
Delft Center for Systems and Control

Enhancing Deep Networks
through Customized Iterative Hi-
erarchical Data Augmentation
A Study utilizing the Sussex-Huawei-Locomotion Dataset

Maximilian van Amerongen

M
as

te
ro

fS
cie

nc
e

Th
es

is

Enhancing Deep Networks through
Customized Iterative Hierarchical Data

Augmentation
A Study utilizing the Sussex-Huawei-Locomotion Dataset

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Maximilian van Amerongen

August 7, 2023

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was supported by the German Aerospace Center (DLR). Their coop-
eration is hereby gratefully acknowledged.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Artificial Neural Networks (ANNs) have emerged as a powerful tool for classification tasks
due to their ability to outperform traditional methods. Nevertheless, their effectiveness relies
heavily on the availability of large, varied, and labeled datasets, which are often not available.
To counter this constraint, data augmentation techniques have emerged, leveraging existing
data to generate additional, variant data. Extending these techniques to multi-dimensional
time series data, such as the transportation mode detection data considered in this thesis,
however, introduces challenges. In response, generative models such as Variational Autoen-
coders (VAEs) have shown promising advancements.

In this context, this thesis investigates the application of the Iterative Hierarchical Data Aug-
mentation (IHDA) algorithm for ANNs, which represents a VAE-based data augmentation
technique. The IHDA method utilizes VAEs not only to generate new data samples but also
to map existing data to a lower-dimensional latent space, which is then utilized for identi-
fying samples that might require additional training. The proponents of this method, Khan
and Fraz, reported an accuracy elevation for the considered transportation mode detection
classifier from 83% to 92%. However, due to the absence of publicly accessible code for this
algorithm, the initial step of this thesis involved implementing the IHDA algorithm. Further,
this research proposed and incorporated advancements like the σ-VAE, aimed to improve
the generative capacity of the VAE and refining its latent space mapping. Additionally, the
Kullback-Leibler (KL) divergence was introduced as a similarity metric, aiming to optimize
the identification process of samples that require retraining.

Unfortunately, the results reported by Khan and Fraz could not be reproduced in this study.
Furthermore, despite the potential shown by the σ-VAE to improve the generative capacity
and refine the latent space mapping, along with the enhanced sample identification through
the KL divergence, these enhancements did not lead to an overall improvement in the IHDA
algorithm. This was primarily attributed to the low generative performance of the VAEs
utilized, which also hindered a thorough evaluation of the effectiveness of the IHDA algorithm.

Given these outcomes, it is suggested that future work should focus on employing more
complex VAE models with the potential to enhance their generative performance, which, in
turn, could improve the IHDA algorithm’s overall effectiveness.

Master of Science Thesis Maximilian van Amerongen

ii

Maximilian van Amerongen Master of Science Thesis

Table of Contents

1 Introduction 1
1-1 Transportation Mode Detection and Its Application 1
1-2 The Sussex-Huawei Locomotion Challenge . 2
1-3 Motivation . 2
1-4 Purpose of this Thesis . 4
1-5 Organization . 4

2 Fundamentals of Machine Learning and Artificial Neural Networks 7
2-1 Introduction to Machine Learning . 7
2-2 Introduction to Artificial Neural Networks . 9

2-2-1 Introduction to Artificial Neurons . 9
2-2-2 Basic Architecture of Artificial Neural Networks 10

2-3 Training Dense Neural Networks . 12
2-3-1 Loss Function . 12
2-3-2 Gradient Descent . 12
2-3-3 Backpropagation . 15

2-4 Supplemental Elements of ANN Architecture . 16
2-4-1 Convolutional Layers . 16
2-4-2 Activation Functions . 17

3 Introduction to Variational Autoencoders 19
3-1 Autoencoder . 19
3-2 Variational Autoencoder . 20

3-2-1 The Evidence Lower Bound (ELBO) . 21
3-2-2 Strictly Gaussian Variational Autoencoder 23
3-2-3 The Reparameterization Trick . 25
3-2-4 Sample Reconstruction . 25

Master of Science Thesis Maximilian van Amerongen

iv Table of Contents

3-3 Decoder Variance in VAE . 25
3-3-1 σ-VAE . 26
3-3-2 β-VAE . 27

3-4 Posterior Collapse in VAEs . 28

4 Variational Autoencoder for Data Augmentation 31
4-1 Data Augmentation for Time-Series Data . 31
4-2 Data Augmentation with VAEs . 32
4-3 Iterative Hierarchical Data Augmentation . 32

5 Methodology 37
5-1 Dataset, Preprocessing, Classifier Architecture, and Evaluation 37

5-1-1 Data Acquisition and Preprocessing . 38
5-1-2 Feature Extraction and Engineering . 39
5-1-3 Benchmark Classifier . 40
5-1-4 IHDA-VAE . 43

5-2 Implementation Details . 43
5-2-1 Benchmark Classifier Implementation . 43
5-2-2 IHDA Algorithm Implementation . 44
5-2-3 Hardware and Optimization Algorithm 45
5-2-4 Computational Limitations . 45

5-3 Proposed Enhancements to the IHDA Algorithm 46
5-3-1 Proposal 1: Rebalancing the VAE Loss Function 46
5-3-2 Proposal 2: Reevaluating the Distance Metrics 48

5-4 Assessing VAE Reconstruction Performance . 49

6 Results 51
6-1 Benchmark Classifier . 51
6-2 Evaluation of IHDA Performance in Classifier Retraining 53
6-3 Exploring the Results of Proposal 1 . 57

6-3-1 Performance Evaluation: β-VAE and σ-VAE 57
6-3-2 Performance Evaluation: VAE 1 and σ-VAE 60
6-3-3 Summary of Results Proposal 1 . 68

6-4 Results Proposal 2 . 70
6-5 Evaluating the Identification Improvement . 73
6-6 Evaluation of Classifier Performance with Enhanced IHDA Implementation 75

7 Discussion 77
7-1 Discussion and Interpretation of Results . 77
7-2 Future Work . 79
7-3 Conclusion . 80

Maximilian van Amerongen Master of Science Thesis

Table of Contents v

Bibliography 81

Glossary 87
List of Acronyms . 87
List of Symbols . 87

Master of Science Thesis Maximilian van Amerongen

vi Table of Contents

Maximilian van Amerongen Master of Science Thesis

List of Figures

2-1 Flowchart depicting the process of developing machine learning (ML) and deep
learning (DL) models, referred to as the machine learning workflow. 8

2-2 Schematic Representation of an Artificial Neuron 9
2-3 Schematic representation of a Dense Neural Network (DNN) 10

3-1 Schematic representation of an Autoencoder . 20
3-2 Schematic representation of a Strictly Gaussian Variational Autoencoder 24
3-3 Comparison of Latent Spaces for Two VAEs . 29

5-1 Data distribution across various modes of transportation within the utilized Sussex-
Huawei Locomotion (SHL) dataset subset for training and testing. 39

5-2 Schematic Representation Benchmark Classifier 41

6-1 Training and Validation Curve Benchmark Classifier 52
6-2 Evaluation Metrics Comparison of β—VAE and σ—VAE 58
6-3 Reconstruction Performance Evaluation of σ-VAE and β-VAE. 59
6-4 Visual Comparison of Original and Reconstructed Outputs for "Walk" Class . . . 61
6-5 Visual Comparison of Original and Reconstructed Outputs for "Still" Class 62
6-6 σ-VAE Generated Variations of “Walk” Sample 63
6-7 Visual Comparison of Original and Reconstructed Outputs for “Run” and “Bike”

Class . 64
6-8 Visual Comparison of Original and Reconstructed Outputs for “Car”, “Bus”, “Train”

and “Subway” Class . 65
6-9 Cosine Similarities for “Bike” and “Walk” Classes in VAE 1 and σ-VAE 67
6-10 Cosine Similarities for "Bike", "Still" and "Run" Classes in VAE 1 and σ-VAE . . 68
6-11 Cosine Similarities for “Bike”, “Car”, “Bus”, “Train” and “Subway” Classes in VAE

1 and σ-VAE . 69
6-12 Cosine Similarities and KL divergences for between “Bike” and “Run” Class utilizing

σ-VAE . 71

Master of Science Thesis Maximilian van Amerongen

viii List of Figures

6-13 Cosine Similarities and KL divergences for between “Bike” and “Still”, “Walk”
Classes utilizing σ-VAE . 71

6-14 Cosine Similarities and KL divergences for “Bike”, “Car”, “Bus”, “Train” and
“Subway” Classes in VAE 1 and σ-VAE . 72

6-15 Positive Potential Identification Performance of σ-VAE and VAE 1 Combined with
Cosine Similarity . 74

6-16 Positive Potential Identification Performance of σ-VAE Combined with Cosine Sim-
ilarity and KL Divergence . 74

Maximilian van Amerongen Master of Science Thesis

List of Tables

2-1 Notations used to describe the transformation of inputs in the layers of an Artificial
Neural Network (ANN). 10

5-1 Architectural specifications of the benchmark classifier. 41
5-2 IHDA-VAE Architecture Specifications . 43

6-1 Performance Comparison Among Various Classifiers 52
6-2 IHDA Retraining Results . 55
6-3 Performance of the benchmark classifier on the original validation dataset and the

datasets reconstructed by VAE 1, VAE 2 and VAE 3. 55
6-4 Validation performance of VAE 1,VAE 2, and VAE 3 measured by the Evidence

Lower Bound (ELBO), Mean Square Error (MSE), and Kullback-Leibler (KL) Di-
vergence. 56

6-5 Mean and standard deviation of dataset used to train VAE 1, VAE 2, and VAE 3. 56
6-6 Comparison of Validation Performance Between σ-VAE and β-VAE 59
6-7 Classifier Performance on Datasets Reconstructed by β-VAE with β = 0.001 and

σ-VAE. 60
6-8 Evaluation of Reconstruction Performance of VAE 1 and σ-VAE 61
6-9 Validation Performance of VAE 1 and σ-VAE 66
6-10 Performance Metrics for Classifiers Retrained using the IHDA Algorithm with Pro-

posed Enhancements . 76

Master of Science Thesis Maximilian van Amerongen

x List of Tables

Maximilian van Amerongen Master of Science Thesis

Preface

First and foremost, I extend my heartfelt gratitude to my supervisors: Dr. Manon Kok from
the Department of Systems and Control at TU Delft, Dr. Qinrui Tang, Kanwal Jahan, and
Dr. Michael Roth from DLR. Their consistent support, invaluable guidance, and constructive
feedback throughout the course of our regular progress meetings have significantly shaped the
direction and depth of this thesis.

I am grateful to these individuals for giving me the unique opportunity to conduct my grad-
uation project at DLR. This experience has been an essential part of my academic journey,
promoting personal growth and deepening my understanding of my field. Therefore, I hope
that the collaboration between TU Delft and DLR will continue, providing similar opportu-
nities for future students.

As I mark the end of my academic tenure, I look back with gratitude at my time spent at
TU Delft. This institution has equipped me with a solid academic foundation while fostering
an environment that encouraged exploration and growth. I will always value the support and
guidance I received throughout my journey, and take these memories with me into the next
phase of my professional life.

Master of Science Thesis Maximilian van Amerongen

xii List of Tables

Maximilian van Amerongen Master of Science Thesis

Chapter 1

Introduction

1-1 Transportation Mode Detection and Its Application

In 2021, more than 80% of the global population owned a smartphone, which is expected
to increase in the future [1]. This statistic, coupled with the fact that the average smart-
phone user spends three hours and fifteen minutes on their device each day, illustrates that
smartphones significantly influence our daily lives [2]. In response to this trend, smartphone
manufacturers and application developers continually strive to improve the smartphones’ abil-
ity to understand the context of their users in order to provide them with the best possible
and personalized service.

As commuting consumes a significant portion of an individual’s daily routine, with an average
of up to 80 minutes spent on traveling [31], the research field of transportation mode detection
(TMD) has emerged in recent years. It focuses on using body-worn sensors, such as those
embedded in smartphones, to identify the transportation means used by an individual, such
as walking, biking, or traveling by car.

TMD algorithms can find applications across a wide range of domains. For instance, modern
smartphones already provide fitness applications allowing users to track their time spent
with activities such as walking or running [3]. By providing feedback on the amount of
physical activity performed, smartphones can assist users in adopting a healthier lifestyle.
Additionally, TMD algorithms can also be leveraged in urban transportation planning, where
understanding travel demands and identifying modes of transportation is crucial. Traditional
methods of gathering this information, such as questionnaires, travel diaries, or telephone
interviews, are often expensive, limited to a specific area, and prone to human-induced errors
[38]. TMD algorithms offer a more cost-effective and accurate alternative, mitigating these
challenges and providing valuable insights into transportation patterns and needs [48, 49].
Another notable application of TMD algorithms is user profiling. By analyzing an individual’s
travel behavior, TMD algorithms enable targeted advertising, personalized recommendations,
and the delivery of tailored content, thereby improving user experiences [18]. These examples

Master of Science Thesis Maximilian van Amerongen

2 Introduction

highlight the versatility and significance of TMD algorithms in various fields and emphasize
the need for further research and development to unlock their full potential.

1-2 The Sussex-Huawei Locomotion Challenge

The research of TMD dates back to 2006 when the first studies were published [36, 50]. Early
research faced a significant challenge, as each research group had to create its own dataset,
which was both time-consuming and costly. In addition, the datasets varied in terms of
parameters such as the recording length, the smartphone’s position on the body, the number
of users, and the mode of transportation. Consequently, comparing and drawing conclusions
from different research results was difficult. Thus, a publicly available baseline dataset was
required that could be used by different research groups and several have been created since
[4, 10].
At the time of writing and to the best of the authors’ knowledge, the largest and latest
published dataset in the research community is the Sussex-Huawei Locomotion (SHL) dataset.
It contains 2812h of labeled data collected by three participants. Each participant carried four
smartphones at the body locations: Hand, Torso, Hip Pocket and Backpack. Furthermore,
the dataset distinguishes between eight transportation modes: Still, Walk, Run, Bike, Car,
Bus, Train and Subway [14].
The SHL dataset is part of the Sussex-Huawei Locomotion (SHL) Challenge, a research
competition jointly organized by Huawei and the University of Sussex to encourage research
in the field of TMD. Between 2018 and 2021, the SHL Challenge was held annually and
attracted a total of 63 participating teams [41, 43, 44, 45]. Each year, a new subset of the
SHL dataset was made publicly available, and teams were invited to compete against one
another by developing classifiers based on the latest SHL subset. As a result, recent TMD
research has predominantly focused on using the SHL dataset.

1-3 Motivation

TMD involves utilizing data from body-worn sensors to identify a user’s mode of trans-
portation. The mathematical objective is to find the relationship between the sensor data
and the transportation mode. This is typically accomplished using Machine Learning (ML)
algorithms, which build mathematical models from sample data to make predictions or clas-
sifications without being explicitly programmed to do so.
Deep Learning (DL) models are based on Artificial Neural Network (ANN) and represent a
subclass of ML models. However, for the purpose of this thesis, DL will be considered as a
separate class of models. Therefore, a distinction is made between ML and DL models, with
the latter being based on ANN.
Deep Learning models are powerful models that have proven to perform well across a wide
range of learning tasks and applications, such as computer vision [17, 26] and natural language
processing [8, 39]. According to the results of the four SHL Challenges, Deep Learning models
are also capable of performing well for classification in TMD applications. In three out of the
four challenges, the best DL model surpassed the best ML model in terms of classification
performance.

Maximilian van Amerongen Master of Science Thesis

1-3 Motivation 3

In the 2019 SHL challenge, which was the only competition in which the best ML approach
outperformed the best DL approach, the training and testing data were collected with smart-
phones placed at different positions on the body, with the testing data having a distinct body
position compared to the training data [43]. This resulted in a significant mismatch between
the two datasets. Additionally, there was a noticeable drop in classification performance com-
pared to its previous year’s challenge, SHL 2018, in which data from a single, consistent body
position was used for both training and testing [41].

These observations suggest that the mismatch between training and testing data might affect
classification performance. To provide context, the concept of overfitting should be intro-
duced, which occurs when a model is trained to fit training data too closely, resulting in poor
performance on new data, particularly when collected differently [16]. Due to their high mod-
eling power, DL models are particularly prone to it. Consequently, the performance of DL
models relies on the availability of large datasets with a high amount of variation. However,
generating labeled data can be time-consuming and costly, which often limits the availability
of large datasets.

A technique known as Data Augmentation (DA) can be employed to increase the amount of
available data by applying various transformations to existing data samples to generate new,
slightly different samples. Recent advancements in generative models, such as Generative
Adversarial Networks (GANs) and Variational Autoencoders (VAEs), have made them par-
ticularly appealing for this purpose. These models have shown promising results when applied
to various types of data across domains, including medical image augmentation and acoustic
modeling [5, 11, 30]. Despite these successes, they have not received significant attention in
the field of TMD. Consequently, there is a need to explore their potential applications and
effectiveness in this context.

Compared to GANs, VAEs come with the advantage that they can also be used for dimension-
ality reduction of data samples [15, 24]. This process involves transforming high-dimensional
data into a lower-dimensional representation while preserving essential features, which leads
to a more compact and efficient representation. This dual functionality of VAEs allows them
to generate artificial samples and simplify the representation of their input data.

Taking advantage of this property, Khan and Fraz [22] proposed a VAE-based data augmen-
tation technique that identifies data samples within the training dataset that could benefit
from additional sampling. Using a subset of the SHL dataset, they reported an improvement
in the classification accuracy of their TMD classifier from 83% to 92%, which is a promising
result. Nevertheless, the absence of the necessary hyperparameters and code associated with
the proposed technique creates a gap in understanding and replicating the Iterative Hierar-
chical Data Augmentation (IHDA) algorithm. This situation underscores the necessity for
further exploration.

Master of Science Thesis Maximilian van Amerongen

4 Introduction

1-4 Purpose of this Thesis

Given these limitations, there is a clear path leading to the main purpose of this thesis.
This thesis is motivated by the compelling findings presented by Khan and Fraz [22], which
highlight the potential of the IHDA algorithm. However, to address existing gaps caused by
missing hyperparameters and unavailable code, the first step of this thesis is to reimplement
the IHDA algorithm as initially proposed.

This task holds significant importance, not only for gaining insights into the operational me-
chanics of the IHDA algorithm but also for directly benchmarking any proposed modifications
against the original research.

Following a successful reimplementation, the thesis conducts a comprehensive evaluation of
the IHDA algorithm’s performance, specifically in its ability to enhance a TMD classifier using
the SHL dataset. The aim here goes beyond merely validating the improvements reported by
Khan and Fraz [22], as the goal is to uncover potential areas for further refinement.

These initial investigations set the stage for the objective of this thesis: the identification, im-
plementation, exploration, and assessment of potential enhancements to the IHDA algorithm.
The aim is to ascertain whether these enhancements can indeed improve the performance of
the IHDA algorithm beyond the achievements reported in the original study by Khan and
Fraz [22].

1-5 Organization

After having laid out the motivation and purpose of this thesis, the subsequent sections will
detail the structure and organization of the remainder of this work. Chapter 2 introduces
the fundamental concept of ANN. It outlines the principles of neural networks, details their
operation, and describes the procedure for their training. This foundational knowledge is
required for facilitating an in-depth understanding of an ANN architecture named VAE,
which is the focus of Chapter 3.

Chapter 3 explores the Variational Autoencoder (VAE), including an examination of its var-
ious variations, such as β-VAE and σ-VAE. This chapter delivers the essential groundwork,
enabling the reader to thoroughly understand the context and content of the subsequent
chapter.

Transitioning to Chapter 4, the focus pivots towards the practical application of VAEs for
Data Augmentation. A specific emphasis is placed on the IHDA algorithm, which presents
the VAE-based data augmentation technique being studied in this thesis.

Chapter 5 outlines the methodologies employed in this thesis and presents the proposed
enhancements to the IHDA algorithm. It prepares the reader for the experimental phase of
the thesis by providing detailed justifications and explanations for the suggested improvements
to the IHDA algorithm.

Chapter 6 presents the findings derived from the experiments conducted and provides an
analysis of the compiled results. The individual results from the different experiments are
further discussed in relation to each other in Chapter 7.

Maximilian van Amerongen Master of Science Thesis

1-5 Organization 5

Chapter 7, the final chapter, undertakes an examination of the results, drawing connections
between the outcomes of the various experiments to formulate an understanding of the re-
search. Additionally, this chapter outlines potential directions for future research, identifying
promising fields for further study and continued investigation.

Master of Science Thesis Maximilian van Amerongen

6 Introduction

Maximilian van Amerongen Master of Science Thesis

Chapter 2

Fundamentals of Machine Learning
and Artificial Neural Networks

This chapter is dedicated to exploring the core concepts of Machine Learning (ML), Deep
Learning (DL), and Artificial Neural Networks (ANNs) as utilized in this thesis. Its ob-
jective is to provide a comprehensive understanding by introducing utilized terminology and
explaining the design workflow for these models. Additionally, the chapter explores the model
training process, with a specific emphasis on backpropagation-based gradient descent. This
technique will be explained in the context of its application to dense layers. However, as con-
volutional layers are also employed in this thesis as a secondary layer architecture, the chapter
concludes with a brief overview of their fundamental principles and relevant terminology.

2-1 Introduction to Machine Learning: Understanding the Work-
flow and Terminology

In transportation mode detection (TMD), ML and DL models are utilized for the task of clas-
sification, which implies they are used to approximate the mapping between sensor data-based
inputs and their corresponding transportation modes. A concise overview of the workflow fol-
lowed to develop these models will be presented to aid the reader’s comprehension of the
ML and DL terminology employed in this thesis. The ML workflow, illustrated in Figure 2-1,
serves as a representation of the development process for both ML and DL models. For a more
in-depth understanding of this workflow and the associated terminology, detailed explanations
can be found in [6, 16].

The ML workflow begins with the acquisition of a raw dataset. This step involves collecting a
broad set of data that is relevant to the model being developed. If the data is labeled, it means
that, in the case of TMD, for the collected sensor data, the corresponding transportation mode
is explicitly specified and thus available during the development process of the ML and DL
models. As part of the data acquisition process, the raw data is prepared to make it suitable

Master of Science Thesis Maximilian van Amerongen

8 Fundamentals of Machine Learning and Artificial Neural Networks

for subsequent steps in the workflow. A common preparation step is removing any incorrect
data or outliers that could adversely affect the quality of the dataset.

