conference on Logic for Programming, Artificial Intelligence and Reasoning, EPiC
Series in Computing 26, EasyChair, pp. 75–87, doi:10.29007/zswj.

[15] Rob Miller, Leora Morgenstern & Theodore Patkos (2013): Reasoning About Knowledge and Ac-
tion in an Epistemic Event Calculus. In: COMMONSENSE 2013.

[16] Phillip L. Morgan, Chris Alford, Craig Williams, Graham Parkhurst & Tony Pipe (2018): Manual
Takeover and Handover of a Simulated Fully Autonomous Vehicle Within Urban and Extra-Urban
Settings. In Advances in Human Aspects of Transportation, Springer International Publishing,
Cham, pp. 760–771, doi:10.1007/978-3-319-60441-1_73.

[17] Jan-Patrick Osterloh, Jochem W. Rieger & Andreas Lüdtke (2017): Modelling Workload of a Vir-
tual Driver. In: Proceedings of the 15th International Conference on Cognitive Modeling.

[18] Amir Rasouli & John K. Tsotsos (2020): Autonomous Vehicles That Interact With Pedestrians: A
Survey of Theory and Practice. IEEE Transactions on Intelligent Transportation Systems 21(3), pp.
900–918, doi:10.1109/TITS.2019.2901817.

[19] Umair Rehman, Shi Cao & Carolyn MacGregor (2019): Using an Integrated Cognitive Archi-
tecture to Model the Effect of Environmental Complexity on Drivers’ Situation Awareness. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 63(1), pp. 812–816,
doi:10.1177/1071181319631313.

[20] Christina Rödel, Susanne Stadler, Alexander Meschtscherjakov & Manfred Tscheligi (2014):
Towards Autonomous Cars: The Effect of Autonomy Levels on Acceptance and User Experi-
ence. In: Proceedings of the 6th , AutomotiveUI ’14, ACM, New York, NY, USA, p. 1 – 8,
doi:10.1145/2667317.2667330.

[21] Jakob Suchan, Mehul Bhatt & Srikrishna Varadarajan (2019): Out of Sight But Not Out of Mind:
An Answer Set Programming Based Online Abduction Framework for Visual Sensemaking in Au-
tonomous Driving. In Proceedings of the 28th International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, ijcai.org, pp. 1879–1885, doi:10.24963/ijcai.2019/260.

[22] Jakob Suchan, Mehul Bhatt & Srikrishna Varadarajan (2021): Commonsense visual sensemaking
for autonomous driving - On generalised neurosymbolic online abduction integrating vision and
semantics. Artificial Intelligence 299, p. 103522, doi:10.1016/j.artint.2021.103522.

[23] Jakob Suchan, Mehul Bhatt, Przemyslaw Andrzej Walega & Carl Schultz (2018): Visual Expla-
nation by High-Level Abduction: On Answer-Set Programming Driven Reasoning About Moving
Objects. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, (AAAI-18), New
Orleans, Louisiana, USA, AAAI Press, doi:10.1609/aaai.v32i1.11569.

[24] Efthimis Tsilionis, Nikolaos Koutroumanis, Panagiotis Nikitopoulos, Christos Doulkeridis &
Alexander Artikis (2019): Online Event Recognition from Moving Vehicles: Application Paper.
Theory and Practice of Logic Programming 19(5-6), doi:10.1017/S147106841900022X.

[25] ASAM e. V. (2021): OpenDRIVE Format Specification. Available at https://www.asam.net/
standards/detail/opendrive/.

[26] Raphael Zimmermann & Reto Wettach (2017): First step into visceral interaction with autonomous
vehicles. In: Proceedings of the 9th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications, pp. 58–64, doi:10.1145/3122986.3122988.

https://doi.org/10.29007/zswj
https://doi.org/10.1007/978-3-319-60441-1_73
https://doi.org/10.1109/TITS.2019.2901817
https://doi.org/10.1177/1071181319631313
https://doi.org/10.1145/2667317.2667330
https://doi.org/10.24963/ijcai.2019/260
https://doi.org/10.1016/j.artint.2021.103522
https://doi.org/10.1609/aaai.v32i1.11569
https://doi.org/10.1017/S147106841900022X
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
https://doi.org/10.1145/3122986.3122988

	Introduction
	SituWare: An Online System for Assessing Situational Awareness
	Situation Awareness in (Semi-)Autonomous Driving
	A Modular System implemented in ROS
	Technical Setup and Data

	Assessing the Driver's Situation Awareness
	The Driving Domain
	Reasoning about Situation Awareness Level 2 & 3: Interpretation and Projection

	Results and Future Directions

