Observing the Irregular Moons of Uranus by a Uranus Flagship Mission

DLR
Anne J. Verbiscer ${ }^{1}$ (verbiscer@virginia.edu), Tilmann Denk ${ }^{2}$ (Tilmann.Denk@dlr.de), Stefano Mottola ${ }^{2}$, Simon B. Porter ${ }^{3}$
SOUTHWEST RESEARCH INSTITUTE
${ }^{1}$ University of Virginia, Charlottesville VA, ${ }^{2}$ DLR (German Aerospace Center), Berlin, Germany, ${ }^{3}$ Southwest Research Institute, Boulder CO

PART 1: POTENTIAL GROUND-BASED SUPPORT

1 Introduction

This poster presents the benefits of observing the Irregular moons of Uranus (and other giant planets) from a spacecraft (S/C) in orbit around the planet, such as the Uranus Flagship Mission (UFM). It covers the content of the Uranus Flagship Workshop abstracts by Verbiscer et al. (\#8187) and Denk et al. (\#8169). The unique viewing geometries available to UFM enable the acquisition of several
basic physical parameters of the Uranian Irregular moons that are difficult or basic physical parameters
impossible to get from Earth:
impossible to get from Earth:

- Close proximity ($100-100$
SNR lightcurves for objects ≤ 3 closer than from Earth) enables acquisition of high Ress to nearly the full ran rm .
Access tean nealy - From UFM Iregulars may "hovert phase angles <3
diagnostic viewing geometry for por above or below the ecliptic plane, a highly viewing geometries from UFM changse determination never seen from Earth. decades from Earth.
The first large orbits with the S / C being too far from the planet to conduct other Uranus science present ideal opportunities for Irregular moon campaigns.
- A targeted flyby of an Irregular moon with high-resolution images and spectra is a viable and highly encouraged objective for a Uranus flagship mission.

2 The Uranian Irregular Moon System

Size of Uranus' Hill sphere: $70.1 \times 10^{6} \mathrm{~km}=0.469 \mathrm{au}=2740 R_{\text {Uuranus }}$

- Nine Uranian Iregular Moons are currently officially known (Table 1)
- Discovered between 1997 and $2003[1-3]$

Size range: $\sim 18-\sim 160 \mathrm{~km}[3,4]$ (Table

- More discoveries to be announced soon (down to $\sim 27 \mathrm{mag}$) $[5]$

Distances to Uranus (orbit semi-major axes): $\sim 4 \times 10^{6}-21 \times 10^{6} \mathrm{~km}[2,6]$

- Highly eccentric and inclined orbits (Table 1) [6]
- All known orbits are highly tiled (>10 ${ }^{\circ}$) relative to Uranus' orbital plane [6] (Fig. 1) Likely >100 objects with sizes $>1 \mathrm{~km} \rightarrow$ similar to the Jupiter and Saturn populations? (Current census: Jupiter 87; Saturn 122.)
Largest object Sycorax ($\sim 60 \mathrm{~km}$ [4]) similar in size to largest Jovian Irregular (Himalia; $\sim 140 \mathrm{~km}$ [7]), but smaller than Saturn's Phoebe (213 km [8]) and Neptune's Nereid (340 km [9])

3 Ground-Based Observations

Objects are dark ($p_{v} \sim 0.06$) and close to a large, bright planet \rightarrow large apertures needed for suitable SNR
Sizes estimated from apparent magnitudes [3], rarely from thermal fluxes [4,12] - Colors at limited SNR [13-17]

Lightcurves from K2 (Fig. 2) \rightarrow Rotation periods; a/b axes ratios (Table 1) - ELT and LSST (Vera Rubin Obs.) may improve data base for largest moons ($R<24$)

4 Upcoming Stellar Occultation Opportunities

Uranus crosses the galactic plane in 2032-2033, dramatically increasing the background star density and thereby the number of stellar occultation opportunities. (See [18] and related poster \#8149 by Porter et al.)
We identified 47 viable stellar occultation opportunities by Uranian Irregular moons 22403. (47 vial

References

\qquad

 I9] hitosistimanandenk
\qquad

-

[15] Gravt 2004 ApJL
${ }^{[15]}$ Grav+ 2004 ApJL
[19] Denk \& Motola 2019 ccarus [listoos.
 $[21]$ Kasalainen \& Durech 2007 IA
$[23$ Motola \& Denk 2224, in prep.
[25] Palumbo 2024 SSR, in prep.

Fig. 1: Orbital distances and inclinations of the nine known Irregular moons of Uranus as well as their periapses and apoapses (scale in original file: $1 \mathrm{px}=40,000 \mathrm{~km}$). [10]
Table 1: Uranus' Irregular moons: Orbital elements and periods, apparent and absolute magnitudes, sizes, object rotations

Satellite	JPL code	$\underset{(\mathrm{Gm})}{\mathrm{a})}$	$\begin{aligned} & \text { e } \\ & () \end{aligned}$	$\stackrel{i}{\left({ }^{\prime}\right)}$	$\begin{gathered} \mathrm{p} \\ \text { (d) } \end{gathered}$	$\underset{(\mathrm{mag})}{R}$	$\begin{gathered} H \\ (\text { mag }) \end{gathered}$	$\begin{gathered} \text { Dia- } \\ \text { meter } \\ \text { (kmer } \end{gathered}$	$\begin{array}{\|c\|} \text { Rot. curve } \\ \text { amplitude } \\ \text { (mag) } \end{array}$	a/b	Rotation Period
Margaret	723	14.07	0.68	58	1648	25.2	12.7				
Francisco	722	4.28	0.14	147	267	25.0	12.9	22			
Caliban	716	7.23	0.20	142	580	22.4	9.0	42	0.16	1.15	$9.9484 \mathrm{~h} \pm 1 \mathrm{~m}$
Stephano	720	8.00	0.22	144	677	24.1	11.6	32	>0.4?		
Trinculo	721	8.51	0.22	167	750	25.4	12.7	18	>0.4?		
Sycorax	717	12.18	0.52	159	1289	20.8	7.5	157	0.121	1.1	$6.9162 \mathrm{~h} \pm 5 \mathrm{~s}$
Prospero	718	16.27	0.44	152	1980	23.2	10.5	50	0.41	1.4	$14.290 \mathrm{~h} \pm 11 \mathrm{~m}$
Setebos	719	17.44	0.59	158	2229	23.3	10.7	47	0.27	1.25	$8.510 \mathrm{~h} \pm 2 \mathrm{~m}$
Ferdinand	724	20.65	0.40	170	2816	25.1	12.5	21	0.54	1.6	$23.7 \mathrm{~h} \pm 0.5 \mathrm{~h}$