Once this is done, the prepared dataset is used for the steps of feature extraction and feature
engineering. A feature is a measurable property that serves as an input to a ML model.
Accordingly, ML and DL models make predictions or classification decisions based on fea-
tures. In feature extraction and feature engineering, domain knowledge is used to select and
transform the most relevant variables from the prepared dataset. The dataset resulting from
the feature extraction and engineering step contains the features and will be used for training
the model.

Figure 2-1: Flowchart depicting the process of developing machine learning (ML) and deep
learning (DL) models, referred to as the machine learning workflow.

Selecting an appropriate model type and architecture is crucial to the model selection process.
Numerous architectural approaches are available, each with its own strengths and weaknesses.
Therefore, the model selection step should be guided by choosing an architecture most suitable
for the model’s intended purpose.

In the final steps of the ML workflow, the dataset is split into three non-overlapping subsets:
the training dataset, the validation dataset, and the testing dataset.

The mapping of an ML or DL model is defined by its model parameters. These parameters
need to be adjusted to allow the model to accurately represent the desired input-output
mapping, such as the mapping from features to labels in the case of classification tasks.
To automate the process of adjusting the model parameters, a chosen training algorithm is
utilized. The training dataset serves as a guide to the training algorithm, instructing it on
how to effectively update the model parameters.

After the training algorithm has utilized the complete training dataset once to adjust the
model parameters, the model is then validated against the validation dataset. This dataset
serves to assess the model’s ability to generalize its learning from the training dataset to new,
unseen data.

The process of training and validation is typically repeated for a defined number of iterations,
called epochs. Monitoring the model’s performance on both the training and validation
dataset allows for detecting overfitting. Overfitting is indicated by an increasing performance
of the model on the training dataset while the performance on the validation dataset remains
constant or even decreases, which suggests that the model is memorizing the training data
rather than effectively learning to generalize to new data.

Upon completion of the training and validation processes, the final model is evaluated using
the testing dataset. This dataset consists of data that the model has never encountered before,
providing an unbiased assessment of the model’s performance. It serves as an indicator of how
the model will likely perform when presented with entirely new data, such as during real-world

Maximilian van Amerongen Master of Science Thesis

2-2 Introduction to Artificial Neural Networks 9

application. Furthermore, it informs the decision of whether to retain the current model or
restart the ML workflow at the point where improvements are believed to be possible.

As DL models are utilized during this thesis, the following sections will provide a more detailed
exploration of their architecture and training process.

2-2 Introduction to Artificial Neural Networks

Deep Learning (DL) models are based on Artificial Neural Network (ANN), which draw in-
spiration from the structure and function of biological neural networks in the brain. ANNs
consist of interconnected nodes, known as artificial neurons, that process and transmit infor-
mation through weighted connections, emulating the communication between neurons in the
brain through electrical and chemical signals [6, 16].

As artificial neurons serve as the fundamental building blocks of every ANN, it is essential to
understand their structure and operation. Therefore, the following section aims to provide a
detailed explanation of artificial neurons, enabling a better understanding of the fundamental
principles behind ANNs, which will be further discussed in subsequent sections.

2-2-1 Introduction to Artificial Neurons

The artificial neuron represents a function that takes n inputs, multiplies every input xi by
a weight wi, and adds a bias b to the resulting product [6, 16]. The sum of the weighted
inputs and bias is called the activation a which is mapped to the artificial neuron’s output
o by an activation function g(). By choosing the activation function g() to be non-linear,
non-linearity is introduced to the mapping. This process can be schematically represented as
shown in Figure 2-2, and mathematically denoted as

a =
n∑
i=1

xiwi + b,

o = g(a).
(2-1)

Figure 2-2: Schematic representation of an artificial neuron, with inputs x, weights w, bias b,
activation a, activation function g(a) and resulting output o.

Master of Science Thesis Maximilian van Amerongen

10 Fundamentals of Machine Learning and Artificial Neural Networks

2-2-2 Basic Architecture of Artificial Neural Networks

An Artificial Neural Network (ANN) is created by combining two or more artificial neurons,
which results in a mapping composed of the mappings implemented by each neuron within
the network [6, 16]. For this reason, the choice of a nonlinear activation function g() for
the artificial neurons results in a nonlinear mapping of the ANN. In fact, it enables ANNs
to approximate any computable mapping to an arbitrary precision [46]. This makes them
suitable for modeling complex real-world relations, such as the linkage between sensor data
and the transportation mode. However, the precision at which an ANN can approximate a
mapping is limited by the number of artificial neurons in the network.

Figure 2-3: Schematic representation of a Dense Neural Network (DNN) composed of an input
layer, a hidden layer, and an output layer.

Artificial neurons in ANNs are organized into layers, including an input layer that receives
the initial input x ∈ RN , one or more hidden layers that perform computations on that input,
and an output layer producing the final output of the ANN [6, 16]. Each layer receives its
input from the previous layer and provides output to the next layer, as illustrated in Figure
2-3.
To describe how the input x ∈ RN of an ANN is transformed in the different layers of the
network, the notation listed in Table 2-1 will be used.

Notation Description
rl Number of neurons in the l-th layer
wlij Weight associated with the j-th input to the i-th neuron in the l-th layer
bli Bias term for the i-th neuron in the l-th layer
ali Activation for the i-th neuron in the l-th layer
oli Output of the i-th neuron in the l-th layer
gl() Activation function for the neurons in the l-th hidden layer
go() Activation function for the neurons in the output layer

Table 2-1: Notations used to describe the transformation of inputs in the layers of an Artificial
Neural Network (ANN).

The input layer consists of N input neurons, each representing one input to the ANN. In

Maximilian van Amerongen Master of Science Thesis

2-2 Introduction to Artificial Neural Networks 11

contrast to artificial neurons, there is no processing of information involved in the input
neurons, which implies that no mathematical operations are applied [6, 16]. Instead, they
pass the inputs to the following hidden layer. Consequently, the output of the input layer,
denoted as o0 ∈ RN , is identical to its input which is expressed as

o0 = x. (2-2)

The l-th hidden layer, which is composed of rl number of artificial neurons, receives as input
the output ol−1 ∈ Rrl−1 from the previous layer, which could be either the input layer or the
preceding hidden layer. The output of the hidden layer is then transmitted to the succeeding
hidden layer or directly to the output layer [6, 16].
The arrangement of the artificial neurons in the hidden layers determines how the input x
of the ANN are transformed and how information is processed in the network. Different
architectural approaches are available due to the versatility of combining artificial neurons
in various ways. In this thesis, both dense layers and convolutional layers will be utilized.
However, for the purpose of simplicity, the subsequent sections will focus on explaining the
training of neural networks using an example of ANNs comprised of dense layers, known as a
Dense Neural Network (DNN).
A dense layer comprises multiple artificial neurons, where all the previous layer’s outputs
are passed as inputs to each neuron of the dense layer, as depicted in Figure 2-3. The
transformation of a dense hidden layer will be denoted as

al = wlol−1 + bl,
ol = gl(al).

(2-3)

Here, wl ∈ Rrl×rl−1 and bl ∈ Rrl denote the weights and biases of the l-th layer, respectively.
Moreover, al ∈ Rrl and ol ∈ Rrl represent the activations and subsequent outputs of the l-th
layer, whereas ol−1 ∈ Rrl−1 captures the outputs from the preceding (l − 1)-th layer.
The output layer processes the output of the last hidden layer oL−1 ∈ RrL−1 by using one or
multiple artificial neurons, producing the output oL ∈ RrL of the resulting ANN [6, 16]. It is
common to use the same type of activation function gl() for the artificial neurons of different
hidden layers. In contrast, depending on the purpose of the network, a different activation
function go() might be utilized for the artificial neurons of the output layer. Therefore, similar
to the dense layer’s input-output transformation provided by (2-3), the output layer’s input-
output transformation in a DNN with L layers can be expressed as

aL = wLoL−1 + bL,
oL = go(aL),

(2-4)

where go() denotes the output activation function, introduced to distinguish it from the
activation functions used in the hidden layers.
As randomly initializing the weights and biases {wl,bl}Ll=1 of an ANN is unlikely to yield the
desired input-output mapping, these model parameters require optimization, a process that
will be discussed in the subsequent section.

Master of Science Thesis Maximilian van Amerongen

12 Fundamentals of Machine Learning and Artificial Neural Networks

2-3 Training Dense Neural Networks

Training an ANN refers to the process of identifying a set of network weights and biases
{wl,bl}Ll=1, collectively referred to as network parameters, that result in an accurate approxi-
mation of the desired mapping [6, 16]. To accomplish this, a training data set X = {xk, yk}Kk=1,
consisting of K input-output pairs {xk, yk}, is used to adjust the network’s weights and biases
iteratively to increase its performance on a given task. To provide a clearer understanding
of this training process, the following section will describe the training of a DNN with L− 1
hidden layers, using a method known as Gradient Descent (GD).

GD refers to an iterative optimization algorithm for finding a local minimum of a differentiable
function. In the context of training an ANN, this indicates that the first step involves defining
a differentiable loss function dependent on the network’s weights and biases.

2-3-1 Loss Function

The task of selecting an appropriate loss function for an ANN goes beyond simple dependency
on the network’s weights and biases {wl,bl}Ll=1. The chosen function should also ensure that
deviations from the ANN’s objective result in an increasing loss value. Consequently, by
adjusting the model parameters to minimize the loss function, the ANN improves its ability
to achieve its objective. An example of a suitable loss function for measuring the difference
between the true output value yk and the network’s output is the Mean Square Error (MSE)
[6, 16]. The network’s output for a given training data sample input xk is denoted as oL(xk),
and the MSE is defined as

L(w,b) = 1
K

K∑
k=1

(yk − oL(xk))2. (2-5)

In this equation, L(w,b) denotes the loss function, which quantifies the discrepancy between
the true output values yk ∈ RrL and the network’s predicted outputs oL(xk) ∈ RrL . The
summation is taken over all K training examples. Accordingly, minimizing the MSE corre-
sponds to reducing the average squared difference between the predicted outputs and the true
outputs, aligning the network’s predictions with the desired targets.

2-3-2 Gradient Descent

Once an appropriate loss function L(w,b) has been defined, an algorithm is required to find a
set of model parameters {wl,bl}Ll=1 that minimize this function, with one of these algorithms
being Gradient Descent (GD).

The rationale behind discussing Gradient Descent here is primarily because many other com-
mon training methodologies, such as RMSprop, Adam, or AdaGrad, are variations of GD
[33]. Consequently, understanding GD provides sufficient background information to grasp
the basics of these other training techniques in the context of this thesis.

Maximilian van Amerongen Master of Science Thesis

2-3 Training Dense Neural Networks 13

In this section, for the purpose of simplicity, the model parameters {wl,bl}Ll=1 will be denoted
as v ∈ RH , where H represents the dimension of the parameters.

The gradient of the loss function L(v) with respect to the model parameters will be denoted
as ∇L(v), and it characterizes a local or global minimum of the function when it vanishes

∇L(v) = 0. (2-6)

Here, ∇L(v) represents the partial derivatives of L(v) with respect to model parameter
contained in v and can be expressed as

∇L(v) =
(∂L(v)
∂v1

,
∂L(v)
∂v2

, · · · , ∂L(v)
∂vH

)T
. (2-7)

The loss function L(v) is typically highly nonlinear and dependent on the model parameters
v, making it impossible to calculate an analytical solution to (2-6). Therefore, an alternative
approach is required to minimize the loss function L(v), such as GD. It involves selecting some
initial values v0 for the model parameters before iteratively moving through the parameter
space until a minimum is reached [6, 16]. The network parameters are updated according to
the following rule

vi+1 = vi + ∆vi, (2-8)

where the subscript i indicates the model parameters after the i-th parameter update step.
Moreover, the values used to update the model parameters are contained in ∆vi, which can
be denoted as

∆vi = (∆v1,∆v2, · · · ,∆vH)Ti . (2-9)

Gradient Descent updates the network parameters by using the negative gradient −∇L(vi)
as part of the update vector ∆vi, resulting in the following step for updating the parameters

vi+1 = vi + ∆vi = vi − η∇L(vi). (2-10)

The gradient ∇L(v) represents the direction in which the loss function L(v) increases the
most, while the GD algorithm updates the model parameters in the opposite direction, where
the loss function decreases the most. Further, the hyperparameter η > 0 in Equation (2-10)
is commonly referred to as the learning rate, and it determines the extent to which the model
parameters are adjusted in the direction of the negative gradient [6, 16].

The effectiveness of the GD algorithm can be demonstrated based on the local linear approx-
imation of the loss function L(v). Under this assumption, a sufficient small step ∆v taken in
the parameters space results in a change of the loss function ∆L(v) approximately equal to

∆L(v) ≃ ∇L(v)∆v =
H∑
h=1

∂L(v)
∂vh

∆vh. (2-11)

Master of Science Thesis Maximilian van Amerongen

14 Fundamentals of Machine Learning and Artificial Neural Networks

By using Equation (2-11), it can be shown that the parameter update vector ∆v = −η∇L(v)
used by the GD algorithm results in a negative change of the loss function ∆L(v), hence the
loss function value has decreased after updating the model parameters

∆L(v) ≃ ∇L(v)∆v = −η∇L(v)∇L(v) = −η||∇L(v)||2 ≤ 0. (2-12)

However, Equation (2-12) is based on local linear approximation of the loss function L(v),
which does not hold if the parameter update step ∆v is taken too large. Since the size of the
update step can be controlled by the learning rate η, it needs to be chosen carefully.

If the learning rate is too high, the algorithm can overshoot the minimum and diverge, result-
ing in failure to converge to a minimum of the loss function L(v). On the other hand, if the
learning rate is too low, the algorithm may converge very slowly or get stuck in a suboptimal
solution. Therefore, choosing an appropriate learning rate is a critical task and often involves
a trial-and-error process to find the optimal learning rate that balances convergence speed
and stability.

Finally, the parameter update rule of the GD algorithm, specified by Equation (2-10), can be
translated into an update rule for the weights wl and biases bl defining layer l of a DNN as
follows

wl
i+1 = wl

i − η
∂L(wl

i,bli)
∂wl

i

and bli+1 = bli − η
∂L(wl

i,bli)
∂bli

. (2-13)

Stochastic Gradient Descent for Dense Neural Networks

By reconsidering the loss function introduced by (2-5), it is possible to interpret the total loss
L(w,b) as the average of the losses of each training input Lxk

(w,b). As a result, (2-5) can
be rewritten as

L(w,b) = 1
K

K∑
k=1

(yk − oL(xk))2 = 1
K

K∑
k=1
Lxk

(w,b). (2-14)

Therefore, calculating the gradient ∇L(w,b) requires computing the average over the gradi-
ents of each training input ∇Lxk

(w,b) represented as

∇L(w,b) = 1
K

K∑
k=1
∇Lxk

(w,b). (2-15)

As a result, the larger the size of the training data set K, the more complex the gradient
∇L(w,b) calculation will be. Due to this, for large K it might become computationally
infeasible to calculate the gradient for one iteration of the GD algorithm. This problem may
be resolved by using a modified version of GD, known as Stochastic Gradient Descent (SGD)
[6, 16]. Instead of utilizing the entire data set for the computation of the gradient, SGD selects
a mini batch S = {xs, ys}Ss=0 that is randomly drawn from the training set and approximates
the gradient as

Maximilian van Amerongen Master of Science Thesis

2-3 Training Dense Neural Networks 15

∇L(w,b) ≈ 1
S

S∑
s=1
∇Lxs(w,b). (2-16)

Accordingly, the network weights wl and biases bl defining layer l are updated by SGD as
follows

wl
i+1 = wl

i −
η

S

S∑
s=1

∂Lxs(wt,bt)
∂wt

and bt+1 = bt −
η

S

S∑
s=1

∂Lxs(wt,bt)
∂bt

. (2-17)

Once the parameters have been updated, a new mini batch from the training data set is
selected, and the procedure is repeated until all samples have been utilized once. It is then
said that one training epoch has been completed.

2-3-3 Backpropagation

The presented GD and SGD algorithm requires the computation of the gradient ∇L(w,b),
and backpropagation represents an efficient method for doing so [6, 16]. Using the calculus
chain rule, the gradient of the loss function with respect to the weight wlij can be rewritten
as

∂L(w,b)
∂wlij

= ∂L(w,b)
∂alj

∂alj
∂wlij

= δljo
l−1
j . (2-18)

The first term δlj , called the error, can be interpreted as a measure of how sensitive the loss
function is to changes in the activation alj , whereas the second term corresponds to the output
ol−1
j of the previous layer’s neuron j. Consequently, the gradient of the DNN can be calculated

by knowing the errors and outputs for each neuron of the network. By utilizing the calculus
chain rule, it is possible to determine how the error δl+1

j propagates from layer l + 1 to its
preceding layer l, given by

δlj = ∂L
∂alj

= ∂L
∂al+1

j

∂al+1
j

∂olj

∂olj
∂alj

= δl+1
j wl+1

j g′(alj). (2-19)

In matrix notation, this can be written as

δl = ((wl+1)δl+1)⊙ g′
l(al) with δl = (δl1, δl2, · · · , δlpl

)T (2-20)

where ⊙ represents the Hadamard product.

As can be inferred from (2-20), computing the error terms of the last layer first enables the
calculation of all preceding error terms in the network. Propagating the error through the
ANN according to (2-20) is known as backpropagation of the network’s error.
Considering the MSE loss function defined in (2-5) the error δLj of the output layer L and
node j can be calculated as

Master of Science Thesis Maximilian van Amerongen

16 Fundamentals of Machine Learning and Artificial Neural Networks

δLj = ∂L(w,b)
∂aLj

= 2
K

K∑
k=1

(yk − go(aLj (xk))g′
o(aLj (xk)). (2-21)

However, this expression depends on the activation aLj , which is influenced by the previous
layer’s output oL−1

j . Thus, to calculate the error of the last layer and backpropagate it through
the network, it is necessary to calculate first the output of all neurons. As a result, for every
iteration of the GD algorithm using backpropagation, the algorithm proceeds as follows.

As a first step, the inputs of the network are propagated through the DNN, resulting in the
outputs of all neurons. This step is referred to as the forward pass. In the following step,
these outputs are used to calculate the errors associated with each weight by propagating
the errors of the last layer backwards through the network in accordance with (2-20). This
is referred to as the backward pass [6, 16]. Finally, having calculated all errors and neuron
outputs of the network, the gradient with respect to each weight can be calculated according
to (2-18). Further, the procedure to calculate the gradient with respect to the bias blj using
backpropagation is the same as the one discussed, with the exception that this gradient is
defined as

∂L
∂blj

= δlj . (2-22)

2-4 Supplemental Elements of ANN Architecture

After furnishing a comprehensive outline of ANNs and their training processes, this section is
dedicated to the introduction of two additional components of ANNs that will be referenced
throughout this thesis. These are the convolutional layers and activation functions. Given
their recurrence in the forthcoming sections of this thesis, the objective here is to equip
the reader with essential background knowledge on these elements. For a more in-depth
exploration, the reader is directed to [6, 16].

2-4-1 Convolutional Layers

The convolutional layer offers, next to the dense layer, an alternative layer architecture in the
field of ANNs. The goal of this section is to introduce the fundamental principles of these con-
volutional layers and to familiarize the reader with the relevant terminology. Techniques such
as backpropagation-based gradient descent, previously explored within the context of dense
layers, can be extended to convolutional layers in a straightforward manner, and therefore
will not be reiterated here.

The term “convolutional” derives from the mathematical convolution operation, which is
described by

(x ∗w)[n] =
∞∑

m=−∞
x[n−m]w[m], (2-23)

Maximilian van Amerongen Master of Science Thesis

2-4 Supplemental Elements of ANN Architecture 17

where the ∗ denotes the convolution operator. The operation (x∗w)[n] represents a weighted
sum where each element of x is multiplied by a corresponding element in w. Within the
context of this operation, n marks a specific position within the sequence, and m is the
variable sliding over all potential values. This sliding concept also manifests in convolutional
layers where the kernel w slides across the layer’s input x.

In the context of convolution layers, both the input x and kernel w are finite in size, with
the kernel’s size needing specification during the network design phase. The kernel elements
serve as the model parameters, and accordingly determine the layers input-output mapping.
The values of these parameters are learned during training by applying algorithms like GD
and backpropagation, as previously discussed in the context of training dense layers.

This sliding process, applied in each convolutional layer, moves the kernel w across the input
sequence x , capturing a kernel-sized part of the input data and convolving it with the kernel.
This process effectively performs an element-wise multiplication of the kernel with the selected
input values. Notably, convolutional layers can apply multiple kernels at once, where each
kernel produces a corresponding output channel. An output channel fundamentally represents
the result of convolving the input with a specific kernel.

Additionally, stride and padding are crucial parameters. The stride dictates the kernel’s
movement distance for each convolution operation, while padding involves adding extra ele-
ments, usually zeroes, to the input data’s boundaries, aiding in managing the output’s spatial
dimensions. For instance, ’Same’-padding maintains the output’s width and height identical
to the original input by applying appropriate padding.

2-4-2 Activation Functions

As highlighted in Subsection 2-2-1 and 2-2-2, the activation function introduces non-linearity
to the mapping of an artificial neuron, and accordingly to the mapping of an ANN. A variety
of activation functions exists but throughout this thesis, only the Rectified Linear Unit (ReLU)
and the Softmax activation will be utilized. Therefore, those two will be briefly discussed in
this section.

The ReLU activation function is defined as

g(a) = max(0, a), (2-24)

and introduces non-linearity to the computations of individual artificial neurons by outputting
zero for negative inputs and the input value itself for non-negative inputs.

On the other hand, the Softmax function operates more like an activation layer rather than a
standalone activation function. It works collectively on the activations of all the rl artificial
neurons in a given layer l. The Softmax function takes the activations of the layer’s neurons
as input, applies the exponential function to each input element ai, and then normalizes these
values by dividing each one by the sum of all exponentials

∑rl
j=1 e

aj . This process generates
output values for each neuron in the layer, which lie within the range of [0, 1] and collectively
sum to 1. Due to these characteristics, the Softmax function is widely employed as an output
activation layer go() in multiclass classification tasks, as it allows for the interpretation of

Master of Science Thesis Maximilian van Amerongen

18 Fundamentals of Machine Learning and Artificial Neural Networks

each output as a probability that the input belongs to a specific class. The Softmax function
is defined as

g(ai) = eai∑rl
j=1 e

aj
, (2-25)

where ai symbolizes the i-th input element, while rl represents the total number of input
elements.

Maximilian van Amerongen Master of Science Thesis

Chapter 3

Variational Autoencoders:
Probabilistic Modeling and Latent

Representations

The objective of this chapter is to provide a comprehensive understanding of Variational
Autoencoders (VAEs), an architecture within Artificial Neural Networks (ANNs) that serves
as the foundation for the data augmentation technique studied in this thesis. The VAE
architecture is presented alongside its counterpart, the Autoencoder (AE), as they share
similar structural characteristics. The chapter explores the workings of the VAE architecture,
including the associated loss function known as the Evidence Lower Bound (ELBO), and
discusses how backpropagation-based Gradient Descent (GD) algorithms can be applied to
optimize this loss function.

Furthermore, two specific variants of the VAE, namely the σ-VAE and the β-VAE, are in-
troduced, which hold relevance to this thesis. The chapter also addresses the phenomenon of
posterior collapse, an important consideration when training VAEs.

3-1 Autoencoder

The Autoencoder (AE) represents an ANN architecture composed of two parts: an encoder
e(x) : RN 7→ RD and a decoder d(z) : RD 7→ RN . The encoder’s objective is to encode its
input data x ∈ RN in a representation called the latent vector z ∈ RD, where each element
of the latent vector is referred to as a latent variable. Further, this vector resides in a vector
space, known as the latent space [6, 16].

Once this latent vector z has been obtained, the AE utilizes it to reconstruct its input data,
resulting in its reconstructed input x̂ ∈ RN . Thus, the AE maps x 7→ x̂ through the encoder
e(x) 7→ z and the decoder d(z) 7→ x̂, as illustrated in Figure 3-1.

Master of Science Thesis Maximilian van Amerongen

20 Introduction to Variational Autoencoders

Figure 3-1: Schematic representation of an Autoencoder. The figure visually describes how the
original input x is mapped to the latent vector z via the encoder e(x), and then the input is
reconstructed through the decoder d(x) from z to x̂.

Training an AE refers to the process of learning the mapping x 7→ x̂. This is accomplished by
adjusting the network weights, by algorithms such as the previously introduced GD algorithm,
to optimize a loss function LAE(x, x̂) that penalizes the difference between the original input
x and its reconstruction x̂. A commonly used loss function for training an AE is the Mean
Square Error (MSE). Further, it’s worth noting that the process of training an AE differs
from classifier development, as it does not rely on the use of labels.

As a result of being able to perform the copying task x 7→ x̂, the AE may be able to extract
meaningful features of the input data x in the latent vector z [6, 16]. If the dimension
of the latent vector is selected to be smaller than that of the input data, the encoder is
encouraged to extract and represent those meaningful features in a lower-dimensional latent
space. Consequently, the latent vector z is usually of greater interest than the decoder output
x̂, leading to the use of AEs for dimensionality reduction and feature extraction tasks.

Further insights into AE’s dimensionality reduction and feature extraction capabilities can
be gained by comparing it with the traditional representation learning technique, Principal
Component Analysis (PCA). Under certain conditions, the encoding function of a single-
layer Autoencoder with linear activation functions and MSE loss function is equivalent to
PCA [29]. However, introducing non-linear activation functions in the hidden layers results
in quite different characteristics, including the ability to convey other aspects of the input
data. In this sense, the AE can be considered as a more powerful nonlinear generalization of
PCA.

3-2 Variational Autoencoder

The understanding of the AE provides a basis for the study of VAEs, as both share a similar
encoder-decoder architecture, making both of them applicable for feature extraction and
dimensionality reduction. However, their formulations differ. Therefore, it may be beneficial
to disregard the AE formulation in the context of this section.

Maximilian van Amerongen Master of Science Thesis

3-2 Variational Autoencoder 21

3-2-1 The Evidence Lower Bound (ELBO)

Variational Autoencoders are probabilistic generative models that assume that the observed
data sample x ∈ RN is generated by a stochastic process involving a stochastic latent vector
z ∈ RD [24, 25].
The generative process can be subdivided into the following two steps: First, the latent vector
z is generated by sampling it from a prior distribution pθ∗(z). Then the resulting z is used to
obtain x by sampling from the likelihood pθ∗(x|z). However, the values of the latent vector z,
as well as the true generative parameters θ∗, which define pθ∗(z) and pθ∗(x|z), are unknown.
Therefore, ANNs are utilized to approximate the likelihood pθ∗(x|z) by a parametric family
of distributions, referred to as the generative model pθ(x|z) or decoder. Furthermore, the
true prior pθ∗(z) is approximated by an isotropic centered Gaussian given by

pθ(z) = N (0, I). (3-1)

Learning the stochastic mapping pθ(x|z) between the latent vector z and the observed data
x requires an understanding of the vector z that generated the data x. Thus, the posterior
pθ(z|x) is of interest, which can be expressed in terms of Bayes’ theorem as

pθ(z|x) = pθ(x|z)pθ(z)
pθ(x) . (3-2)

Here, the evidence pθ(x) of the observed data x taken as a function of the generative param-
eters θ can be attained by marginalizing the joint distribution pθ(x, z) over the latent vector
z according to

pθ(x) =
∫
pθ(x, z)dz =

∫
pθ(x|z)p(z)dz. (3-3)

This last equation requires exponential time to compute as it needs to be evaluated over all
configurations of the latent space vector z. As a result, the evidence pθ(x) is regarded to
be intractable, which implies that the posterior pθ(z|x), given by (3-2), is also intractable.
Again, the solution proposed is to approximate it with a family of parametric distributions
utilizing an ANN, which is referred to as the recognition model qϕ(z|x) or encoder. To find
recognition model parameters ϕ that result in a good approximation of the likelihood pθ(z|x),
an evaluation metric is required. Therefore, the Kullback-Leibler (KL) is introduced, which
is given by

DKL(qϕ(z|x)||pθ(z|x)) = Eqϕ(z|x)[log qϕ(z|x)− log pθ(x, z)] + log pθ(x). (3-4)

This non-negative measure quantifies the difference between two probability distributions and
is zero if and only if both compared distributions are identical. Accordingly, it is aimed to
find the generative and recognition model parameters θ̂, ϕ̂ that minimize the KL divergence
between the likelihood pθ(z|x) and its approximation qϕ(z|x), which is represented as

θ̂, ϕ̂ = arg min
θ,ϕ

DKL(qϕ(z|x)||pθ(z|x)). (3-5)

Master of Science Thesis Maximilian van Amerongen

22 Introduction to Variational Autoencoders

However, since the intractable evidence pθ(x) appears in (3-4), it is impossible to compute
the optimal model parameters θ̂, ϕ̂ directly [24, 25]. Therefore, the tractable measure called
the ELBO, is introduced. It is analogous to the KL divergence up to a specific constant,
hence to minimize DKL(qϕ(z|x)||pθ(z|x)), one can study the ELBO instead.

For the derivation of the ELBO, a closer look is taken at the definition of the marginal log-
likelihood log pθ(x). By multiplying and dividing by the posterior approximation qϕ(z|x), this
expression can be rewritten as

log pθ(x) = log
∫
pθ(x, z)dz = log

∫
pθ(x, z)qϕ(z|x)

qϕ(z|x)dz

= Eqϕ(z|x)
[pθ(x, z)
qϕ(z|x)

]
≥ Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)] = ELBO(x)

(3-6)

In the last step of (3-6), Jensen’s inequality has been applied. Furthermore, it should be
noted that the right hand side of the inequality corresponds to the ELBO(x), providing a
lower bound on the intractable log-likelihood of the evidence pθ(x). That is why it is called
Evidence Lower Bound (ELBO). Combining (3-4) and (3-6) indicates that the ELBO and
the Kullback-Leibler divergence DKL(qϕ(z|x)||pθ(z|x)) are related as

DKL(qϕ(z|x)||pθ(z|x)) = Eqϕ(z|x)[log qϕ(z|x)− log pθ(x, z)] + log pθ(x)
= −Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)] + log pθ(x)
= −ELBO(x) + log pθ(x).

(3-7)

Inspecting (3-7) reveals that maximizing the tractable ELBO(x) means either maximiz-
ing the intractable log-likelihood of the evidence log pθ(x) or minimizing KL divergence
DKL(qϕ(z|x)||pθ(z|x)). Ideally, both are achieved. As a result of the first scenario, the
generative model is improved pθ(x|z), whereas in the second scenario, the divergence between
the posterior approximation qϕ(z|x) and the true posterior pθ(z|x) is minimized, resulting
in a better recognition model qϕ(z|x). Hence, maximizing the ELBO(x) implies that, in the
ideal case, the recognition ϕ and generative model parameters θ are optimized simultaneously
[24, 25].

Rewriting the ELBO results in the final and tractable loss function LV AE(x) used to train a
VAE, given by

ELBO(x) = Eqϕ(z|x)[log pθ(x, z)− log qϕ(z|x)]
= Eqϕ(z|x)[log pθ(x|z)pθ(z)− log qϕ(z|x)]
= Eqϕ(z|x)[log pθ(x|z)] + Eqϕ(z|x)[pθ(z)− log qϕ(z|x)]

= Eqϕ(z|x)
[

log(pθ(x|z))
]
−DKL(qϕ(z|x)||pθ(z))

= −LV AE(x).

(3-8)

Maximilian van Amerongen Master of Science Thesis

3-2 Variational Autoencoder 23

Note, that Equation (3-8) represents the ELBO evaluated on a single input data sample x.
However, when dealing with a dataset X = {xk}Kk=1, which comprises K input samples, the
computation of the ELBO(X) extends to

ELBO(X) =
K∑
k=0

ELBO(xk) =
K∑
k=0

Eqϕ(z|xk)
[

log(pθ(xk|z))
]
−DKL(qϕ(z|xk)||pθ(z)). (3-9)

One important takeaway from this section is that compared to the AE, the encoder qϕ(z|x)
and decoder pθ(x|z) of a VAE both represent distributions. A Gaussian prior pθ(z) for the
latent space is commonly assumed, however, the specific assumptions for the encoder and the
decoder distributions have not been introduced in this section. Thus, the following section
will focus on a specific form of the VAE, called the strictly Gaussian VAE.

3-2-2 Strictly Gaussian Variational Autoencoder

In a strictly Gaussian VAE, in addition to assuming a Gaussian prior pθ(z), the encoder
qϕ(z|x) and decoder pθ(x|z) both parameterize multivariate Gaussian distributions, charac-
terized by their mean µ and covariance matrix Σ [24, 25]. A visual representation of this
concept is provided in Figure 3-2.

The three defining distributions of the strictly Gaussian VAE can be summarized as

pθ(z) = N (0, I),
qϕ(z|x) = N (µ(x),Σ(x)),
pθ(x|z) = N (µ(z),Σ(z)),

(3-10)

where µ(x) ∈ RD contains the mean values {µd}Dd=0 characterizing the distribution of each
dimension of z. Further, it is commonly assumed that the different dimensions of z are un-
correlated, which is why Σ(x) ∈ RD×D represents a diagonal matrix, containing the variance
values {(σd)2}Dd=1 belonging to each dimension of z. The same holds for the data sample x
and its belonging mean µ(z) ∈ RN and its covariance matrix Σ(z) ∈ RN×N .

Under the strictly Gaussian assumption, the KL divergence DKL(qϕ(z|x)||pθ(z)) term in the
VAE loss function LV AE(x) for a data sample x, as detailed in (3-8) can be expressed as

DKL(qϕ(z|x)||pθ(z)) = DKL(N (µ(x),Σ(x))||N (0, I))

= 1
2

D∑
d=1

(σd)2 + (µd)2 − 1− 2 log σd.
(3-11)

Further, the expectation term Eqϕ(z|x)[log pθ(x|z)] of the VAE loss function LV AE(x) can
be approximated by sampling a sufficiently large set of latent vectors {zs}Ss=1 from the
distribution qϕ(z|x) [24]. Under this assumption the Monte Carlo estimate of the term
Eqϕ(z|x)[log pθ(x|z)] becomes

Master of Science Thesis Maximilian van Amerongen

24 Introduction to Variational Autoencoders

Eqϕ(z|x)[log pθ(x|z)] = Eqϕ(z|x)[logN (µ(z),Σ(z))]

≈ 1
S

S∑
s=1

logN (µ(zs),Σ(zs))

= 1
S

S∑
s=1
−1

2(log det(Σ(zs)) + (xs − µ(zs))T (Σ(zs))−1(xs − µ(zs)) +N log 2π).

(3-12)

Accordingly, the loss function LV AE(x) for data sample x of a strictly Gaussian VAE is given
by

LV AE(x) =− ELBO(x)

=− Eqϕ(z|x)
[

log(pθ(x|z))
]

+DKL(qϕ(z|x)||pθ(z))

≈ 1
S

[
S∑
s=1

1
2(log det(Σ(zs)) + (xs − µ(zs))T (Σ(zs))−1(xs − µ(zs)) +N log 2π)

]

+ 1
2

[
D∑
d=1

(σd)2 + (µd)2 − 1− 2 log σd
]
.

(3-13)

Figure 3-2: Schematic representation of a Strictly Gaussian Variational Autoencoder (VAE). The
figure illustrates how both the encoder qϕ(z|x) and the decoder pθ(x|z) parameterize Gaussian
distributions.

Maximilian van Amerongen Master of Science Thesis

3-3 Decoder Variance in VAE 25

3-2-3 The Reparameterization Trick

Following the derivation of the VAE loss function LV AE(x), minimizing this function by
using backpropagation-based algorithms for VAE training may seem intuitive. Nevertheless,
a straightforward implementation of this is not achievable [24, 25]. As detailed in Section 2-
3-3, the error must be propagated through the network, which necessitates calculating the
gradient of the VAE loss function LV AE(x) with respect to the VAE parameters ϕ and θ. The
VAE formulation, however, contains a stochastic sampling process of z over the latent space
that is not differentiable. As a solution, the reparameterization trick is introduced, which
extends the VAE input by an auxiliary random variable, ϵ ∈ RD. This allows to simulate the
stochastic sampling process of z by computing it as

z = µ(x) + (Σ(x))0.5 ⊙ ϵ with ϵ ∼ N (0, I) (3-14)

As a result, the reparameterization trick transformed the stochastic VAE model with input x
into a deterministic model with inputs x and ϵ, allowing backpropagation-based algorithms
to minimize the VAE loss function LV AE(x) [24, 25].

3-2-4 Sample Reconstruction Using a Strictly Gaussian VAE

Building on the reparameterization trick, the VAE framework maps the generated latent
vector z back to a probability distribution pθ(x|z) in the input space using the decoder.
From this distribution, the reconstructed input x̂ can be sampled. In the case where the
decoder parameterizes a Gaussian distribution, as in the strictly Gaussian VAE framework,
the sampling process for obtaining a reconstructed input can be described as

x̂ = µ(z) + (Σ(z))0.5 ⊙ ϵ with ϵ ∼ N (0, I). (3-15)

In practice, the covariance of the decoder Σ(z) is rarely used since adding (Σ(z))0.5 ⊙ ϵ to
the outer layer of the decoder simply introduces white noise to the reconstruction x̂ [9]. Then
the decoder becomes a deterministic mapping that maps the latent variable to the artificially
generated sample x̂ as

x̂ = µ(z). (3-16)

3-3 The Importance of Selecting Decoder Variance in VAE

The common practice of disregarding the decoder covariance during the reconstruction phase
often leads to neglecting the decoder covariance matrix throughout the entire development
process of a VAE, by treating it as a constant. This practice involves neglecting the terms
log Σ(z) and N log(2π) in the VAE loss function, as they represent constants with zero deriva-
tives and do not contribute to gradient calculations in optimization algorithms based on gra-
dient descent [22]. Consequently, assuming a diagonal covariance matrix Σ(z) with fixed

Master of Science Thesis Maximilian van Amerongen

26 Introduction to Variational Autoencoders

diagonal elements equal to 2, the VAE loss function for a strictly Gaussian VAE, represented
by Equation (3-13), simplifies as

LV AE(x) = N ·MSE(xs,µ(zs)) + 1
2

[
D∑
d=1

(σd)2 + (µd)2 − 1− 2 log σd
]
. (3-17)

However, the practice of neglecting the decoder covariance matrix may lead to poor performing
VAEs. For demonstration purposes, it is assumed that the decoder variance for the different
dimensions of x are equal, resulting in the decoder covariance matrix Σ(z) = (σ(z))2I. In
this case, the VAE loss function LV AE(x) for a strictly Gaussian VAE, given by Equation
(3-13), simplifies as

LV AE(x) ≈ 1
S

[
S∑
s=1

1
2
(
log (σ(z))2 + N

(σ(z))2 MSE(xs,µ(zs)) +N log 2π
)]

+ 1
2

[
D∑
d=1

(σd)2 + (µd)2 − 1− 2 log σd
] (3-18)

From (3-18), it should be noted that the decoder variance acts as a weighting matrix between
the MSE reconstruction loss and Kullback-Leibler divergence terms in the VAE-loss function.
Accordingly, it determines how each of these terms contributes to the gradient calculation of
the VAE loss function, which directly influences how the VAE model parameters are updated
during the training phase with gradient-based optimization algorithms.

Therefore, while the decoder variance may not be used for reconstruction directly, assuming a
fixed variance can result in one of the terms being overweight, preventing the global optimum
of the VAE loss function LV AE(x) from being reached [34]. As a consequence, the lower bound
on the marginal log-likelihood (ELBO(x)) of the data under consideration is not maximized,
implying its marginal log-likelihood log pθ(x) may not be maximized as well. As a result, the
VAE may not perform well, resulting in, for example, low-quality reconstructions [34].

Addressing this issue, the next section introduces two different VAE architectures that each
offer a solution for the selection of the decoder covariance values. In the context of this thesis,
both methods are discussed with regard to selecting a shared value for the diagonal elements
of the decoder covariance matrix.

3-3-1 σ-VAE

The σ-VAE is a variant of the VAE that uses the VAE loss function LV AE(x) to guide the
selection of the decoder variance. According to Rybkin et al. [34], the VAE-loss function
provides explicit instructions for selecting the optimal decoder variance: “the variance should
be selected to minimize the weighted MSE loss while also minimizing the logarithm of the
variance.”

For the VAE loss function resulting from employing a single decoder variance value across all
dimensions of the decoder output, as demonstrated in (3-18), an expression for the decoder

Maximilian van Amerongen Master of Science Thesis

3-3 Decoder Variance in VAE 27

variance that satisfies these conditions can be derived by differentiating the loss function and
setting it equal to zero. This leads to the expression

(σ(z))2 = arg min
σ(z)

LV AE(x) = 1
S

S∑
s=0

MSE(xs,µ(zs)). (3-19)

This expression can be effectively integrated into the optimization procedure of the VAE-
loss function, even enabling batch-wise estimation of the optimal variance value during the
Stochastic Gradient Descent (SGD) process. Further, it should be noted that the expression
can also be extended to the multidimensional decoder covariance matrix in a straightforward
manner, enabling the use of more complex decoder distributions pθ(x|z) for approximating
its true likelihood.

3-3-2 β-VAE

A different approach, called β-VAE, refers to a VAE architecture designed to allow manual
tuning of the trade-off between MSE loss and Kullback-Leibler divergence [19]. To achieve
this, the hyperparameter β is introduced to the ELBO objective, resulting in the β-VAE loss
function LβV AE given by

LβV AE(x) = Eqϕ(z|x)[log pθ(x|z)]− βDKL(qϕ(z|x)||pθ(z)). (3-20)

The distinction in the β-VAE loss function compared to the “traditional” VAE loss function,
as introduced in (3-8), is the inclusion of the hyperparameter β.

When comparing β-VAE to the case where the decoder covariance matrix has a shared value
for the diagonal elements, represented by the loss function in Equation (3-13), selecting a
constant variance of (σ(z))2 = β in the latter case results in a loss function with a weighting
ratio between the MSE and Kullback-Leibler divergence terms that match the gradient of
the corresponding β-VAE loss function. Therefore, by utilizing an appropriate learning rate,
optimizing the β-VAE objective results in the same parameter updates as optimizing the VAE
objective with a shared decoder variance value of (σ(z))2 = β. In this context, optimizing
β-VAE can be seen as manually tuning the shared decoder variance value [34].

By choosing β > 1, the encoder qϕ(z|x) distribution is incentivized to align more closely with
the prior pθ(z) distribution [19]. In the case of an isotropic centered Gaussian prior pθ(z) this
implies that the encoder qϕ(z|x) is stimulated to learn a more disentangled latent represen-
tation of the input data sample x. In this context, a disentangled latent representation refers
to a set of minimally correlated latent variables capturing the underlying factors of variation
in the data individually. An example of a disentangled feature in an image dataset of faces
could be the skin color or the orientation of the face. Generally, disentangled representations
are considered interpretable, which in many applications, is a desirable characteristic.

However, β-VAE has the disadvantage of requiring extensive and individual manual tuning
of β for each dataset. Even though a disentangled latent representation might be desirable,
a model with a high β value may become too focused on minimizing the Kullback-Leibler
divergence between the approximate posterior distribution and the prior distribution. This

Master of Science Thesis Maximilian van Amerongen

28 Introduction to Variational Autoencoders

may result in the latent representation being overly constrained and not capturing all of the
important information in the data, resulting in poor reconstruction quality. In the extreme
case, posterior collapse may occur, which is a phenomenon that will be discussed next.

3-4 Posterior Collapse in VAEs

Posterior collapse is a common issue in VAEs that occurs when the encoder distribution
for a subset or all of the latent variables becomes similar or equal to the prior distribution
qϕ(zi|x) ≈ p(zi). Consequently, this situation leads to a near zero Kullback-Leibler divergence
between these two distributions [28, 29].

When posterior collapse occurs, the learned encoder distribution becomes uniform across all
inputs, causing the model to ignore those variables and not store meaningful information in
them. As a result, the collapsed variables provide little value for reconstructing the input
data or learning useful representations.