Fig. 2: Double-peaked rotation curve of Sycorax, the largest Uranian Irregula moon, from the Konkoly Observatory 1 m RCC telescope (large dots) and K2 of $P=6.9162 \mathrm{~h}$ (adapted from [4]).

Fig. 3: Upcoming stellar occ ultation opportunities across the US for Caliban (2024, left) Sycorax (2028, middle), and Prospero (2029, right). Red lines show the paths of the moon's shadow cast onto the
Earth, equivalent to the moon's diameter. See [18] and Porter
 poster for more details about
observing stellar occultations.

Fig. 4: Solar phase angles and high ecliptic latitude views of Irregular moons potentially available to a S / C, compared to observations from Earth or Earth orbit. Top: S/C observe

Fig. 5: Lightcurves of Saturnian Irregular moons Ymir (left), Paaliaq (middle) and Tarvos (right) from Cassini, obtained at multiple phase angles, show very different patterns [19]. Lightcurve ampititudes and number of peaks increase with increasing phase angle, enabling deter-
mination of the moon's rotation pole and shape. Note the differences between the lightcurve shapes at similar phase angles for each moon, indicating that these moons have very different shapes [8,19,22].

PART 2: SPACECRAFT OBSERVATION CAMPAIGNS

5 Observing Irregular Moons by Spacecraft

Distances "observer to object" at order of 10 million, not billions, of kilometers $[8,19]$: Factor ~100-1000x closer (Fig. 4)
Much smaller optics works to get good data, but still sub-pixel
Increased astrometric precision [20]
Closest $2.4 \times 10^{6} \mathrm{~km}$ (Francisco) : facthes (unknown at this time)
Repeated imaging over many hours or even days:
Get rotation curves (lightcurves)

- Potential science to obtain with a single observation session per object:

Synodic rotation periods (at minutes accuracy): a/b axes ratios for many objects
Potential science to obtain with multiple observation sessions per object:
Sidereal rotation periods (potentially at milliseconds accuracy)
Unambiguous pole-axis orientation (at a few degrees accuracy)
Solar phase curves
Object absolute sizes (if one diameter can be determined by another method)

- Advantages for spacecraft:

Access to full range of solar phase angles (Fig. 4)
Observations from Earth limited to phase angles <3
Spacecraft: Geometrically no limit (depending on orbit), just object brightness and Sun-avoidance constraints by S/C
andites often have significantly higher amplitudes with additional peaks (Fig. 5 (left); Fig. 13 in [19])
180°-longitude ambiguity for the pole/ shape solution [21] \rightarrow Fig. 4
Ground-based: Yes (observer, object, Sun in same plane (\sim ecliptic))
Observer day/night cycle limitations:
Ground-based: Yes (24 h)
Spacecraft: No (observation session over several days in principle possib restricted by S / C engineering requirements)
Weather/atmospheric issues and scattered light from nearby planet Ground-based: Yes
Spacecraft: No ("perfect" photometric conditions)

6 Cassini's Campaign at Saturn

Cassini conducted the first campaign to observe Irregular moons with a spacecraft orbiting the host planet [8,19] (Fig. 5), resulting for Saturnian Irregular moons in:

24 new rotation periods [19]
pole and shape solutions [22]
>13 phase curves at solar phase angles up to 143° [23]

7 JUICE at Jupiter

- Observation campaign [24] with the JANUS camera [25] of JUICE is envisioned - Single observations of >50 objects to find rotation periods in principle possible; but restricted by competing science requirements
Pole/shape solutions and phase curves for >30 Irregulars in principle possible; same restriction
Especially approach phase and first two orbits are useful (lower competition) Small moons ($D \sim 1$ to 5 km); each is a potentially good target twice in the mission - Synodic orbit period of w ia Synodic orbirs \rightarrow doan lrregular passes bewition $\sim 2 x$ during the JUICE orbit tour No close (targeted) flyby currently planned
No observations of Irregular moons currently planned with Europa Clipper

8 Uranus Flagship Mission at Uranus

We strongly recommend the implementation of a campaign to observe the Irregular moons of Uranus with a Uranus Flagship Mission.
Mission duration of ~ 2000 d at Uranus between Fall 2044 and Dec 2049 [26]
All nine currently known Irregular moons of Uranus will be visible to UFM at least
once at low phase angle $<30^{\circ}$ (even Setebos and Ferdinand whose orbit periods are $>2000 \mathrm{~d}$)
UFM should attempt a targeted flyby of a Uranian Irregular moon
should be included as a S/C trajectory requirement very early in the planning process

- UFM should implement a campaign to observe (or flyby) Uranian Irregular moons during the initial orbits, when S / C is too far from the planet to conduct other science - The date of mission end in the proposed UFM scenario almost exactly falls on the frst "Uranus birthday" of one of the co-authors (TD)
\rightarrow please try to keep this schedule ;-3)