To elucidate this concept, consider two different VAEs with a latent space dimension of 2.
Both are trained on a subset of the Sussex-Huawei Locomotion (SHL) dataset, for which an
initial overview was provided in Section 1-2. However, one of them experiences posterior
collapse, while the other does not. This contrasting phenomenon is depicted in Figure 3-3.

One of the causes of posterior collapse can be attributed to the KL-divergence term, which
is minimized by the collapsed posterior distribution. Consequently, a high penalty on this
term, such as using a large β value in β-VAE, can lead to a global optimum of the ELBO
that promotes posterior collapse.
Powerful decoders, on the other hand, can also contribute to posterior collapse. They have
high capacity and can closely match the training data, even when the encoder distribution is
collapsed. This can lead to the decoder memorizing the training data rather than utilizing
meaningful information encoded in the latent variables, ultimately resulting in posterior col-
lapse.
Furthermore, the VAE training process involves optimizing a highly nonlinear objective func-
tion with many local minima, which can cause the optimization algorithm to become trapped
in one of them. In some instances, these local minima cause collapsed encoder distributions,
leading to posterior collapse [28, 29].

Due to the multiple causes of posterior collapse, finding a single solution that effectively
prevents it can be challenging. Nonetheless, when working with VAEs, it is crucial to be
aware of this phenomenon. Further, it is essential to recognize that a low ELBO value does
not necessarily indicate a well-performing VAE, as some or all of its latent variables may still
suffer from posterior collapse.

Maximilian van Amerongen Master of Science Thesis

3-4 Posterior Collapse in VAEs 29

Figure 3-3: Comparison of the 2D Latent Spaces of two distinct VAEs trained on the same subset
of the SHL dataset. The VAE generating the left latent space experiences posterior collapse in its
latent variables, while the VAE generating the right does not. Further, the distinct colors signify
the class of the corresponding latent representation.

Master of Science Thesis Maximilian van Amerongen

30 Introduction to Variational Autoencoders

Maximilian van Amerongen Master of Science Thesis

Chapter 4

Variational Autoencoder for Data
Augmentation

This chapter aims to provide an understanding of the Variational Autoencoder (VAE) based
data augmentation technique called Iterative Hierarchical Data Augmentation (IHDA), which
is studied throughout this thesis. The chapter begins by discussing common data augmen-
tation techniques for time series data and their limitations, which serve as motivation to
explore alternative approaches, such as generative models like VAEs. The chapter then de-
scribes how VAEs can be utilized for data augmentation, leading to the introduction of the
IHDA algorithm.

4-1 Data Augmentation for Time-Series Data

Data Augmentation (DA) is a technique used to artificially increase the size of a dataset by
creating new, modified samples of existing data samples by applying various transformations
to them. This can be useful for Machine Learning (ML) and Deep Learning (DL) models,
as it increases the amount and diversity of the training data which may improve the model’s
ability to generalize and perform well on data not utilized during training [21, 47].

Several methods exist to augment time-series data, of which two prevalent techniques are
“Jittering” and “Scaling”:

• Jittering: This method involves the addition of Gaussian noise to each time step of the
time series data. Jittering can be especially advantageous when data variations mainly
stem from differing noise levels. For instance, in the context of transportation mode
detection (TMD), sensors embedded in different devices may introduce varying degrees
of noise [21, 47]. Consequently, employing jittering can effectively yield a robust dataset
that captures the distinct noise levels associated with sensors in various devices.

Master of Science Thesis Maximilian van Amerongen

32 Variational Autoencoder for Data Augmentation

• Scaling: This technique adjusts the magnitude of time series data samples by multi-
plying each element by a scaling parameter. By changing the amplitude of the time
series data, this technique can simulate variations in intensity conditions [21, 47]. For
example, in TMD, the same pattern across the time axis might exist for a specific
transportation mode, but at different intensity levels. Through scaling, these varying
intensity levels can be artificially replicated, thereby creating a dataset that represents
the wide range of intensity levels encountered in real-world transportation modes.

While both techniques are utilized and have been proven to enrich data diversities, they come
with certain limitations. Most notably, these methods lack the ability to capture or generate
complex dependencies and correlations between different time steps or data dimensions, such
as interdependencies between various sensor streams.
Generative models, including the VAEs offer an appealing alternative in this context. These
models are designed with the intention to learn the underlying data distribution of the dataset.
Subsequently, their design aims to enable them to generate new, realistic data instances that
go beyond the simplicity of merely modifying existing samples. As such, the potential of
these models for advanced data augmentation offers exciting prospects. Consequently, the
following sections will delve into the application of VAE for data augmentation in a more
detailed manner.

4-2 Data Augmentation with VAEs

Variational Autoencoder (VAE) introduce two essential methodologies for DA [35]. Each ap-
proach uses the principle of transforming latent space representations into new data samples,
but the source of these representations varies.
The first method involves sampling a latent space representation z from the prior distribution
pθ(z), which is then fed into the decoder network pθ(x|z) to generate a new data sample x̂.
However, the quality of the generated sample x̂ depends on the accuracy of the prior pθ(z)
in approximating its true distribution pθ∗(z). If their difference is significant, sampling from
pθ(z) may result in unrealistic generated data samples x̂.
In contrast, the second method involves sampling a latent representation z from the learned
posterior distribution qϕ(z|x) given an input sample x, and then mapping it back to the
observation space by utilizing the decoder network. Unlike the first method, this technique
enables the generation of a new data sample similar to the specific inputted data sample
x. Another advantage is that feeding one data sample x multiple times to the same VAE
architecture will produce a set of reconstructed samples that are all distinct from each other
but still resemble the input signal x. In light of the latter VAE-based DA method, the next
section introduces the IHDA algorithm.

4-3 Post-training Iterative Hierarchical Data Augmentation for Deep
Networks

The Post-training Iterative Hierarchical Data Augmentation (IHDA) algorithm is a Data
Augmentation technique for Deep Learning models, developed by Khan and Fraz [22] and

Maximilian van Amerongen Master of Science Thesis

4-3 Iterative Hierarchical Data Augmentation 33

presented at the Conference on Neural Information Processing Systems (NeurIPS). The
IHDA algorithm leverages the two properties of VAEs: the ability to represent data samples
as distributions, facilitating the generation of similar but distinctive versions of a given sample,
and the ability to reduce the dimensionality of data in a meaningful way.

As the name suggests, the IHDA algorithm is applied post-training of the representation
learning function FLψ : xk 7→ ŷk, which transforms the input xk to its corresponding feature
representation ŷk. The dataset used for training FLψ is denoted as X = {xk, yk}Kk=1, while X =
{xk}Kk=1 denotes the dataset containing only the input training samples for differentiation.
Further, in the context of this thesis, FLψ represents a transportation mode classifier that
maps mobile phone sensor data-based features to the associated transportation mode label.
This network, defined by its parameters ψ, is composed of L layers. Moreover, xl signifies
the input of the l-th layer, obtained by mapping the input x through the first l − 1 layers of
the representation learning function FLψ , while Xl = {xlk, yk}Kk=1 and Xl = {xlk}Kk=1 represent
the corresponding dataset.

The IHDA algorithm is an iterative algorithm, meaning that the augmentations at level l ∈ L
are used to fine-tune all subsequent layers before performing the augmentation at level l+ 1.
This process is repeated for each layer until all layers have been augmented. Fine-tuning, in
this context, is interpreted as the utilization of an augmented dataset to make adjustments
to the targeted layers. This involves updating the parameters of the considered layer l and
its subsequent layers, which define their transformations and were initially set during the
training phase. Next, the data augmentation technique used to augment the data at layer l
is explained.

Data Augmentation at Layer l

The initial step in applying the IHDA algorithm to layer l is the generation of dataset Xl,
accomplished by mapping all samples from X through the first l − 1 layers of representation
learning function FLψ .

Once the dataset Xl has been established, it becomes the training set for a VAE composed
of an encoder qϕ(z|xl) and a decoder pθ(xl|z), which are trained by optimizing the VAE loss
function LV AE(Xl). Khan and Fraz [22] specified utilizing the simplified loss function, given
by (3-17), which combines Mean Square Error (MSE) and Kullback-Leibler divergence, though
it omits the determination of an appropriate weighting between these terms, as discussed in
Section 3-3. Following training completion, the VAE is utilized for subsequent steps.

The IHDA algorithm’s objective is to sample new data samples only for regions where classifi-
cation is considered to be challenging. To achieve this, the algorithm exploits the dimension-
ality reduction capability of the VAE and employs its latent space to identify such regions.
Accordingly, the IHDA algorithm utilizes the encoder qϕ(z|xl) to map the entire dataset Xl

to its latent space representations following (3-15), yielding the dataset Zl = {zlk}Kk=1 that
contains one latent vector zl for each sample xl ∈ Xl.

To determine whether the representation learning function FLψ might benefit from sampling
additional data of a considered latent representation p ∈ Zl, the IHDA algorithm computes
a potential for each sample p ∈ Zl. As a preliminary step, the IHDA algorithm establishes a
neighborhood for the considered data sample p ∈ Zl. The definition of this neighborhood is

Master of Science Thesis Maximilian van Amerongen

34 Variational Autoencoder for Data Augmentation

meant to encompass samples that are similar to the considered sample p, as defined by the
following equation

Np = {q ∈ Zl | dist(p,q) ≤ w}. (4-1)

Here, dist(p,q) is the distance function between the latent vectors p and q, and the hyperpa-
rameter w specifies the maximum distance within which samples q are considered neighbors of
sample p. Khan and Fraz [22] proposed to utilize as the distance metric the cosine similarity
matrix Sc(p,q) which is defined as

Sc(p,q) = p · q
||p||||q|| , (4-2)

where p · q is the dot product of the two vectors and || · || is the L2 norm. The cosine
similarity matrix measures the similarity between two vectors and returns a value between -1
and 1. Two proportional vectors have a cosine similarity of 1, two orthogonal vectors have
a similarity of 0, and two opposite directing vectors have a similarity of -1. Importantly,
when employing cosine similarity as a distance metric to define the neighborhood of a sample
p, defined by (4-1), the condition changes to dist(p,q) ≥ w, since a larger cosine similarity
value indicates greater similarity between two compared samples, which is contrary to other
similarity metrics such as the Euclidean distance.
The potential measure is introduced to determine if a considered latent vector p in its neigh-
borhood Np is surrounded by more instances of other classes than its own. This measure is
calculated using the radial basis function (RBF) given by

RBF(p,q) = e
−(||p−q||

γ
)2
. (4-3)

The potential measure is determined by adding the value of the RBF for a sample p and its
neighbor q to the potential if they belong to different classes, and subtracting it otherwise.
This is illustrated in Algorithm 1. A positive potential value indicates that p is surrounded
by more instances of other classes than its own, and hence p is selected for generating new
data.

The hyperparameter γ controls the influence of close neighbors on the potential calculation
compared to distant ones. Empirically, a value of γ = 0.05 has been shown to perform well,
which was reported by Khan and Fraz [22]. Only samples with positive potential and for
which at least one neighboring sample belongs to the same class are considered potential
samples in order to eliminate potentially noisy data.
Once the potential samples are identified in the latent space, their corresponding input rep-
resentation is used to create the final set of latent space distributions for generating artificial
samples for DA at step l of FLϕ . The set of distributions is represented as

P l = {(µ(xl),Σ(xl)) = qϕ(z|xl) |xl ∈ Xl, potential(xl > 0)}. (4-4)

This distribution set is then used to produce an augmented dataset at step l in the following
manner

Maximilian van Amerongen Master of Science Thesis

4-3 Iterative Hierarchical Data Augmentation 35

Algorithm 1 The algorithm to compute potential of a point p ∈ Xl

1: Input: Point p, neighborhood Np, and the spread of RBF γ
2: potential = 0
3: noisy = true
4: for every q ∈ Np do
5: if p and q have the same class label then
6: noisy = false
7: potential = potential - e(∥p−q∥

γ
)2

8: else
9: potential = potential + e

(∥p−q∥
γ

)2

10: if noisy then
11: potential = -1
12: Output: potential

X̂l = {(x̂l, y)|x̂l = qθ(x|z), z = µ(x) + Σ
1
2 (x)⊙ ϵ, (µ(xl),Σ(xl)) ∈ P l, ϵ ∼ N (0, I)}, (4-5)

where y is the class label associated with x whose corresponding distribution is (µ(xl),Σ(xl)) ∈
P l. For each (µ(xl),Σ(xl)) ∈ P l, a random number of 3, 5, or 10 new data samples are gen-
erated. After generating X̂l, the algorithm fine-tunes layer l and all subsequent layers by
training the model on the augmented dataset for a few epochs. Then, the entire process is
repeated for the next layer, l+ 1, resulting in the IHDA algorithm. The algorithm is denoted
as:

Algorithm 2 The IHDA Algorithm
1: Input: Dataset X, and distance w
2: Train FLψ on X
3: for l = 1 to L do
4: Map X to Xl using FLψ
5: Train VAE on Xl using Equation (3-17)
6: Compute P l using Equation (4-4)
7: Generate X̂l using (4-5)
8: Use to X̂l fine-tune layers {l, l + 1, . . . , L} of FLψ
9: Output: FLψ

Master of Science Thesis Maximilian van Amerongen

36 Variational Autoencoder for Data Augmentation

Maximilian van Amerongen Master of Science Thesis

Chapter 5

Methodology

This chapter aims to provide a comprehensive understanding of the key purposes of this thesis,
which where outlined in Section 1-4.

The primary objective is the practical implementation of the Iterative Hierarchical Data
Augmentation (IHDA) as proposed originally by Khan and Fraz [22]. This necessitates an
exploration of various fundamental elements such as the dataset, inferred features, and the
structure of the neural networks utilized. In addition to this, the chapter supplies detailed
insights into the actual implementation process, such as the selected hyperparameters and
the hardware deployed.

The secondary objective focuses on the identification and thorough examination of potential
enhancements to the IHDA. These proposed improvements will be described and justified
providing readers a complete understanding of the motivations behind and potential benefits
of these modifications.

5-1 Dataset, Preprocessing, Classifier Architecture, and Evalua-
tion

Delving into the first objective, this section deals with the practical implementation of the
IHDA algorithm as proposed by Khan and Fraz [22]. In their work, the authors evaluated
the performance of the IHDA algorithm in enhancing the classifier’s performance using the
classifier outlined by Wang et al. [42]. For consistency, the same classifier is utilized in this
thesis.

Following the Machine Learning (ML) workflow outlined in Section 2-1, this section describes
the steps of data acquisition and preprocessing, feature extraction and engineering, and model
selection. Each step of this workflow is integral to the successful replication of the results
obtained by Khan and Fraz [22], and therefore will be discussed in this section.

The classifier employs the Sussex-Huawei Locomotion (SHL) dataset, acquired and prepro-
cessed by Gjoreski et al. [13]. The feature extraction, engineering, and model selection were

Master of Science Thesis Maximilian van Amerongen

38 Methodology

performed by the classifier’s authors [42], while the model selection for the Variational Au-
toencoder (VAE) segment of the IHDA was completed by Khan and Fraz [22].

As no modifications have been made to the steps proposed by Gjoreski et al. [13], Wang et al.
[42], and Khan and Fraz [22], detailed insights of each process can be found in their respective
references: [13] for the SHL dataset, [42] for the classifier, and [22] for the VAE architecture
integrated into the IHDA algorithm.

5-1-1 Data Acquisition and Preprocessing: The SHL Dataset

This study utilizes a subset of the SHL dataset. The complete SHL dataset consists of 2812
hours of labeled transportation mode detection (TMD) data, collected in 2017 from three
participants, each carrying four smartphones at distinct body positions: Bag, Hips, Torso,
and Hand [13]. Each individual was equipped with four smartphones located at four distinct
body positions: Bag, Hips, Torso, and Hand. The dataset covers eight transportation modes:
Still, Walk, Run, Bike, Bus, Car, Train, and Subway [13]. A brief overview of the dataset was
provided in Section 1-2, and a more comprehensive exploration can be found in [13].

The utilized subset was released as part of the 2018 SHL recognition challenge and is consid-
ered, as it was utilized by Wang et al.[42] for developing the classifier used in this thesis. The
subset includes recordings from the first participant, with the smartphone located at the Hips
position. It comprises data from sensors: accelerometer, gyroscope, magnetometer, linear
acceleration, gravity, orientation, and ambient pressure. However, only the accelerometer,
gyroscope, and magnetometer were utilized in the development of Wang et al.’s [42] classifier,
hence, only these were considered within the scope of this thesis. Further, it’s important to
note that each of these sensors provides three sensor streams corresponding to measurements
in the x, y, and z directions of the device.

The subset consists of 366 hours of recordings, which are further divided into a training dataset
comprising 271 hours and a testing dataset comprising 95 hours. However, it is important to
note that the data is not uniformly distributed among the different transportation modes, as
illustrated in Figure 5-1.

Furthermore, the data is not available in its chronological sequence. The SHL challenge
organizers processed the training and testing datasets by dividing them into segments using
a one-minute non-overlapping sliding window. The order of the segments was randomly
permuted, resulting in 16, 310 segments in the training dataset and 5, 698 segments in the
testing dataset. Each segment contained 6, 000 data samples for every sensor stream of
the accelerometer, gyroscope, and magnetometer, given that the sensors sampled data at a
frequency of fs = 100Hz.

Maximilian van Amerongen Master of Science Thesis

5-1 Dataset, Preprocessing, Classifier Architecture, and Evaluation 39

Figure 5-1: Data distribution across various modes of transportation within the utilized SHL
dataset subset for training and testing.

5-1-2 Feature Extraction and Engineering

In the preceding section, it was established that the training and testing data samples for
each sensor stream are organized in one-minute intervals, with each frame encompassing 6000
samples, a result of the sensors’ sampling frequency of fs = 100 Hz. These samples serve as
the basis for feature engineering and extraction, which are utilized in training the classifier
proposed by Wang et al. [42].

The initial step in the feature extraction process involves dividing the one-minute segments
from the SHL dataset into smaller data frames using a sliding window technique.

For the training dataset, a window length of 5 seconds and a skip size of 2.5 seconds are used,
resulting in 375,130 frames for each of the considered sensor streams. The testing dataset
follows a similar approach, with a window length of 5 seconds and a skip size of 5 seconds,
resulting in 68,376 frames. Consequently, each frame for every sensor stream contains samples
recorded over a 5-second duration, equivalent to 500 samples. These 5-second frames serve
as the basis for subsequent feature extraction and engineering steps.

The accelerometer, gyroscope, and magnetometer sensors were utilized for the recognition
task, with each sensor providing three sensor streams representing measurements along the
device’s x-, y-, and z-axes. To make the features independent of the smartphone’s unknown
pose and orientation, the magnitudes of the three channels for each sensor were calculated as

Acc =
√
Acc2

x +Acc2
y +Acc2

z ,

Gyr =
√
Gyr2

x +Gyr2
y +Gyr2

z ,

Mag =
√
Mag2

x +Mag2
y +Mag2

z .

(5-1)

A Fourier transform was then applied to the frames containing the magnitudes of the inertial
sensors given by (5-1). The magnitudes of the Fourier transformation for frequencies in the

Master of Science Thesis Maximilian van Amerongen

40 Methodology

range [0, 0.5fs] were retained and used for further data processing. This resulted in a feature
vector fk belonging to the k-th frame and denoted as

fk =
[
facck fgyrk fmagk

]
, (5-2)

where facck ,fgyrk and fmagk denote the features belonging to the accelerometer, gyroscope, and
magnetometer, respectively. Each of these feature vectors is of size R1×251, hence resulting in
the feature vector fk ∈ R1×753.

The final processing step involved normalizing the features to a range of [0, 1]. Suppose the
i-th feature of the k-th frame of the accelerometer is denoted by facci , where the subscript k
is omitted for readability. Further, Q95

i and Q5
i represent the 95th and 5th percentiles of facci

across all the frames in the training data. The normalization of each frame is then performed
as

f̄acci ← min
(

max
(
facci −Q5

i

Q95
i −Q5

i

, 0
)
, 1
)
. (5-3)

After the same normalization procedure was performed for the gyroscope and magnetometer
features, the testing dataset features were normalized using Q95

i and Q5
i , which were computed

beforehand from the training dataset. The resulting feature vector for frame k in both the
training and testing datasets is denoted as f̄k, which will serve as input xk for the network
architectures introduced later on.

It should be noted that normalization, in this context, refers to the scaling of feature values
to a common range of [0,1]. This is performed across the ’feature’ axis, meaning each feature
is normalized independently based on its own distribution. However, this operation does
affect the inter-feature dependencies along the ’sample’ axis, particularly across the differing
Fourier magnitude values within a given sample, as different features of a sample may have
varying scaling factors applied. Consequently, this added complexity further challenges human
interpretation of the data.

In sum, the features produced by this extraction and engineering process are rooted in 5-
second measurements of the accelerometer, gyroscope, and magnetometer. For each of these
three sensors, the magnitude of their three streams in the x, y, and z directions is com-
puted. These time-domain features are subsequently transformed into the frequency domain
using Fourier transformation, with the magnitudes of these transformed signals retained and
amalgamated into a single sample. The final step of the feature engineering process involves
normalizing the features to a range of 0 to 1, yielding the definitive features that will be
inputted into the classifier.

5-1-3 Model Selection: Benchmark Classifier

The previous section outlined the process of feature extraction and engineering, resulting in
a feature set that will be used to develop the classifier proposed by Wang et al.[42]. In this
thesis, this classifier will be referred to as the benchmark classifier, serving as a baseline for
evaluating the performance enhancement achieved by the IHDA algorithm.

Maximilian van Amerongen Master of Science Thesis

5-1 Dataset, Preprocessing, Classifier Architecture, and Evaluation 41

The benchmark classifier represents a Dense Neural Network (DNN) that receives the en-
gineered features as input and processes them through three hidden layers and one output
layer. Each hidden layer consists of a dense layer followed by a batch normalization layer, a
Rectified Linear Unit (ReLU) activation layer, and a dropout layer.
The batch normalization layer normalizes each input channel across a mini-batch, with its
objective to accelerate the training process [20]. Additionally, the dropout layer randomly
sets input elements to zero with a probability of 25% aiming to prevent overfitting [37].
The output layer comprises a dense layer, a SoftMax layer, and a classification layer respon-
sible for inferring the transportation mode of the current frame. For detailed explanations of
the activation functions used, specifically ReLU and SoftMax, please refer to Section 2-4-2.
Additional specifications of the classifier are summarized in Table 5-1, and Figure 5-2 provides
a schematic representation.

Input xk f̄k
Hidden Layer Number of Layers = 3

Number of Nodes per Layer = 500
Dropout Ratio = 25%

Batch Size 500

Table 5-1: Architectural specifications of the benchmark classifier.

Figure 5-2: Schematic representation of the benchmark dense neural network classifier, wherein
the input xk corresponds to the normalized features f̄k derived from the feature extraction and
engineering phase, and ŷk represents the predicted output label.

Loss Function

The Softmax activation function, previously introduced and integral to the output layer of the
benchmark classifier, warrants further discussion in the context of the loss function. Given
the SHL dataset, which includes data from eight transportation modes, the output of the
Softmax function of the benchmark classifiers becomes an eight-dimensional vector. Each
dimension pkc then serves to estimate the probability that the k-th input sample belongs to
class c, facilitating the interpretation of each output as the likelihood of an input belonging
to a particular class, as detailed in Section 2-4-2.
When training an architecture that utilizes the Softmax layer as the output layer, the cate-
gorical cross-entropy loss function is a common choice. This approach was also employed by
Wang et al.[42] for the benchmark classifier.

Master of Science Thesis Maximilian van Amerongen

42 Methodology

The categorical cross-entropy loss function assesses the model’s performance based on the
discrepancy between the predicted probabilities and the true labels. For a dataset with K
instances and C unique classes, the categorical cross-entropy loss is expressed as

L = − 1
K

K∑
k=1

C∑
c=1

ykc log(pkc), (5-4)

where ykc represents the ground truth, which is equal to one when the instance k belongs to
class c and is zero in all other cases. On the other hand, pkc represents the model’s predicted
probability that instance k belongs to class c, obtained from the output of the Softmax
function. The objective during training is to minimize this loss, thereby aligning the model’s
predicted probabilities as closely as possible with the true labels.

Assessing Classifier Performance with Accuracy and F1 Score

Following the training phase wherein the loss function is minimized, Wang et al. [42] utilizes
both accuracy and F1 score to evaluate the benchmark classifier’s performance. Accuracy
quantifies the proportion of correctly classified instances relative to the total number of in-
stances [6, 16]. It is defined as the ratio of correctly classified instances to the total instances
and can be computed as

Accuracy = Number of correct predictions
Total number of predictions = TP + TN

TP + TN + FP + FN
. (5-5)

In this equation, TP, FP, TN, and FN represent the number of true positives, false positives,
true negatives, and false negatives, respectively. Accuracy ranges from 0 to 1, with higher
values signifying better performance.

However, accuracy alone may not always provide a comprehensive assessment of a classifier’s
performance, particularly when dealing with imbalanced datasets. In such cases, a classifier
predicting the majority class for all samples could still achieve high accuracy if the majority
class dominates the dataset.

This is where the F1 score comes into play. Like accuracy, the F1 score also ranges from 0
to 1, with higher values signifying better performance. The F1 score offers a more reliable
performance metric for imbalanced datasets by combining precision and recall. Precision is
defined as the ratio of true positive classifications to the total number of positive classifications,
while recall is the ratio of true positive classifications to the total number of actual positives.
The F1 score is computed as the harmonic mean of precision and recall and can be determined
by

Precision = TP

TP + FP
, Recall = TP

TP + FN
, F1 = 2× Precision× Recall

Precision + Recall . (5-6)

Maximilian van Amerongen Master of Science Thesis

5-2 Implementation Details 43

5-1-4 Model Selection: IHDA-VAE

Expanding upon the explanation of the benchmark classifier’s architecture, the discussion now
transitions to the architecture of the VAE utilized by Khan and Fraz [22] in IHDA algorithm.
The encoder consists of two consecutive convolutional layers with dimensions (64×4×4) and
(128×2×2), where the values represent the Width, Height, and the number of output channels
of the kernel used in the convolutional layer, respectively. A comprehensive explanation of
these terms is presented in Section 2-4-1. The output of the second convolutional layer is
then passed through two dense layers, which generate the mean and log-variance used to
parameterize the encoder distribution.
The decoder follows a mirrored architecture of the encoder. It takes a sampled latent vector
z of dimension 64 as input, which is then passed through a dense layer, followed by two
deconvolutional layers with dimensions (128× 2× 2) and (64× 4× 4).
Each convolutional and deconvolutional layer is followed by a ReLU activation function and a
batch normalization layer. In addition, same padding is employed in all these layers to retain
the spatial dimensions of the output. The stride for all convolutional and deconvolutional
layers was assumed to be one since it was not specified by Khan and Fraz [22]. A summary
of the VAE architecture specifications can be found in Table 5-2.

Component Layer Specification

Encoder Network Convolutional Layer 1 128× 2× 2 with same padding
Convolutional Layer 2 128× 2× 4 with same padding
Dense Layer 1 64 Nodes
Dense Layer 2 64 Nodes

Decoder Network Dense Layer 64 Nodes
Deconvolutional Layer 1 128× 2× 4 with same padding
Deconvolutional Layer 2 128× 2× 2 with same padding

Activation Function ReLU
Batch Normalization After each Convolutional and Deconvolutional Layer

Table 5-2: Detailed architectural specifications of the IHDA-VAE encoder and decoder networks.

5-2 Implementation Details

This section offers a closer look at the practical implementation of the discussed methods,
namely the benchmark classifier and the IHDA algorithm. It provides supplemental infor-
mation about the derivation of hyperparameters, along with details about the hardware and
optimization algorithm used during the implementation.

5-2-1 Benchmark Classifier Implementation

The benchmark classifier was implemented, utilizing the architecture and loss function intro-
duced in Section 5-1-3. The train dataset was divided into a training dataset and a validation

Master of Science Thesis Maximilian van Amerongen

44 Methodology

dataset using an 80/20 split ratio. Stratified sampling was applied for splitting the data,
ensuring that the class distribution in both the training and validation datasets maintains
consistency with the original dataset. The classifier was then trained for 700 epochs, utilizing
a learning rate of η = 10−4.

5-2-2 IHDA Algorithm Implementation

The IHDA algorithm’s implementation used the same stratified training and validation datasets,
as prepared for the benchmark classifier. The specific steps involved in the IHDA algorithm
are described in detail in Section 4-3, but a brief overview of the main steps of applying the
IHDA to layer l of the considered classifier will be provided here:

1. Training the VAE architecture: The VAE architecture, as specified in Section 5-1-4,
is trained on the input of the corresponding hidden layer l of the classifier. The training
process involved training the VAE for 30 epochs using a learning rate of η = 3 · 10−5,
following the approach outlined by Khan and Fraz [22].

2. Hyperparameter search for w: A hyperparameter search is conducted to determine
the optimal distance hyperparameter w, which defines the distance threshold within
which other latent vector samples are deemed to be in the neighborhood of a given
latent space vector. For a detailed description of this neighborhood Np, refer to (4-1)
and Section 4-3. Grid search is applied with w values ranging from 0 to 1, with a step
size of 0.05, which is in line with the approach followed by Khan and Fraz [22]. For each
w value, positive potential samples from the training dataset are identified, and their
reconstructions are generated using the trained VAE. The benchmark classifier is then
retrained for 30 epochs, utilizing these reconstructed samples. During the retraining
process, the learning rate is set to η = 10−5 which is 10 times smaller than the learning
rate used during the training of the benchmark classifier. This adjustment is motivated
by the concept of “fine-tuning” described by Khan and Fraz [22], which in this thesis
is interpreted as applying minor adjustments to the weights and biases of the trained
benchmark classifier to optimize its performance. It is important to note that retraining
involves adjusting the weights and biases of the considered hidden layer and its consec-
utive layers, as recommended by Khan and Fraz [22]. The goal is to find the w value
that yields the lowest validation loss of the benchmark classifier during this retraining
process, utilizing the same validation dataset used for training the benchmark classifier.
The w value that achieves the lowest validation loss during retraining is selected as the
optimal hyperparameter.

3. Updating the benchmark classifier weights and biases: If the retrained classifier
with the lowest validation loss was lower compared to that of the benchmark classifier,
the adjusted weights and biases are used to update the benchmark classifier, which is
then used during the hyperparameter search for w of the consecutive hidden layer.

4. Proceeding to the next hidden layer: The complete process is repeated for the
subsequent hidden layer l+ 1, following the same steps of training the VAE, conducting
the hyperparameter search, and updating the benchmark classifier weights and biases.

Maximilian van Amerongen Master of Science Thesis

5-2 Implementation Details 45

5-2-3 Hardware and Optimization Algorithm

The implementation of all algorithms discussed in this thesis utilized PyTorch 2.0.1, an open-
source machine learning library developed by Meta AI and currently maintained by the Linux
Foundation [32]. Google Colab served as the platform for this implementation, facilitating
the use of the NVIDIA T4 Tensor Core GPU in combination with CUDA 11.8.89 to perform
computations.

For network parameter optimization of the proposed models, the Adam algorithm was em-
ployed [23]. Adam represents a variant of the Stochastic Gradient Descent (SGD) algorithm
discussed in Section 2-3-2. The key distinction of Adam is its adaptive learning rate adjust-
ment for each model parameter. This adaptability is achieved by estimating the first and
second moments of the gradients. By integrating these moment estimates, Adam dynam-
ically regulates the learning rate throughout the optimization process, which can enhance
convergence efficiency [23].

5-2-4 Computational Limitations

The application of the IHDA algorithm, particularly the methodology used to calculate a
sample’s potential, brings forth several computational challenges. As detailed in Algorithm
1(Section 4-3), it involves identifying the neighbors of each sample in the dataset, which
necessitates computing the distance between the sample in question and every other sample
within the dataset.

This operation has an inherent computational complexity of O(n2), which rapidly scales with
the size of the dataset. Given the dimensions of the dataset, the cost of this approach becomes
readily apparent. Despite the utilization of high-performance NVIDIA T4 Tensor Core GPU
for computations, during experimental runs, it was observed that these distance calculations
were exceedingly time-consuming. In some instances, they even led to an overconsumption
of available system memory (RAM), causing system failure. This issue may be compounded
by inefficient memory management, a factor that was not optimized during the course of this
thesis.

In the results section (Section 6), numerous decisions were necessitated by these computational
constraints. These decisions underscore that the practical implementation of the algorithm
was constrained by the intensive computational requirements and memory demands associated
with determining sample potentials.

Master of Science Thesis Maximilian van Amerongen

46 Methodology

5-3 Proposed Enhancements to the IHDA Algorithm

As the central objective of this thesis, this section presents two potential enhancements to
the IHDA algorithm. These enhancements, derived from a theoretical analysis of the IHDA
algorithm, could potentially improve its performance and applicability:

Proposal 1: Optimizing the Relative Contributions of the Kullback-Leibler (KL) Di-
vergence and Mean Square Error (MSE) Terms in the VAE Loss Function.

Proposal 2: Integrating the Kullback-Leibler (KL) Divergence as a Reliable Latent
Space Similarity Metric in the IHDA Algorithm.

This section elaborates on these proposed enhancements and provides rationale as to why the
IHDA algorithm could potentially benefit from these improvements.

5-3-1 Proposal 1: Rebalancing the VAE Loss Function

Proposal 1:

Optimizing the Relative Contributions of the Kullback-Leibler (KL) Divergence
and Mean Square Error (MSE) Terms in the VAE Loss Function.

Justification: The first proposed enhancement arises from examining the VAE loss func-
tion, as implemented by Khan and Fraz [22], presented in Equation (3-17). This function
is essentially the sum of two components: the Kullback-Leibler (KL) divergence term and
the Mean Square Error (MSE) term. The KL divergence term penalizes deviations in the
encoder distribution qϕ(z|x) from the assumed latent space prior distribution pθ(z), while the
MSE term penalizes discrepancies between the input data and its reconstruction. Detailed
explanations can be found in Section 3-2.

In the context of this thesis, this loss function was introduced in Section 3-3 as the “simplified”
VAE loss function due to its implicit assumption of equal weight of one for both the KL
divergence and the MSE terms, which may lead to suboptimal VAE performance.

As discussed in Section 3-3, the balance between the MSE and KL divergence terms in the VAE
loss function is critical for the performance of the resulting VAE. For instance, prioritizing
the KL divergence term could lead to its minimization at the expense of an elevated MSE
term. This is far from ideal as a low KL divergence term could signify a large proportion of
posterior collapsed latent variables, and a high MSE term implies poorly reconstructed input
samples. On the other hand, a lower weight on the KL divergence term relative to the MSE
term might yield a low MSE term, indicating well-reconstructed input data. However, this
condition could coexist with a high KL divergence term, reflecting a significant deviation of
latent variable distributions from the intended latent space distribution.

Excessive divergence is undesirable, particularly in the context of implementing the VAE
within the IHDA algorithm. Broad dispersion of the latent variables across the latent space

Maximilian van Amerongen Master of Science Thesis

5-3 Proposed Enhancements to the IHDA Algorithm 47

could reduce the effectiveness of comparing the resulting latent vectors using similarity met-
rics, such as Cosine Similarity or Manhattan distance, as proposed by Khan and Fraz [22].
Extreme values from outlier latent variables could dominate the contributions of other vari-
ables. Consequently, the optimal weighting of the MSE and KL divergence terms in the VAE
loss function demands thorough reconsideration to ensure a more effective weighting strategy.

Thus, the first enhancement aims to refine the balance between the MSE and KL divergence
terms to augment the VAE performance within the IHDA algorithm. Ideally, achieving a
balanced weight ratio could result in two improvements:

1. Enhanced Reconstruction Capacity: A refined balance could enable the resulting
VAE to generate more precise reconstructions of input samples, potentially enhancing
the IHDA algorithm’s overall performance, as these reconstructed samples are used for
retraining the classifier.

2. Enhanced Latent Space Mapping: A refined balance in the weight ratio could con-
tribute significantly by guiding the encoder distribution qϕ(z|x) to map input samples
to a latent space distribution that approximates the assumed prior latent space distri-
bution pθ(z) without inducing a high rate of posterior collapse among latent variables.
By ensuring proximity between the encoder distribution qϕ(z|x) and the assumed Gaus-
sian prior pθ(z), a bounded latent space is maintained, preventing extreme values. By
preventing posterior collapse for most latent variables, the latent space variables con-
tain information about their input samples, which is crucial for effective comparison of
latent vectors, an integral aspect of the IHDA algorithm.

Section 3-3 discusses how, in a strictly Gaussian VAE, the decoder variance determines the
relative weighting between the MSE and KL divergence terms in the loss function which is
denoted by (3-13). Two methods for adjusting this decoder variance, namely, the β-VAE and
σ-VAE, were introduced in Subsections 3-3-1 and 3-3-2 respectively.

To recap, both methods were introduced with the assumption of a shared decoder variance
among all output dimensions. Furthermore, in the context of β-VAE, changing the value of β
can be interpreted as manually adjusting the decoder variance, whereas the σ-VAE provides a
strategy to determine a suitable decoder variance during the VAE loss function optimization
process, thus eliminating the need for manual tuning. The absence of a requirement for
manual tuning makes the σ-VAE a more favorable approach compared to the β-VAE.

However, σ-VAE, which was introduced two years prior to the writing of this thesis in 2021,
represents a relatively more recent concept compared to the β-VAE, which was unveiled in
2017. To the best of the author’s knowledge, its application has not been explored within
the TMD field, especially in relation to the SHL dataset. Therefore, this thesis undertakes a
comparative analysis between the σ-VAE and β-VAE, which not only puts the performance
of σ-VAE into perspective but also aids in deciding whether its performance justifies its
implementation in the IHDA algorithm.

Master of Science Thesis Maximilian van Amerongen

48 Methodology

5-3-2 Proposal 2: Reevaluating the Distance Metrics

Proposal 2:

Integrating the Kullback-Leibler (KL) Divergence as a Reliable Latent Space Sim-
ilarity Metric in the IHDA Algorithm.

Justification: The second potential enhancement for the IHDA algorithm pertains to the
process of identifying “positive potential” samples, as discussed in Section 4-3. As outlined,
this identification relies on the measure of distance in the latent space between two selected
samples, which serves as an index of similarity between the corresponding samples in the
input space.

Given the variety of available distance metric, the chosen metric can thus significantly influ-
ence the decision on whether further sampling is required for the considered samples, subse-
quently impacting the overall performance of the IHDA algorithm. In previous work by Khan
and Fraz [22], the cosine similarity matrix, along with Euclidean and Manhattan distances,
were tested as distance metrics. However, these metrics share a common drawback - their
susceptibility to the phenomenon of posterior collapse.

As explained in Section 3-4, posterior collapse of a latent variable occurs when all input
samples are mapped to the same latent variable distribution qϕ(zi|x), specifically the assumed
standard normal distribution for the latent space pθ(zi). In such cases, two similar samples in
the input space may be mapped to vastly different regions in the latent space when sampled
from the standard normal distribution. Consequently, metrics like Euclidean, Manhattan,
and Cosine Similarity can yield significant distances between these samples, despite their
similarities in the input space. Conversely, the opposite scenario is also possible. Therefore,
when latent variables collapse, they fail to provide meaningful information about their input
samples, making them unreliable for inferring similarities between two samples in the input
space. Within the examined 64-dimensional latent space, a few collapsed latent variables
may not significantly affect the Manhattan or Euclidean distances. However, as the number
of collapsed latent variables increases, their influence on the final distance metric, such as
the Manhattan or Cosine Similarity metrics used by Khan and Fraz [22], becomes more
pronounced. Consequently, the reliability of these metrics as indicators of similarity between
two input samples diminishes.

While the first proposed enhancement, detailed in Section 5-3-1, concentrates on fine-tuning
the balance between the MSE and KL divergence term in the VAE loss function, which could
reduce the occurrence of posterior collapsed latent variables and thus improve the relevance
of two samples’ similarity in the input space based on their distance in the latent space,
this matter continues to demand considerable attention. With a 64-dimensional latent space
where each dimension could potentially be subject to posterior collapse, achieving complete
prevention of the phenomenon presents a formidable challenge. While preventing posterior
collapse is a complex task due to its elusive causality, the proposed solution focuses on ac-
cepting that certain latent variables may collapse but employing a distance metric that is less
affected by posterior collapse than those used by Khan and Fraz [22].

Therefore as a second potential enhancement to the IHDA algorithm, this thesis proposes an
alternative approach, namely comparing the distributions from which the latent variables are

Maximilian van Amerongen Master of Science Thesis

5-4 Assessing VAE Reconstruction Performance 49

derived, instead of directly comparing the variables themselves. In this context, the Kullback-
Leibler (KL) divergence, introduced by (3-7), is suggested as a suitable metric for comparing
these latent space representations. Similar to the by Khan and Fraz [22] tested metrics,
the Kullback-Leibler (KL) divergence increases as the dissimilarity between two distributions
increases, indicating a greater difference between them. However, unlike the other metrics,
the KL divergence is not negatively influenced by the collapsed latent variables, as will be
explained next.

In cases of posterior collapse, where all input samples map to the same standard normal
distribution, the Kullback-Leibler (KL) divergence of two samples drawn from the collapsed
latent variable distribution will be zero. Hence, if some of the latent variables did not collapse
while others did, the collapsed variables do not negatively influence the KL divergence value
as they converge to zero. Instead, the non-collapsed variables, which provide information
about the similarity of two samples, dominate the similarity metric. Consequently, the KL
divergence is largely unaffected by posterior collapse, especially when compared to the previ-
ously tested distance metrics. This approach is expected to yield a more reliable assessment
of the similarities and differences between latent space samples in the input space.

Summary of Motivation and Anticipated Improvement: The underlying motivation
for advocating the use of the KL divergence as a distance metric within the IHDA lies in the
quest to increase the robustness of the IHDA algorithm against the phenomenon of posterior
collapse in latent space representations. By addressing the limitation of the previously utilized
distance metrics, which are affected by collapsed latent variables, the aim is to achieve a more
reliable measure of similarity between input samples, thus improving the identification of
’positive potential’ samples and, accordingly, the performance of the IHDA algorithm. The KL
divergence, which compares the underlying distributions rather than the individual variables
themselves, offers a solution to the problem at hand since it remains largely unaffected by
posterior collapse.

5-4 Assessing VAEs Reconstruction Proficiency Beyond Traditional
Metrics

In order to evaluate the reconstruction performance of the VAEs trained under Proposal 1, an
unconventional evaluation metric is deployed which merits some explanation and motivation.

Typically, the evaluation of a VAE’s reconstruction performance relies on the measurement of
MSE. The MSE serves as an effective measure for tracking the relative improvement of a VAE
during training and comparing the reconstruction performance of different VAEs. However,
it is incapable of providing an absolute measure of a VAE’s reconstruction proficiency due
to the fact that the value constituting a “good” MSE threshold is dependent on individual
datasets.

To compensate for these limitations, an additional evaluation criterion is introduced. This
necessity becomes particularly noteworthy within the framework of the IHDA algorithm. In
this context, reconstructed samples play a crucial role in retraining the classifier, thereby
making it vital for these samples to retain as many distinguishing features from their input
counterparts as possible. Here, distinguishing features are referred to those characteristics
that allow differentiation among samples from various classes.

Master of Science Thesis Maximilian van Amerongen

50 Methodology

When assessing the VAE’s reconstruction performance in the IHDA algorithm, the focus
extends to its proficiency in effectively transferring these distinguishing features. It is proposed
that the effectiveness of a VAE in performing this task can be evaluated by comparing the
benchmark classifier’s performance on the reconstructed samples against its performance on
the original, non-reconstructed samples.

This comparison serves as a qualitative measure of how accurately the VAE has reconstructed
the samples. If the classifier’s performance remains consistent between the original and recon-
structed samples, it suggests that the VAE has managed to retain the distinguishing features
necessary for classification in the reconstruction process. A significant drop in classifier per-
formance, on the other hand, might point to a loss of these features during reconstruction.
Consequently, this approach can help in obtaining a more nuanced understanding of a VAE’s
reconstruction proficiency, beyond what the MSE measure alone can provide.

Maximilian van Amerongen Master of Science Thesis

Chapter 6

Results

This chapter elucidates the results and corresponding analysis of the experiments conducted
throughout this thesis, organized in alignment with the research objectives. Initially, it pro-
vides an overview of the benchmark classifier performance, followed by its application to the
original Iterative Hierarchical Data Augmentation (IHDA) algorithm. Following this, the
chapter delves into Proposal 1, a comprehensive comparison between β-VAE and σ-VAE,
highlighting the advantages of applying σ-VAE in the IHDA algorithm and its improvements
over the model proposed by Khan and Fraz [22]. The focus then shifts to the exploration of
cosine similarity and Kullback-Leibler (KL) divergence metrics, evaluating their effectiveness
in measuring input sample similarities based on latent space representation. This analysis
forms the basis for Proposal 2, our second enhancement. Subsequently, the effectiveness of
three combinations of VAE and distance metrics in identifying samples that may require
retraining is examined, which further reinforces the validity of the proposed enhancements.
Finally, the results from applying the enhancements to the IHDA algorithm are presented,
demonstrating the impact of these enhancements.

6-1 Benchmark Classifier

The benchmark classifier, introduced in Section 5-1-3, was trained for 700 epochs. Figure 6-1
displays the training and validation curves, illustrating the changes in loss value, accuracy,
and F1 score over the training process. The loss gradually decreases as the number of epochs
increases, which aligns with an increase in accuracy and F1 score. Furthermore, all metrics
appear to converge after about 100 training epochs.

Table 6-1 provides a summary of the performance of the classifier that achieved the lowest
validation loss throughout the 700 training epochs. The recorded evaluation metrics, specifi-
cally accuracy and F1 score on the test dataset, are featured under the row titled “Benchmark
Classifier 700 Epochs”.

For a thorough analysis, the table also incorporates results that were previously reported by
Wang et al. [42], labeled as “Reported Results”. An examination of these results reveals a

Master of Science Thesis Maximilian van Amerongen

52 Results

Figure 6-1: Training and validation metrics evolution across 700 epochs for the Benchmark
Classifier.

noticeable performance difference in the realms of accuracy and F1 score.

Model Test Accuracy [%] Test F1 Score [%]
Reported Results [42] 82.5 81.7
Benchmark Classifier 700 Epochs 77.62 78.70
5-Fold Cross-Validation 77.35± 0.33 78.38± 0.22
20%-Classifier 76.13 77.11

Table 6-1: Comparison of the performance of different models on the test dataset using accuracy
and F1 score.

When comparing the metrics, “Reported Results” exhibit higher values than those achieved
by the “Benchmark Classifier 700 Epochs”. The “Reported Results” demonstrate an accuracy
of 82.5% and a F1 score of 81.7%, whereas the “Benchmark Classifier 700 Epochs” achieved
an accuracy of 77.62% and an F1 score of 78.70%. This deviation, which equates to 4.88% in
accuracy and 3% in F1 score, highlights that the “Benchmark Classifier 700 Epochs” did not
match the performance of the reported results, necessitating further investigation.

Given the uneven class distribution in the training dataset, as demonstrated in Figure 5-1
and discussed in Section 5-1-1, the observed performance discrepancies could arise from the
different data splits used for training and validation. To explore this notion and counter biases
emerging from the initial stratified split, a five-fold cross-validation method was employed.
This procedure involves the use of random sampling to generate data subsets and enables
training and evaluation on five distinct sets of data splits. Each split may exhibit different
class distributions in the training and validation datasets, thereby adding variation to the
class distribution confronted during the training and validation phases. This method offers
insights into the model’s sensitivity to fluctuations in class distributions within the training
dataset.

Given the time constraints and the observed convergence of training and validation loss at
100 epochs, as illustrated in Figure 6-1, the number of epochs for each fold in the five-fold
cross-validation was limited to 200.

Maximilian van Amerongen Master of Science Thesis

6-2 Evaluation of IHDA Performance in Classifier Retraining 53

In the “5-Fold Cross-Validation” row of Table 6-1, both the average performance and vari-
ation in performance across the five models trained during the cross-validation process are
presented. These are referred to as mean and standard deviation, respectively. With mean
values for accuracy and F1 score being 77.35% and 78.38%, they closely align with those of
the “Benchmark Classifier 700 Epochs”. Furthermore, the standard deviations for accuracy
and F1 score are relatively small, 0.33% and 0.22%, respectively, when compared to the total
metric range from 0% to 100%. Considering the significant difference in performance between
the “Benchmark Classifier 700 Epoch” and the “Reported Results”, with a gap of 4.88% in
accuracy and 3% in the F1 score, these small standard deviations suggest that the variations
in the splits used during training likely do not explain the performance discrepancy observed
between the “Benchmark Classifier 700 Epochs” and the results reported by Wang et al. [42].
As of this point in the thesis, the performance divergence is acknowledged, and no further
investigations will be pursued.

Table 6-1 additionally features a row labeled “20%-Classifier”, which outlines the performance
of a classifier trained using only 20% of the full training dataset. When compared to the
“Benchmark Classifier 700 Epochs”, a minor decrease in both accuracy and F1 score for the
“20%-Classifier” is observed on the test set, with differences of 1.49% and 1.59% respectively.
Given the “20%-Classifier” operated on a considerably smaller segment of the training data,
this slight performance reduction is anticipated and considered acceptable.

Given the time and computational constraints discussed in Section 5-2-4, the “20%-Classifier”
has been selected for additional investigation in this thesis. The subsequent section will focus
on the application of this classifier to the IHDA algorithm, with the aim to assess potential
enhancements to the model’s performance.

6-2 Evaluation of IHDA Performance in Classifier Retraining

Table 6-2 showcases the results obtained from retraining the “20%-Classifier” using the IHDA
algorithm. It provides the validation loss, accuracy, and F1 score achieved by the retrained
classifiers. The retraining process involved retraining the classifier starting from different
layers, namely Layers 1, 2, and 3, along with their preceding layers. Thus, the rows labeled
Layer 1, Layer 2, and Layer 3 in Table 6-2 display the results from retraining each respective
layer. For each starting layer a hyperparameter search for w was conducted as explained in
Section 5-2-2.

Within Table 6-2, the italicized results represent the best-performing classifiers among all
the retrained models for each individual starting layer where each result corresponds to the
specific wbest value. The term “best-performing" refers to the classifier that achieved the lowest
validation loss during retraining. Further, the non-italicized results in Table 6-2 indicate the
classifiers that performed the best on the validation dataset by retraining them with a dataset
resulting from the highest tested w value preceding wbest.

The findings from Table 6-2 demonstrate that the IHDA algorithm did not lead to any im-
provement in classification performance across any of the retrained layers. In fact, the per-
formance of the retrained classifiers decreased compared to the original “20%-Classifier”. For
instance, the accuracy declined from 85.39% to 80.51% for Layer 1, to 81.72% for Layer 2,

Master of Science Thesis Maximilian van Amerongen

54 Results

and to 84.17% for Layer 3. Similar observations can be made in Table 6-2 for the validation
loss and F1 score.

This performance drop of up to 4.88%, in case of Layer 1, seems undesirable, however, it
becomes even more notable when considering that wbest represents the w value that yielded
the fewest positive potential identified samples Npp and, consequently, the smallest retrain
dataset, with none of them exceeding a number of Npp = 133 positive potential samples. The
quantities of positive potential samples for each hyperparameter search are detailed in Table
6-2 under the column Npp.

Considering the concepts of Gradient Descent (GD) and Stochastic Gradient Descent (SGD)
introduced in Section 2-3-2, where larger datasets divide into batches to calculate the net-
work’s gradient, one can infer that the larger the dataset, the more batches are used within
a single training epoch. Hence, more parameter updates are executed in one epoch. As wbest
corresponds to the smallest non-zero dataset in all cases, it appears that the best-performing
classifiers are those where the IHDA algorithm made the least parameter updates.

This hypothesis gains more weight as classifiers retrained with a w value preceding wbest
utilized a larger retrain dataset, which resulted in a larger performance drop of the retrained
classifier. For example, Layer 1’s accuracy decreased from 80.51% at Npp = 133 positive
potential samples to 67.14% at Npp = 11148 samples, while Layer 2 witnessed a decrease from
81.72% at Npp = 104 samples to 58.39% at Npp = 9148 samples.

Interestingly, despite the rise in positive potential samples from Npp = 110 to Npp = 9912,
Layer 3’s performance drop was considerably less, with accuracy only decreasing from 84.17%
to 82.51%. This could potentially be ascribed to Layer 3’s position as the deepest layer in
the network. When retraining Layer 3, parameters of Layers 1 and 2 remained unchanged,
resulting in fewer overall network parameters being updated, specifically, only those defining
Layer 3. This observation aligns with the hypothesis suggesting fewer parameters updated
by the IHDA contributes to better preservation of the classifier’s performance.

Further backing for this hypothesis can be drawn from the finding that peak performance
was reached after a single retraining epoch, even though multiple epochs were performed.
This holds true across all three layers and two different w values for each layer presented
in Table 6-2, where for each retrained classifier the corresponding epochs are listed in the
column Epoch.

To conclude, despite attempts, the results reported by Khan and Fraz [22] could not be
replicated. Potential reasons could include missing hyperparameter specifications, such as
the learning rate used, or the use of a different Variational Autoencoder (VAE) loss function
than specified. Nonetheless, numerous instances in literature have successfully used VAEs for
data augmentation, which consequently enhanced classifier performance [7, 27].

These findings underscore the need for further investigations to gain a deeper understanding
of the factors contributing to the lack of improvement in classifier performance using the
IHDA algorithm. Specifically, the performance of the employed VAEs in reconstructing input
samples warrants evaluation. Given that these reconstructed samples are used for retraining
the classifier, the performance of the VAEs that generate them significantly impacts the
IHDA algorithm’s effectiveness. Thus, the analysis will further entail an assessment of the
reconstruction abilities of the utilized VAEs.

Maximilian van Amerongen Master of Science Thesis

6-2 Evaluation of IHDA Performance in Classifier Retraining 55

Model Loss Accuracy [%] F1 Score [%] w Npp Epoch
20%-Classifier 0.4667 85.39 86.42 - -

Layer 1 0.7313 80.51 82.01 0.5 133 1
2.154 65.46 67.14 0.45 11148 1

Layer 2 0.5254 81.72 83.01 0.5 104 1
8.827 58.39 58.56 0.45 9148 1

Layer 3 0.6260 84.17 85.39 0.5 110 1
1.870 82.51 83.82 0.45 9912 1

Table 6-2: Performance Metrics for Retrained Classifiers using the IHDA Algorithm: This table
presents the validation loss, accuracy, F1 score, w values, quantity of positive potential samples
(Npp), and epochs for the original 20%-Classifier and retrained classifiers commencing from Layers
1, 2, and 3. Results highlighted in italics correspond to the models which delivered the lowest
validation loss for each starting layer, each associated with a specific wbest value. Non-italicized
results correspond to classifiers performing best on the validation dataset when retrained with a
dataset resulting from the highest tested w value preceding wbest.

Assessment of Reconstruction Performance

The reconstruction performance of the employed VAEs is evaluated by generating the re-
constructed validation dataset utilizing the VAE under evaluation. The performance of the
“20%-Classifier” on the corresponding dataset is evaluated as it serves as a measure of the
VAE’s reconstruction capability, as motivated in Section 5-4.

The outcomes of these evaluations are summarized in Table 6-3. Here, the rows labeled “VAE
1”, “VAE 2”, and “VAE 3” are linked to the performance metrics of the “20%-Classifier”
when evaluated on datasets produced by their respective VAEs. Subsets of these datasets
were utilized by the IHDA algorithm to initiate retraining of the corresponding layer in the
classifier.

Noteworthy is the similar performance of the reconstructed validation datasets from “VAE
1” and “VAE 3” in terms of accuracy and F1 score. For instance, the “20%-Classifier” yields
an accuracy of 35.22% on the dataset reconstructed by “VAE 1” and 36.43% on the dataset
reconstructed by “VAE 3”. These values may appear low when compared to the accuracy
of the original dataset, which scored 85.39% and served as the source for generating the
reconstructed datasets.

Dataset Loss Accuracy[%] F1 Score[%]
Original 0.1937 85.39 86.42
VAE 1 3.805 35.22 27.71
VAE 2 5.326 13.08 4.447
VAE 3 1.837 36.43 30.10

Table 6-3: Performance of the benchmark classifier on the original validation dataset and the
datasets reconstructed by VAE 1, VAE 2 and VAE 3.

“VAE 2”, however, performed considerably worse, yielding an accuracy of 13.08%, which is
more than 20% less than “VAE 1” and “VAE 3”. Aiming to comprehend why the validation
dataset generated by “VAE 2” underperformed relative to those generated by “VAE 1” and

Master of Science Thesis Maximilian van Amerongen

56 Results

“VAE 3”, the performance metrics of the different VAEs on the validation dataset were
examined. These metrics were considered in terms of the Evidence Lower Bound (ELBO),
Mean Square Error (MSE), and KL divergence and are listed in Table 6-4.

In assessing these metrics, particular interest is placed on the validation MSE and the valida-
tion KL divergence. “VAE 2” demonstrates a reconstruction MSE of 1.823 · 10−2, similar to
“VAE 1’s” MSE of 2.003 · 10−2. However, a difference appears in the KL divergence, where
“VAE 1” shows a value of 1.653, while “VAE 2” is nearly zero at 2.980 · 10−7. This near-zero
KL divergence for “VAE 2” suggests that there is a high likelihood that most, if not all, of
its latent variable distributions, have collapsed, which is undesirable in the application of the
IHDA algorithm.

Model ELBO MSE KL Divergence
VAE 1 958.35 0.02003 1.653
VAE 2 635.04 0.01823 2.980 · 10−7

VAE 3 645.19 0.08502 1.810

Table 6-4: Validation performance of VAE 1,VAE 2, and VAE 3 measured by the Evidence Lower
Bound (ELBO), Mean Square Error (MSE), and Kullback-Leibler (KL) Divergence.

For further interpretations of these results, additional statistics are analyzed concerning the
three different representations of the training dataset, which serve as the input to layers 1,
2, and 3 of the classifier and were employed for training the corresponding VAEs 1,2 and 3.
The mean and standard deviation of these datasets are provided in Table 6-5.

Notably, the data used for training “VAE 2” exhibits the lowest mean of 0.03397 and the
lowest standard deviation of 0.1410. By contrast, the data used for training VAE 1 displays
a mean of 0.1745 and a standard deviation of 0.2675, with similar values reported for “VAE
3”.

Given this disparity, the fact that“VAE 1” and “VAE 2” achieve similar MSE values on their
validation dataset, as displayed in Table 6-4, might suggest that “VAE 1” fits the data better
than “VAE 2”. This assertion comes from the understanding that the training data for “VAE
2” is numerically closer to zero than that for “VAE 1”, as inferred from Table 6-5. Therefore,
achieving the same MSE could mean a relatively worse fit for “VAE 2”. This implies that for
“VAE 2” to preserve the same level of distinguishing features in its reconstructed samples as
“VAE 1”, it should achieve a lower MSE.

Model Mean Standard Deviation
VAE 1 0.1745 0.2675
VAE 2 0.03397 0.1410
VAE 3 0.1573 0.3946

Table 6-5: Mean and standard deviation of dataset used to train VAE 1, VAE 2, and VAE 3.

To summarize, it was observed that the validation datasets reconstructed by “VAE 1”, “VAE
2”, and “VAE 3” perform differently on the “20%-Classifier”, with “VAE 2’s” data showing
the lowest performance. Furthermore, the training data for “VAE 1”, “VAE 2”, and “VAE
3” were found to have distinct characteristics. Specifically, the data used to train “VAE 2” is
numerically closer to zero than those for “VAE 1” and “VAE 3”.

Maximilian van Amerongen Master of Science Thesis

6-3 Exploring the Results of Proposal 1 57

All three VAEs were trained with the same loss function, which was introduced by (3-17)
and assumes an equal weighting between the MSE and KL terms. Taking into account these
observations, it can be inferred that the lower performance of “VAE 2’s” reconstructed data
might be due to the assumption of equal weight for the VAE and KL divergence term in the
loss function. Specifically, “VAE 2” might necessitate a higher weight on the MSE term to
generate a reconstructed training dataset that performs as well on the “20%-Classifier” as
those generated by “VAE 1” and “VAE 3”.
These findings emphasize the importance of adjusting the weighting of the MSE and KL
divergence in the loss function based on the specific characteristics of the training datasets,
which underscores the motivation for the first proposed enhancement to the IHDA method,
as introduced and discussed in Section 5-3-1:

Proposal 1: Optimizing the Relative Contributions of the Kullback-Leibler (KL) Di-
vergence and Mean Square Error (MSE) Terms in the VAE Loss Function.

Due time and computation constraints, discussed in Section 5-2-4, only VAE 1 will be used
for retraining the layers of the classifier moving forward.

6-3 Exploring the Results of Proposal 1

6-3-1 Performance Evaluation: β-VAE and σ-VAE

As discussed in Section 5-3-1, one aspect of evaluating Proposal 1 involves a comprehensive
analysis of σ-VAE’s performance relative to β-VAE. For this performance assessment, several
β-VAEs defined by the β values [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5] were trained.

Assessing the Evaluation Metrics for β-VAE and σ-VAE

The first assessment of the trained β-VAEs and the σ-VAE is based on the VAE’s validation
metrics: ELBO, MSE, and Kullback-Leibler divergence. These metrics are depicted in Figure
6-2, where the β-VAE performance is marked by blue dots and the σ-VAE performance is
indicated by an orange star.
Upon first inspection of Figure 6-2 it appears that σ-VAE achieves a balance between MSE
and KL divergence values, operating in a region where neither metric reaches extreme values
compared to the tested β-VAEs. Further, it should be observed that σ-VAE achieves the
lowest ELBO value, aligning with its intended design detailed in Section 3-3-1. However, this
does not translate to achieving the lowest values for MSE or KL divergence.
An increase in the β value within the β-VAE implies a higher emphasis on the KL divergence
term compared to the MSE term in the VAE loss function. The optimization of this modified
loss function consequently results in a reduction in the KL divergence value and an increase
in the MSE of the resultant VAE. This inverse relationship between the MSE and the KL
divergence can be observed in Figure 6-2.
Thus, a lower MSE value than that of the σ-VAE can be accomplished by choosing a β, value
lower than the one associated with σ-VAE. In the context of the IHDA algorithm, which

Master of Science Thesis Maximilian van Amerongen

58 Results

Figure 6-2: Comparison of ELBO, MSE, and KL divergence for different variants of β-VAE, along
with performance of σ-VAE and VAE 1. The blue dots signify the β-VAE performances, while the
orange star represents the performance of σ-VAE and the red star represents the performance of
VAE 1.

employs the VAE for data generation, a smaller MSE might seem advantageous at first.
However, as depicted in Figure 6-2, beyond a certain β value, such a decision leads to a rapid
increase of KL divergence, indicating an increasing discrepancy between the distributions of
latent variables and the assumed standard Gaussian prior. As expanded upon in Section 5-3-
1, beyond a certain threshold, this escalation in KL divergence will have detrimental effects
on the performance of the IHDA algorithm.

Since the precise KL divergence threshold impacting the IHDA algorithm’s performance is not
clearly defined, it is plausible that certain β values could yield β-VAEs models that, despite
exhibiting a higher KL divergence, demonstrate a lower MSE than the σ-VAE and may be
more suited for the IHDA algorithm. However, finding this β value requires extensive tuning.

As the σ-VAE operates within a region where neither the MSE nor the KL divergence reaches
extremes, it appears to be a suitable, but not necessarily the optimal choice for the IHDA
algorithm. However, since MSE does offer limited insights into the VAE’s ability to retain
distinguishing features, as outlined in Section 5-4, the subsequent evaluation will focus on
this aspect.

Evaluating Reconstruction Performance: β-VAE versus σ-VAE

The trained VAE’s capacity to maintain distinguishing features is assessed by benchmarking
the “20%-Classifier” on the reconstructed validation dataset. As discussed in Section 5-4, this
process offers a quantitative measure of the VAE’s ability in preserving distinctive features and
facilitates a more comprehensive understanding of the performance of σ-VAE in comparison
to β-VAE.

Figure 6-3 illustrates the comparison between the performance of the “20%-Classifier” evalu-
ated on the validation dataset reconstructed by various configurations of β-VAE and σ-VAE.
It demonstrates that higher β values, in comparison to the β value associated with σ-VAE,
lead to a decrease in performance across all three metrics: loss, accuracy, and F1 score. This

Maximilian van Amerongen Master of Science Thesis

6-3 Exploring the Results of Proposal 1 59

observation is consistent with the findings depicted in Figure 6-2, where an increase in β
values resulted in an increase in MSE.

Further analysis of the σ-VAE’s capacity to retain distinguishing features, compared to the
β-VAE, shows that while the highest tested β value achieved less than 30% accuracy, the σ-
VAE achieved over 50% accuracy. The best-performing tested β value achieved an accuracy
exceeding 60%, positioning the σ-VAE closer to the best performing of the tested β-VAE
configurations rather than the poorest performer.

Figure 6-3: Performance of the “20%-Classifier” on the validation dataset reconstructed by
various configurations of β-VAE, σ-VAE and VAE 1.

Integrating the findings from Figure 6-2 and Figure 6-3 uncovers an important nuance. While
for the tested β values, the MSE consistently decreases as the β values decrease the perfor-
mance of the benchmark classifier on the reconstructed dataset does not consistently increase.
In fact, in the considered case, at some point, the performance starts to even decrease for
smaller MSE. This suggests the presence of an optimal β value, where the classifier achieves
the best performance on the corresponding reconstructed dataset, as indicated by the lowest
validation loss and highest accuracy and F1 score.

Model ELBO MSE KL Divergence
β-VAE with β = 0.001 -301.82 0.01261 45.73

σ-VAE -538.12 0.01356 13.58

Table 6-6: Comparison of the validation performance metrics including ELBO, MSE, and KL
divergence for trained σ-VAE and β-VAE with β = 0.001.

Among the tested β values, a β value of 0.001 seems to be a preferable choice for the IHDA
algorithm over the σ-VAE. As inferred from Table 6-7, the “20%-Classifier” yields an accuracy
of 60.12% on the dataset reconstructed by β-VAE versus 51.88% for σ-VAE, indicating a better
capability in generating samples with distinguishing features for β-VAE. The increase in KL
divergence, listed in Table 6-6, from 13.58 for σ-VAE to 45.73 for the considered β-VAE,
does not appear substantial, given that a 64-dimensional latent space is considered, and the
total KL divergence of the VAE represents the sum of the KL-divergence values for each
latent variable distribution. Therefore, this observation reinforces the statement made in the

Master of Science Thesis Maximilian van Amerongen

60 Results

previous section that there may exist certain β-VAE that could potentially serve better for
the IHDA algorithm, however, determining these β values will demand manual tuning.

Dataset Loss Accuracy [%] F1 Score[%]
β-VAE (with β = 0.001) 1.901 60.12 61.01

σ-VAE 2.334 51.88 50.68

Table 6-7: Performance of the “20%-Classifier” on datasets reconstructed by β-VAE with β =
0.001 and σ-VAE.

Conclusion of the comparison β-VAE and σ-VAE:

While β-VAE permits adjusting the VAE’s characteristics, potentially resulting in a
model better suited for its intended use, the σ-VAE operates in a balanced region where
neither the KL divergence nor the MSE reaches extreme values, which aligns with the
requirements of the IHDA algorithm. Moreover, the performance difference between the
best performing tested β-VAE and σ-VAE in preserving distinguishing features seems to
be tolerable, considering the latter’s advantage of not requiring manual tuning. Thus,
it is worthwhile to explore how σ-VAE performs within the IHDA algorithm.

6-3-2 Performance Evaluation: VAE 1 and σ-VAE

Before integrating σ-VAE in the IHDA algorithm, a comparative analysis between σ-VAE
and the VAE utilized by Khan and Fraz [22] will be performed. The analysis will focus on
evaluating the reconstruction performance of the two VAEs and their ability to map their
input samples to a meaningful latent space that contains valuable information about the
input samples. This analysis aims to provide additional insight into the utilized VAEs, which
help to interpret and analysis of the results of implementing them in the IHDA algorithm.

Reconstruction Performance

As in previous Sections, to compare the ability of VAE 1 and σ-VAE to preserve distin-
guishing features in their reconstructed samples, the performance of “20%-Classifier” on the
reconstructed validation dataset reconstructed by the considered VAEs is evaluated. The
evaluation results are listed in Table 6-8.

From these results, the σ-VAE exhibits improved reconstruction performance. Accuracy and
F1 score of the reconstructed datasets increased from 35.26% and 27.71%, respectively, for
VAE 1 to 51.88% and 50.68% for σ-VAE. This indicates that σ-VAE outperforms the VAE
proposed by Khan and Fraz [22] in terms of generating samples that contain distinguishing
features, which justifies implementing σ-VAE in the IHDA algorithm.

Maximilian van Amerongen Master of Science Thesis

6-3 Exploring the Results of Proposal 1 61

Dataset Loss Accuracy [%] F1 Score[%]
Original 0.1937 85.39 86.42
VAE 1 3.803 35.26 27.71
σ-VAE 2.334 51.88 50.68

Table 6-8: Performance of the “20%-Classifier” on original and reconstructed validation datasets
generated by VAE 1 and σ-VAE. Metrics include cross entropy loss, accuracy, and F1 score for
the original, VAE 1, and σ-VAE datasets.

For a more thorough understanding, representative samples from each class within the dataset
were visually examined. In particular, Figures 6-4, 6-5, 6-7 and 6-8 visually present the
original and reconstructed outputs yielded by both VAE 1 and σ-VAE. However, caution
should be exercised when interpreting these results, as only a single sample from each class
is considered, thus potentially introducing bias into the evaluation.

A shared challenge for both σ-VAE and VAE 1 is the difficulty in preserving high-frequency
components of the input samples in their outputs. This could be due to the fact that the
decoder in VAE represents a distribution, from which only the mean is used to reconstruct
the input signal as highlighted in Section 3-2-4. While including the decoder variance could
potentially enhance visual reconstruction quality, it is important to note that these high-
frequency components may not be crucial for the correct classification of the samples.

Examining the samples reconstructed by VAE 1 and σ-VAE, it seems that σ-VAE better
approximates the mean of the original data, especially for samples in the “Bike”, “Walk”, and
“Run” classes. An instance of this is the accelerometer features of the “Walk” class sample
shown in Figure 6-4. Here, the sample reconstructed by VAE 1 significantly deviates from its
original sample, while the σ-VAE sample mirrors the original data more closely.

Figure 6-4: A visual comparison of the original and reconstructed samples of the “Walk” class
generated by VAE 1 and σ-VAE.

Interestingly, both VAE models map the accelerometer and gyroscope features of the motor-
ized transportation modes “Bus”, “Train”, and “Subway”, as well as the “Still” mode, which
is shown in Figure 6-5, to zero in their reconstructed samples, despite the original non-zero
values. This indicates a loss of feature information for these transportation modes in both
VAE 1 and σ-VAE. In contrast, less feature loss is observed for the “Bike”, “Run”, and
“Walk” modes, as their accelerometer and gyroscope data is not mapped to zero.

Master of Science Thesis Maximilian van Amerongen

62 Results

Figure 6-5: A visual comparison of the original and reconstructed samples of the “Still” class
generated by VAE 1 and σ-VAE.

The underperformance of the VAEs in reconstructing the accelerometer and gyroscope fea-
tures of the motorized transportation modes and “Still”, may originate from the applied
feature normalization process outlined in Section 5-1-2. This process scales features along
the “feature” axis rather than the “sample” axis, employing the magnitudes of the Fourier
transformations of accelerometer, gyroscope, and magnetometer data.

In terms of the original time-domain data, the accelerometer and gyroscope readings poten-
tially exhibit higher magnitudes for the “Run”, “Bike”, and “Walk” modes, due to more
intense physical movement. This in turn leads to higher magnitudes in the Fourier do-
main for these modes. Consequently, when the inter-feature normalization is applied, these
higher-magnitude features get mapped to higher values than those of motorized transporta-
tion modes, including “Still”.

The VAE loss function incorporates an MSE component that disproportionately penalizes
larger deviations between the original and reconstructed samples. When the features are
on different scales, as in this case, this can introduce a bias during the optimization of the
VAE loss function. More specifically, the model may pay more attention to minimizing
deviations in the features of the “Run”, “Bike”, and “Walk” modes that have larger values
after normalization. This could result in the VAEs performing less effectively in reconstructing
samples for motorized transportation modes and "Still", where the corresponding features
typically map to smaller values.

This loss in feature representation could partially explain why the “20%-Classifier”, when
evaluated on data reconstructed by σ-VAE, achieves an accuracy that is over 30% lower than
that of the original dataset, as illustrated in Table 6-8.

To summarize, this section demonstrates that the σ-VAE outperforms the VAE in preserving
distinguishing features, thus validating its inclusion in the IHDA algorithm. However, it also
underscores a potential limitation in the reconstruction ability of the VAE, where due to a
combination of the nature of data and the feature extraction process, particularly feature
normalization, the VAEs show a preference towards better reconstructing accelerometer and
gyroscope features for “Walk”, “Run”, and “Bike” modes, but perform less effectively for
other modes.

Maximilian van Amerongen Master of Science Thesis

6-3 Exploring the Results of Proposal 1 63

Illustrating VAEs’ Potential for Data Augmentation

To illustrate the potential of VAEs in generating multiple distinct but similar samples from
a single sample, a brief excursion is warranted. Displayed in Figure 6-6 are five variations of
the "Walk" sample reconstructed by the σ-VAE. The original sample was initially depicted in
Figure 6-4. The process of generating those samples involves mapping the original sample to
its latent distributions, sampling latent space representations from these distributions, and
then decoding them back to the observation space. As observed, all five generated samples
exhibit similarities, indicating that they are variations of the original sample. However, they
also demonstrate subtle differences, highlighting the Data Augmentation (DA) capabilities of
VAEs.

Figure 6-6: Five reconstructed samples generated by σ-VAE from a single “Walk” sample. The
original sample is represented in Figure 6-4.

Master of Science Thesis Maximilian van Amerongen

64 Results

Figure 6-7: A visual comparison of the original and reconstructed samples of the “Run” and
“Bike” classes generated by VAE 1 and σ-VAE.

Maximilian van Amerongen Master of Science Thesis

6-3 Exploring the Results of Proposal 1 65

Figure 6-8: A visual comparison of the original and reconstructed samples of the “Car”, “Bus”,
“Train” and “Subway” classes generated by VAE 1 and σ-VAE.

Master of Science Thesis Maximilian van Amerongen

66 Results

Latent Space

The focus now shifts back to the comparative evaluation of the σ-VAE and the VAE proposed
by Khan and Fraz [22], referred to as VAE 1.

The IHDA algorithm determines the similarity between samples by calculating the cosine
similarity of their respective latent vectors. The aim of the following evaluation is to ascer-
tain whether using cosine similarity in conjunction with the σ-VAE enhances the process of
measuring similarity between input samples based on their corresponding latent vectors in
comparison to combining cosine similarity metrics with the VAE proposed by Khan and Fraz
[22].

Table 6-9 presents a comparative analysis of the KL divergence for both VAE models on the
validation set. Interestingly, the KL divergence increased from 1.653 for VAE 1 to 13.58 for
σ-VAE. Given a latent space dimension of 64, the KL divergence value of 1.653 attained by
VAE 1 appears relatively low and suggests that multiple latent variable distributions may face
posterior collapse. Thus, the elevated KL divergence value achieved by σ-VAE could indicate
a reduced degree of posterior collapse among its latent variables. In turn, this suggests that σ-
VAE is more effective in preserving information in its latent space, enhancing the comparison
of input samples based on their latent vectors using the cosine similarity metric.

To further strengthen this premise a supplementary visual inspection is introduced.

Model ELBO MSE KL Divergence
VAE 1 958.35 0.02003 1.653
σ-VAE -538.12 0.01356 13.58

Table 6-9: Comparative analysis of the validation performance of VAE 1 and σ-VAE. The metrics
reported include the Evidence Lower Bound , MSE, and KL divergence.

Figures 6-10 and 6-11 display the distribution of cosine similarities between a randomly chosen
sample of the “Bike” class and samples from the same class, represented by the blue distri-
bution, as well as the similarities to samples from different classes, depicted by the orange
distribution.

The theoretical expectation is that samples belonging to the same class as the considered
sample would, on average, exhibit higher cosine similarity compared to samples from different
classes. This expectation arises from the assumption that samples belonging to the same class
are inherently more similar to the considered sample than samples from different classes.

However, in the context of VAE 1, an examination of the figures contradicts this expectation.
Consider, for instance, Figure 6-9, which illustrates the distribution of cosine similarities for
samples within the same class and those from the “Walk” class. It appears that the cosine
similarity distribution for same-class samples mirrors that for “Walk” class samples, with
a near-identical overlap between the two distributions. This pattern, noticeable across all
classes, points to a substantial loss of meaningful latent variable information in the latent
space, thereby suggesting a strong likelihood of posterior collapse.

Maximilian van Amerongen Master of Science Thesis

6-3 Exploring the Results of Proposal 1 67

Figure 6-9: Histogram of cosine similarities between a randomly drawn sample of class “Bike”
and samples from the same class and the cosine similarity between the considered sample and
samples of class “Walk” for VAE 1 and σ-VAE.

On the other hand, examination of the histograms for σ-VAE reveals a notable improvement.
The distribution of distances to samples from the same class demonstrates higher cosine
similarity values than the distribution for samples from different classes. This differentiation
creates regions with minimal or no overlap between the distributions, signaling a more distinct
clustering of classes in the latent space and suggesting a lower degree of posterior collapse
compared to VAE 1.

The analysis further reveals that for the histograms belonging to σ-VAE, the region with
no overlap is smallest for the transportation modes “Run” and “Walk”, while it is larger for
motorized modes including the “Still” mode. This pattern demonstrates that the “Bike” class
sample is computed as being less similar to motorized transportation modes, including “Still”,
than it is to “Run” and “Walk”. This finding aligns with prior research that emphasized
a distinct separation between active (“Run”, “Bike”, “Walk”) and passive (“Bus”, “Car”,
“Subway”, “Train”, “Still”) modes, attributed to the considerably different motion patterns
inherent to active and passive modes [41, 43].

This concrete example underscores that comparisons based on latent vectors mirror real-world
observations, suggesting that the latent space encapsulates meaningful information about the
input samples and that similarities/dissimilarities between input samples can be quantified
using the cosine similarity of corresponding latent space representations.

To summarize, the latent space of the σ-VAE has been observed to result, on average, in
greater cosine similarities between samples from the same class than between samples from
different classes, a characteristic not seen with VAE 1. This feature, coupled with the en-
hanced KL divergence demonstrated by the σ-VAE, indicates a lower degree of posterior
collapse in the σ-VAE as opposed to VAE 1, which supports the application of σ-VAE in the
context of the IHDA framework.

Master of Science Thesis Maximilian van Amerongen

68 Results

6-3-3 Summary of Results Proposal 1

Summarizing the findings from Section 6-3-2, the σ-VAE provides a generalizable strategy for
optimizing the balance between the KL divergence and the MSE within the VAE loss function.
Although the β-VAE may demonstrate improved performance under specific conditions, it
necessitates manual tuning which the σ-VAE circumvents. Further, σ-VAE has evidenced
considerable improvements over the VAE model proposed by Khan and Fraz [22]. These
enhancements are attributed to the σ-VAE’s augmented ability to retain distinctive features
in its generated samples and its enhanced proficiency for mapping input data to a meaningful
latent space.

Figure 6-10: Histogram of cosine similarities between a randomly drawn sample of class "Bike"
and samples from the same class and the cosine similarity between the considered sample and
samples of class “Still” and “Run” for VAE 1 and σ-VAE.

Maximilian van Amerongen Master of Science Thesis

6-3 Exploring the Results of Proposal 1 69

Figure 6-11: Histogram of cosine similarities between a randomly drawn sample of class "Bike"
and samples from the same class and the cosine similarity between the considered sample and
samples of class “Car”, “Bus”, “Train” and “Subway” for VAE 1 and σ-VAE.

Master of Science Thesis Maximilian van Amerongen

70 Results

6-4 Results Proposal 2

Although in the previous section it was indicated, that σ-VAE has decreased the degree of
facing posterior collapse compared to the VAE proposed by Khan and Fraz [22], it is important
to acknowledge that posterior collapse may still occur in certain latent variables of σ-VAE.

To further enhance the IHDA algorithm’s capability to assess sample similarity based on their
latent space distributions, a second proposal has been put forward. As discussed in detail in
Section 5-3-2, this proposal focuses on:

Proposal 2: Integrating the KL Divergence as a Reliable Latent Space Similarity
Metric in the IHDA Algorithm.

Employing KL-Divergence as a Distance Metric

In this section, the use of KL divergence as an alternative distance metric to the cosine
similarity will be evaluated, while still utilizing σ-VAE. Similar to the previous section, a
visual inspection will be conducted to compare the results obtained using the two different
distance metrics.

Figures 6-13 and 6-14 display distributions similar to those in the preceding section. These
figures depict the similarities between the same randomly selected sample from the “Bike”
class, its distance to samples of the same class, and its distance to samples of a different class.
The left-hand side plots utilize the cosine similarity metric, while the right-hand side employs
KL divergence. Furthermore, the logarithm of KL divergence values is utilized to account for
the nonlinear growth of the distance metric as the distance increases.

Understanding these figures requires acknowledging that an increase in KL divergence signifies
an increase in the divergence between the two compared latent space distributions, contrary to
the behavior of cosine similarity where an increase indicates a decrease in similarity. Therefore,
for the KL divergence, samples from the same class as the selected sample are expected to
display lower KL divergences on average compared to samples from different classes, contrary
to the expectations with cosine similarity.

The visual inspection suggests a reduction in the overlap between the two plotted distance
distributions when using KL divergence, indicating a stronger distinction between samples
of the same class and samples of different classes. Thus, while the cosine similarity metric
presented some insight into the similarity of two input representations based on their σ-VAE
latent space representations, the KL-divergence appears to enhance this capability.

Interestingly, the previous section revealed that the cosine similarity metric, when combined
with σ-VAE, yielded similar values for “Walk” and “Run”, but the KL divergence shows no-
table improvement across all classes, and particularly for “Walk” and “Run”. For instance, as
demonstrated in Figure 6-12 for “Run”, the distributions shifted from near total overlap with
cosine similarity to almost zero overlap with KL divergence, indicating a clear enhancement
in differentiation.

Maximilian van Amerongen Master of Science Thesis

6-4 Results Proposal 2 71

Figure 6-12: Histogram of cosine similarities and KL divergences between a randomly drawn
sample of class “Bike” and samples from the same class and the cosine similarity between the
considered sample and samples of class “Run” for σ-VAE.

These improvements infer that the KL divergence provides a more accurate evaluation of
latent space representations, better capturing the similarity of input samples, possibly owing
to KL divergence’s resilience to the impact of posterior collapse. Consequently, it appears
that KL divergence offers a more extensive extraction of information about input samples
stored in the latent space of σ-VAE compared to the cosine similarity metric.

Figure 6-13: Histogram of cosine similarities and KL divergences between a randomly drawn
sample of class “Bike” and samples from the same class and the cosine similarity between the
considered sample and samples of class “Still” and “Walk” for σ-VAE.

Master of Science Thesis Maximilian van Amerongen

72 Results

Figure 6-14: Histogram of cosine similarities and KL divergences between a random drawn
sample of class “Bike” and samples from the same class and the cosine similarity between the
considered sample and samples of class “Car”, “Bus”, “Train” and “Subway” for σ-VAE.

Maximilian van Amerongen Master of Science Thesis

6-5 Evaluating the Identification Improvement 73

6-5 Evaluating the Identification Improvement

Before delving into the results obtained from integrating the proposed enhancements to the
IHDA algorithm, this section evaluates how the enhancements presented in Section 6-3 and
Section 6-4 contribute to the improved identification of potential positive samples in the
IHDA algorithm. These identified samples play a critical role in retraining the classifier, thus
directly influencing the performance of the algorithm. Therefore, an investigation of this
identification process is warranted.

From a theoretical perspective, samples that may require additional sampling, which could
improve the classifier’s performance, are those that, on average, perform worse on the classifier
than the entire dataset. To compare the performance of different configurations of VAEs and
distance metrics in identifying positive potential samples, the “20%-Classifier’s“ performance
on the identified positive potential train samples is evaluated for each tested w. Therefore,
a lower classifier performance on the identified positive potential samples will serve as an
indication of the improved performance of the IHDA algorithm in identifying positive potential
samples.

Figure 6-15 presents the performance results of the “20%-Classifier’s” on the identified positive
potential dataset using VAE 1 and σ-VAE each combined with the cosine similarity metric
in the IHDA algorithm, while Figure 6-16 focuses on the performance of the IHDA algorithm
utilizing σ-VAE with the KL-divergence metric.

Examining Figure 6-15, when identifying positive potential samples using VAE 1, the loss
function remains relatively constant until w = 0.35, after which it slightly decreases, resulting
in an increase in accuracy. However, with the largest tested w of 0.5, the loss function
increases again. This behavior deviates from the expected pattern for identifying positive
potential samples.

In contrast, σ-VAE shows improvement in this regard. The loss function value starts at
approximately 0.2 and begins to increase at w = 0.15, reaching over 0.3 for w = 0.55. As a
result, the accuracy decreases to below 84% compared to the accuracy of the entire training
dataset, which is 92.5%. This clear decrease in accuracy indicates a notable improvement in
identifying samples that may require retraining. Based on this observation, utilizing σ-VAE
instead of VAE 1 in the IHDA algorithm seems to enhance the algorithm’s performance in
identifying positive potential samples.

Master of Science Thesis Maximilian van Amerongen

74 Results

Figure 6-15: Performance results of the “20%-Classifier“ on the identified positive potential
dataset using VAE 1 and σ-VAE combined with cosine similarity.

Moving on to Figure 6-16, as the value of w decreases, the loss function consistently increases.
The loss function for the identified positive potential dataset exceeds 0.5 when employing the
KL divergence metric, while it reaches only 0.3 with cosine similarity metrics. Consequently,
the accuracy decreases from 92.5% for the entire dataset to below 74% for the positive po-
tential dataset identified using the KL divergence as a similarity metric, compared to an
accuracy drop to 84% with cosine similarity metrics. This drop in accuracy suggests that
utilizing the KL divergence as a similarity metric further enhances the algorithm’s ability to
identify underperforming samples.

This section thus confirms that the applied modifications enhance the IHDA algorithm’s
ability to identify samples on which the classifier performs worse compared to the average
training dataset. Among the tested configurations, the combination of σ-VAE and the KL
divergence metric outperforms the others. Therefore, it is of interest to investigate how
retraining on the reconstructed samples of those identified samples affects the classifier’s
performance, which will be explored in the next section.

Figure 6-16: Performance results of the “20%-Classifier“ on the identified positive potential
dataset using σ-VAE combined with cosine similarity and KL divergence.

Maximilian van Amerongen Master of Science Thesis

6-6 Evaluation of Classifier Performance with Enhanced IHDA Implementation 75

6-6 Evaluation of Classifier Performance with Enhanced IHDA Im-
plementation

This section delineates the results obtained by implementing the IHDA algorithm in conjunc-
tion with σ-VAE and the VAE framework proposed by Khan and Fraz. For the σ-VAE, two
different similarity metrics, namely the cosine similarity and KL divergence, were employed,
while only the cosine similarity was assessed for the VAE proposed by Khan and Fraz [22].
The results from these experiments are presented in Table 6-10. The italicized entries indicate
the results achieved at the optimal w value, determined through hyperparameter optimiza-
tion, while the non-italicized entries represent outcomes corresponding to the w value one
preceding the optimal value in each respective experiment.

Of the various tested methodologies, none of them enhanced the classifier’s performance. In
fact, the classifier’s performance decreased compared to its performance before the application
of the IHDA algorithm. For instance, the classification accuracy dropped from 85.39% to
80.51% for the combination of VAE 1 and cosine similarity, to 78.48% for the σ-VAE in
conjunction with the cosine similarity metric, and further to 66.60% when the σ-VAE was
combined with the KL divergence.

A consistent observation across all experiments was that the best classifier performance was
achieved after just one retrain epoch, even though multiple retrain epochs were conducted.
Furthermore, the optimal hyperparameter w value corresponded to the smallest positive po-
tential dataset among the tested values of w. A significant drop in classification performance
was noted when using the w value preceding the optimal one. This decline could potentially
be attributed to the larger size of the positive potential dataset, leading to a larger retrain
dataset. As a consequence, the IHDA algorithm implemented more parameter updates to the
classifier during each retrain epoch, possibly leading to the diminished performance compared
to using the optimal w value.

In summary, despite the proposed enhancements, the optimal classifier performance is achieved
when the IHDA algorithm applies the fewest parameter updates to the classifier. These find-
ings will be further examined and contextualized in the subsequent discussion.

Master of Science Thesis Maximilian van Amerongen

76 Results

Model Loss Accuracy [%] F1 Score [%] w Npp Epoch
20%-Classifier 0.4667 85.39 86.42 - -

VAE 1 + 0.7313 80.51 82.01 0.5 133 1
Cosine Similarity 2.154 65.46 67.14 0.45 183 1

σ-VAE + 0.6485 78.48 80.45 0.65 21 1
Cosine Similarity 5.858 43.92 44.27 0.6 183 1

σ-VAE + 1.319 66.60 67.71 -3 53 1
KL divergence 4.180 40.93 36.57 -2.5 129 1

Table 6-10: Performance Metrics for Classifiers Retrained using the IHDA Algorithm with Pro-
posed Enhancements: This table presents the validation loss, accuracy, F1 score, w values, quan-
tity of positive potential samples (Npp), and epochs for the original 20%-Classifier and retrained
classifiers. Italicized results indicate the most favorable outcomes, identified by the lowest vali-
dation loss in each hyperparameter search, each associated with a distinct optimal wbest value.
Non-italicized results correspond to classifiers performing best on the validation dataset when
retrained with a dataset resulting from the highest tested w value preceding wbest.

Maximilian van Amerongen Master of Science Thesis

Chapter 7

Discussion

7-1 Discussion and Interpretation of Results

This thesis aimed to implement and evaluate the proposed enhancements to the Iterative
Hierarchical Data Augmentation (IHDA) algorithm, based on the original model proposed by
Khan and Fraz [22]. Though it was not possible to replicate their reported results, important
observations warrant discussion.

The first enhancement involved optimizing the relative weighting between the Mean Square
Error (MSE) and Kullback-Leibler (KL) divergence, which was explored through the inte-
grating σ-VAE into the IHDA algorithm. The σ-VAE demonstrated an improved reconstruc-
tion performance with reduced MSE compared to the VAE utilized by Khan and Fraz [22],
which was observed during a visual comparison of samples reconstructed by the two different
Variational Autoencoders (VAEs).

However, an important observation made was the mapping to zero of the accelerometer and
gyroscope features for certain transportation modes, namely “Bus”, “Car”, “Train”, “Sub-
way”, and “Still”. This was attributed to their lesser intensity of movement compared to
“Run”, “Walk’, and “Bike”, affecting their contribution to the VAE loss function. This bias
resulted in visually better performance in reconstructing “Run”, “Walk”, and “Bike” sam-
ples, while potentially compromising information about the less intense modes. Given the
importance of accelerometer and gyroscope data for differentiating between transportation
modes, as studied and highlighted by Friedrich et al. [22], this information loss is significant
and raises questions about the efficacy of retraining on these samples.

The use of σ-VAE in conjunction with the cosine similarity metric improved the process of
identifying samples for retraining. This was evidenced by a larger performance decrease of
the benchmark classifier on the identified samples using the latent space of σ-VAE versus
the VAE utilized by Khan and Fraz [22]. This suggests that the σ-VAE enhanced both the
reconstruction performance and the interpretability of the latent space compared to the VAE
proposed by Khan and Fraz [22], showcasing the efficacy of this enhancement.

Master of Science Thesis Maximilian van Amerongen

78 Discussion

The second enhancement utilized KL divergence in place of the cosine similarity metric,
furthering the performance gap of the benchmark classifier on identified datasets requiring
subsampling. This was interpreted as a further improvement to the IHDA algorithm’s ability
to identify samples requiring additional sampling.

Despite these enhancements resulting in better reconstruction performance, latent space map-
ping, and sample identification, they did not yield the expected performance improvement
of the IHDA algorithm. On the contrary, the performance of the IHDA algorithm decreased
with each proposed enhancement.
Prior research has reported increased misclassification among the motorized transportation
modes [41, 42]. As each enhancement to the IHDA algorithm improved its capacity to detect
misclassified samples, a corresponding rise in the frequency of samples from these motorized
modes in the identified dataset could be expected. Consequently, with each enhancement of
the IHDA algorithm, the identified dataset utilized for retraining could contain an enlarged
proportion of samples from motorized transportation modes, which experienced a loss of dis-
tinguishing accelerometer and gyroscope features. This could provide a rational explanation
for the observed decrease in performance with each adjustment to the IHDA algorithm.

Consequently, it appears that the quality of reconstructed samples introduces certain limi-
tations that inhibit drawing definitive conclusions about the fundamental principles of the
IHDA algorithm. To ascertain the suitability of VAEs for data augmentation and to inves-
tigate if the improvements reported by Khan and Fraz [22] can be achieved by comparable
methodologies, which would, in turn, justify further exploration of the IHDA algorithm, a
few illustrative examples from the literature are considered.

For instance, Chadebec et al. [7] proposed a VAE-based data augmentation technique where
data augmentation is applied in the observational space. They validated their method’s
effectiveness using the MNIST image dataset, reporting a classifier accuracy increase from
78.4% to 87.6% when trained on an augmented dataset. This result provided empirical
support for the attainability of the enhancements reported by Khan and Fraz [22], suggesting
that an increase from 83% to 92% is plausible. However, this enhancement was observed
with a training dataset containing only 20 samples per class and an augmented dataset with
12.5 times more samples. It was further observed that the effectiveness of the augmentation
method declined as the number of samples per class increased. In a scenario where the training
dataset contained 1000 samples per class and the augmented dataset had 12.5 times more
generated samples, the performance difference between classifiers trained on the augmented
and non-augmented datasets was a mere 0.4%. Nonetheless, this increase was significant, given
that the classifier trained on the original dataset already achieved an accuracy of 98.5%.

This finding aligns with Kumar et al. [27], who conducted a comprehensive study on six
different VAE data augmentation techniques, with some methods implementing data aug-
mentation in the latent space. Their research confirmed that latent space data augmentation
could be beneficial, depending on the method and dataset used, thereby reinforcing the core
concept of the IHDA algorithm. The reported increases in classifier accuracies were for all six
methods comparable to those reported by Khan and Fraz [22], although these improvements
were observed for smaller training datasets with only 10 samples per class. However, Kumar
et al. [27] also observed that the efficacy of the tested VAE-based data augmentation tends
to diminish, resulting in minor gains as the training dataset size increases.

Both studies reported similar accuracy improvements as reported by Khan and Fraz [22] and

Maximilian van Amerongen Master of Science Thesis

7-2 Future Work 79

emphasized the advantages of VAEs for data augmentation, especially when the dataset size
is limited, typically comprising 20 samples per class. This observation could transform a
central limitation of this study into a strength, given that it incorporated only 20 percent of
the dataset used by Khan and Fraz [22].

Given reports in the literature of achieving classification accuracies above 90% with various
classifiers on the utilized Sussex-Huawei Locomotion (SHL) subset [41, 40], compared to the
78% achieved in this thesis using the benchmark classifier, there is still a potential margin for
improvement.

The question then arises: Are VAEs capable of introducing the necessary variation to the SHL
data subset, which is relatively large compared to the examples discussed, or is an alternative
network architecture necessary to achieve similar accuracies of above 90%? This forms a
prospect for future investigation.

7-2 Future Work

The finding that the implemented VAE model underperformed in reconstruction within the
IHDA framework, hindering a full assessment of the IHDA algorithm’s effectiveness, presents
opportunities for further study. The focus going forward should be on enhancing the recon-
struction capabilities of the VAE model. In line with this objective, two potential areas for
improvement are suggested:

• Enhancement of the σ-VAE Model: The σ-VAE model exhibited promising results
when compared to the β-VAE model, and its elimination of the need for manual tuning
is a significant advantage. To build upon these findings, further work should focus
on refining the σ-VAE model. One approach worth exploring is the development of a
more complex version that learns a separate decoder variance value for each feature of
a sample. This would enable each feature to have an individual weight, ensuring equal
significance is allocated to all features in the VAE loss function, irrespective of the
MSE’s magnitude. By doing so, the reconstruction of motorized transportation mode
samples could be significantly improved.

• Reassessment of Feature Processing Methodology: Another interesting research
opportunity lies in reassessing the feature processing methodology. For instance, a
shift from feature-axis normalization to a sample-axis approach could be considered.
This modification would involve scaling each sample’s features to a range between 0
and 1 based on their individual maximum and minimum values, rather than relying on
the entire feature set’s range. Such an approach could better account for the unique
frequency spikes associated with different transportation modes in their Fourier domain
magnitudes, potentially leading to enhanced sample reconstruction quality and more
effective retraining.

Master of Science Thesis Maximilian van Amerongen

80 Discussion

7-3 Conclusion

In conclusion, this thesis explored the integration of a σ-VAE into the IHDA algorithm and
the replacement of the cosine similarity metric with KL divergence. While these enhance-
ments improved the reconstruction performance of the utilized VAE and the identification
of samples for retraining, they did not translate into an overall improvement in classifica-
tion performance. A significant issue identified was the loss of accelerometer and gyroscope
features during reconstruction, particularly for transportation modes characterized by less
intense movements. Although the improvements achieved fell short of expectations, the in-
sights gained offer important guidance for further research into refining and improving the
IHDA algorithm.

Maximilian van Amerongen Master of Science Thesis

Bibliography

[1] “Smartphone users 2026,” Accessed:2022-04-07. [Online]. Available: https://www.
statista.com/statistics/330695/number-of-smartphone-users-worldwide/

[2] “Time spent on smartphone stats 2023,” Accessed:21-03-2023. [Online]. Available:
https://explodingtopics.com/blog/smartphone-usage-stats#top-smartphone-stats

[3] “Track daily activity in fitness on iphone,” Accessed:21-03-2023. [Online]. Available:
https://support.apple.com/guide/iphone/track-daily-activity-iph9a08e004e/ios

[4] D. B. Ahmed and E. M. Diaz, “Survey of Machine Learning Methods Applied to Urban
Mobility,” IEEE Access, vol. 10, 2022.

[5] A. Antoniou, A. Storkey, and H. Edwards, “Data Augmentation Generative Adversarial
Networks,” ArXiv e-prints, Mar. 2018, arXiv:1711.04340.

[6] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[7] C. Chadebec, E. Thibeau-Sutre, N. Burgos, and S. Allassonnière, “Data Augmentation
in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Au-
toencoder,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45,
2023.

[8] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation,” in Proeceedings of the Conference on Empirical Methods in Natural
Language Processing, 2014.

[9] G. Dorta, S. Vicente, L. Agapito, N. D. F. Campbell, and I. Simpson, “Structured
Uncertainty Prediction Networks,” in Proceedings of the Conference on Computer Vision
and Pattern Recognition, 2018.

[10] I. Drosouli, A. Voulodimos, G. Miaoulis, P. Mastorocostas, and D. Ghazanfarpour,
“Transportation Mode Detection Using an Optimized Long Short-Term Memory Model
on Multimodal Sensor Data,” Entropy, vol. 23, 2021.

Master of Science Thesis Maximilian van Amerongen

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://explodingtopics.com/blog/smartphone-usage-stats#top-smartphone-stats
https://support.apple.com/guide/iphone/track-daily-activity-iph9a08e004e/ios

82 BIBLIOGRAPHY

[11] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Gan-
based synthetic medical image augmentation for increased cnn performance in liver lesion
classification,” Neurocomputing, vol. 321, 2018.

[12] B. Friedrich, C. Lübbe, and A. Hein, “Analyzing the Importance of Sensors for Mode of
Transportation Classification,” Sensors, vol. 21, 2020.

[13] H. Gjoreski, M. Ciliberto, L. Wang, F. J. Ordonez Morales, S. Mekki, S. Valentin, and
D. Roggen, “The University of Sussex-Huawei Locomotion and Transportation Dataset
for Multimodal Analytics With Mobile Devices,” IEEE Access, vol. 6, 2018.

[14] ——, “The University of Sussex-Huawei Locomotion and Transportation Dataset for
Multimodal Analytics With Mobile Devices,” IEEE Access, vol. 6, 2018.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Porceedings of the 27th
Conference on Advances in Neural Information Processing Systems, 2014.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,”
in Porceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016.

[18] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based transportation mode
detection on smartphones,” in Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems - SenSys, 2013.

[19] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and
A. Lerchner, “β-VAE: Learning Basic Visual Concepts wiht a Constrained Variational
Framework,” in Proceedings of the 5th International Conference on Learning Represen-
tations, 2017.

[20] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” in Proceedings of the International Conference on
Machine Learning, 2015.

[21] B. K. Iwana and S. Uchida, “An empirical survey of data augmentation for time series
classification with neural networks,” PLOS ONE, vol. 16, 2021.

[22] A. Khan and K. Fraz, “Post-training Iterative Hierarchical Data Augmentation for Deep
Networks,” in Proceedings of the 33th Conference on Advances in Neural Information
Processing Systems, 2020.

[23] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in Proceedings
of the 3rd International Conference for Learning Representations, 2015.

[24] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in Porceedings of the
2nd International Conference on Learning Representations, 2014.

[25] ——, “An Introduction to Variational Autoencoders,” ArXiv e-prints, 2019,
arXiv:1906.02691.

Maximilian van Amerongen Master of Science Thesis

BIBLIOGRAPHY 83

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-
lutional neural networks,” in Proceedings of the 25th Conference on Advances in Neural
Information Processing Systems, 2012.

[27] V. Kumar, H. Glaude, C. De Lichy, and W. Campbell, “A Closer Look At Feature
Space Data Augmentation For Few-Shot Intent Classification,” in Proceedings of the 2nd
Workshop on Deep Learning Approaches for Low-Resource NLP, 2019.

[28] J. Lucas, G. Tucker, R. Grosse, and M. Norouzi, “Understanding Posterior Collapse in
Generative Latent Variable Models,” in Proceedings of the 7th International Conference
on Learning Representations, 2019.

[29] J. Lucas, G. Tucker, R. B. Grosse, and M. Norouzi, “Don’t Blame the ELBO! A Lin-
ear VAE Perspective on Posterior Collapse,” in Porceedings of the 32th Conference on
Advances in Neural Information Processing Systems, 2019.

[30] H. Nishizaki, “Data augmentation and feature extraction using variational autoencoder
for acoustic modeling,” in Proceedings of the Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference, 2017.

[31] L. E. Olsson, T. Gärling, D. Ettema, M. Friman, and S. Fujii, “Happiness and Satisfaction
with Work Commute,” Social Indicators Research, vol. 111, 2013.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in Proceedings of the Confer-
ence on Advances in Neural Information Processing Systems, vol. 32. Curran Associates,
Inc., 2019.

[33] S. Ruder, “An overview of gradient descent optimization algorithms,” ArXiv e-prints,
Jun. 2017, arXiv:1609.04747.

[34] O. Rybkin, K. Daniilidis, and S. Levine, “Simple and effective vae training with calibrated
decoders,” in Proceedings of the 38th International Conference on Machine Learning,
2021.

[35] J. Saldanha, S. Chakraborty, S. Patil, K. Kotecha, S. Kumar, and A. Nayyar, “Data
augmentation using Variational Autoencoders for improvement of respiratory disease
classification,” PLOS ONE, vol. 17, 2022.

[36] T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen, T. Choudhury, I. Smith, S. Consolvo,
J. Hightower, W. G. Griswold, and E. de Lara, “Mobility Detection Using Everyday GSM
Traces,” in Proceedings of the 8th International Conference on Ubiquitous Computing,
2006.

[37] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research, vol. 15, 2014.

Master of Science Thesis Maximilian van Amerongen

84 BIBLIOGRAPHY

[38] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu, “Transportation mode detection using
mobile phones and gis information,” in Proceedings of the 19th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems, 2011.

[39] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” in Proceedings of the 27th International Conference on Neural Information
Processing Systems, 2014.

[40] Q. Tang, K. Jahan, and M. Roth, “Deep CNN-BiLSTM Model for Transportation Mode
Detection Using Smartphone Accelerometer and Magnetometer,” in Proceedings of the
6th IEEE Intelligent Vehicles Symposium), 2022.

[41] L. Wang, M. Ciliberto, H. Gjoreski, P. Lago, K. Murao, T. Okita, and D. Roggen,
“Summary of the Sussex-Huawei Locomotion-Transportation Recognition Challenge,” in
Proceedings of the ACM International Joint Conference and International Symposium
on Pervasive and Ubiquitous Computing and Wearable Computers, 2018.

[42] L. Wang, H. Gjoreski, M. Ciliberto, S. Mekki, S. Valentin, and D. Roggen, “Bench-
marking the SHL Recognition Challenge with Classical and Deep-Learning Pipelines,”
in Proceedings of the 2018 ACM International Joint Conference and 2018 International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, 2018.

[43] L. Wang, H. Gjoreski, M. Ciliberto, P. Lago, K. Murao, T. Okita, and D. Roggen,
“Summary of the Sussex-Huawei locomotion-transportation recognition challenge 2019,”
in Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the ACM International Symposium on Wearable Comput-
ers, 2019.

[44] L. Wang, H. Gjoreski, K. Murao, T. Okita, and D. Roggen, “Summary of the sussex-
huawei locomotion-transportation recognition challenge 2020,” in Proceedings of the ACM
International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings
of the ACM International Symposium on Wearable Computers, 2020.

[45] L. Wang, M. Ciliberto, H. Gjoreski, P. Lago, K. Murao, T. Okita, and D. Roggen, “Loco-
motion and Transportation Mode Recognition from GPS and Radio Signals: Summary of
SHL Challenge 2021,” in Proceedings of the ACM International Joint Conference on Per-
vasive and Ubiquitous Computing and Proceedings of the ACM International Symposium
on Wearable Computers, 2021.

[46] S.-C. Wang, Interdisciplinary Computing in Java Programming. Kluwer Academic Pub-
lisher, 2003.

[47] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu, “Time Series Data
Augmentation for Deep Learning: A Survey,” in Proceedings of the 13th International
Joint Conference on Artificial Intelligence, 2021.

[48] P. Widhalm, P. Nitsche, and N. Brändie, “Transport mode detection with realistic Smart-
phone sensor data,” in Proceedings of the 21st International Conference on Pattern Recog-
nition, 2012.

Maximilian van Amerongen Master of Science Thesis

BIBLIOGRAPHY 85

[49] Y. Xiao, D. Low, T. Bandara, P. Pathak, H. B. Lim, D. Goyal, J. Santos, C. Cot-
trill, F. Pereira, C. Zegras, and M. Ben-Akiva, “Transportation activity analysis using
smartphones,” in Proceedings of the IEEE Consumer Communications and Networking
Conference, 2012.

[50] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation mode from raw gps
data for geographic applications on the web,” in Proceedings of the 17th International
Conference on World Wide Web, 2008.

Master of Science Thesis Maximilian van Amerongen

86 BIBLIOGRAPHY

Maximilian van Amerongen Master of Science Thesis

Glossary

List of Acronyms

TMD transportation mode detection
SHL Sussex-Huawei Locomotion
ANN Artificial Neural Network
ML Machine Learning
DL Deep Learning
DA Data Augmentation
GAN Generative Adversarial Network
VAE Variational Autoencoder
AE Autoencoder
PCA Principal Component Analysis
MSE Mean Square Error
KL Kullback-Leibler
ELBO Evidence Lower Bound
ReLU Rectified Linear Unit
DNN Dense Neural Network
SGD Stochastic Gradient Descent
GD Gradient Descent
IHDA Iterative Hierarchical Data Augmentation
RBF radial basis function
IHDA Iterative Hierarchical Data Augmentation
NeurIPS Conference on Neural Information Processing Systems

Master of Science Thesis Maximilian van Amerongen

88 Glossary

Maximilian van Amerongen Master of Science Thesis

	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Main Matter
	Introduction
	Transportation Mode Detection and Its Application
	The Sussex-Huawei Locomotion Challenge
	Motivation
	Purpose of this Thesis
	Organization

	Fundamentals of Machine Learning and Artificial Neural Networks
	Introduction to Machine Learning
	Introduction to Artificial Neural Networks
	Introduction to Artificial Neurons
	Basic Architecture of Artificial Neural Networks

	Training Dense Neural Networks
	Loss Function
	Gradient Descent
	Backpropagation

	Supplemental Elements of ANN Architecture
	Convolutional Layers
	Activation Functions

	Introduction to Variational Autoencoders
	Autoencoder
	Variational Autoencoder
	The Evidence Lower Bound (ELBO)
	Strictly Gaussian Variational Autoencoder
	The Reparameterization Trick
	Sample Reconstruction

	Decoder Variance in VAE
	-VAE
	 -VAE

	Posterior Collapse in VAEs

	Variational Autoencoder for Data Augmentation
	Data Augmentation for Time-Series Data
	Data Augmentation with VAE
	Iterative Hierarchical Data Augmentation

	Methodology
	Dataset, Preprocessing, Classifier Architecture, and Evaluation
	Data Acquisition and Preprocessing
	Feature Extraction and Engineering
	Benchmark Classifier
	IHDA-VAE

	Implementation Details
	Benchmark Classifier Implementation
	IHDA Algorithm Implementation
	Hardware and Optimization Algorithm
	Computational Limitations

	Proposed Enhancements to the IHDA Algorithm
	Proposal 1: Rebalancing the VAE Loss Function
	Proposal 2: Reevaluating the Distance Metrics

	Assessing VAE Reconstruction Performance

	Results
	Benchmark Classifier
	Evaluation of IHDA Performance in Classifier Retraining
	Exploring the Results of Proposal 1
	Performance Evaluation: -VAE and -VAE
	Performance Evaluation: VAE 1 and bold0mu mumu [-VAE
	Summary of Results Proposal 1

	Results Proposal 2
	Evaluating the Identification Improvement
	Evaluation of Classifier Performance with Enhanced IHDA Implementation

	Discussion
	Discussion and Interpretation of Results
	Future Work
	Conclusion

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

