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Abstract

This thesis investigates unsupervised reconstruction-based anomaly detection methods
on synthetic multivariate time series data, generated for the Liquid Oxygen system of
the P5 rocket engine test facility in Lampoldshausen. To support the health monitoring
system based on thresholds for sensor values, the methods should efficiently detect
anomalous data. The anomaly detection results could be used on top of the health
monitoring system to support the operators when the system suggests a test abort. To
achieve these goals, the reconstruction error of a Feedforward Auto-Encoder trained
on purely nominal data is used to predict anomalies. The detection rates on the rocket
engine test facility data are promising, with an F1 score of 0.90, but improvements on
false positives and on more complex fault types are necessary for this anomaly detection
approach to be used in actual engine tests.



Kurzfassung

Diese Arbeit befasst sich mit unüberwachten, rekonstruktionsbasierten Ansätzen zur
Erkennung von Anomalien auf multivariaten Zeitreihendaten. Diese Daten wurden
für das LOX-System des Raketentriebwerkteststandes P5 in Lampoldshausen generiert.
Wenn das Health Monitoring System des Teststands zum Testabbruch rät, könnte die
Anomaliedetektion bei der Entscheidungsfindung helfen. Dazu wird ein Feedforward-
Autoencoder trainiert. Mit Hilfe des Rekonstruktionsfehlers werden dann Anomalien
detektiert. Die Detektionsraten bei den Daten für das LOX-System sind mit einem
F1-Wert von 0, 90 vielversprechend. Allerdings sind Verbesserungen bei den falsch-
positiven Ergebnissen und bei komplexeren Fehlertypen erforderlich, um diesen Ansatz
zur Erkennung von Anomalien bei tatsächlichen Triebwerkstests verwenden zu kön-
nen.
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Chapter 1

Introduction

The subject of Machine Learning (ML) has been on the rise in recent years. With suffi-
ciently large datasets, ML opens the door to new, unthinkable applications in the re-
spective areas, such as Large Language Models like GPT-3, image generation with Stable
Diffusion, or prediction of crime. Even the space sector, with its quite conservative ap-
proaches, has not been spared ([1]–[3]), but not without difficulties. Test resources and
runtime data in the space sector are constrained by several reasons, such as financial
constraints, the interests of state defense, and safety requirements in space that disal-
low the use of state-of-the-art components. As a result, various systems in this sector
cannot provide sufficiently large enough datasets as required by ML.

In the operation of test bench systems for rocket engines, it is crucial to detect anomalies
to prevent major destruction in the event of failure. In aerospace, very conservative ap-
proaches for a health monitoring system are still widespread. Often enough, anomalies
are detected by applying fixed limits to selected sensor values. This approach is known
as the Redlines Method. If a value exceeds the limit and propagates into potentially dan-
gerous regions, the operation of the test bench is interrupted. The abort can be necessary
to prevent mechanical failures, or catastrophic events caused by them. Depending on
the application, this creates a significant financial loss. A system that aids the test bench
operators with a second opinion on the state of the system can prevent unnecessary test
aborts and thus reduce the development costs for new rocket engines.

The LOX system of the test bench P5 at Lampoldshausen, operated by German Aerospace
Center (DLR), has been selected to evaluate the potential of ML based Anomaly Detec-
tion (AD). This system had been modeled prior to this thesis by Dresia et al. [3] using
the software EcosimPro. By space industry standards, a large amount of operational
data is available for this test bench, which could be used for a later fine-tuning of the
AD model.

1



Chapter 1. Introduction

1.1 State of the Art
Several existing methods are used and modified to adapt to the requirements of system
and data. This section gives an overview of the topic of AD as well as related work.

1.1.1 Anomaly Detection

This thesis is located in the field of Anomaly Detection (AD). AD can be defined as the
problem of separating or detecting anomalous patterns from nominal behavior [4]. In
the following, these patterns are called anomalies or faults. AD is applied in many dif-
ferent applications such as health care [5], cyber-security [6], fraud detection for credit
cards [7], insurance [8], military surveillance [9], as well as detecting faults in compo-
nents of spacecrafts [1].

Early studies on the subject of AD have started in the 19th century by Edgeworth [10].
Since then, various techniques have been developed for AD, some domain-specific, oth-
ers more general [4]. The techniques can be categorized by the degree of supervision.
Supervised classification means that all data is labeled for anomalies. In semi-supervised
methods, parts of the data are labeled. For unsupervised AD, labels are missing, and
the method has to figure out by itself which values could be anomalous. Another clas-
sification of the techniques can be done by sorting them into reconstruction-based and
prediction-based techniques. Reconstruction-based techniques aim to transform the data
into some encoded form from the input and then reconstruct the input data from this en-
coded form. The reconstruction error is then fed into an anomaly classification model. In
contrast, prediction-based techniques try to predict the values of selected variables which
are then compared to the real values in order to calculate a residual error. This residual
error is processed similar to the reconstruction-based approach.

In recent years, Neural Networks (NNs) have become more important in AD. NNs are
capable of learning complex patterns and generalize well to unseen data [11]. They re-
quire large amounts of available data to be trained. Thus, any AD application providing
enough data can be a target for the implementation of ML-based AD. Often, the data
used for AD is imbalanced between anomalous and nominal data. AD methods have to
take this problem into account and work even on highly imbalanced datasets.

1.1.2 Related Work

There exist several relevant works in unsupervised Anomaly Detection on time series
data. Hundman et al. [1] use Long Short-Term Memory (LSTM) Auto-Encoders (AEs) on
expert-labeled telemetry data from spacecrafts in combination with a dynamic thresh-
olding method and additional techniques to mitigate false-positives. A similar ap-
proach is used by ElDali and Kumar [12] who discuss the use of technique based an
variable sequence LSTMs model and growing neural networks in order to estimate a
health index for aircraft engines and satellite attitude actuators. The health index is then

2



Chapter 1. Introduction

used as a fault indicator. The requirements set by the use of aircraft and spacecraft data
are similar to those of this thesis. LSTM NNs require a large amount of resources for
training. In addition, the proposed thresholding method assumes a long time series, re-
sulting in questionable applicability to the given short time series. Thus, the presented
approaches inspire more sophisticated methods to be used in this thesis, while a more
direct application seems unfeasible.

Dresia et al. [3] propose a system similar to the one evaluated in this thesis for anomaly
detection using a Feedforward (FF) forecasting model and a static threshold. It uses the
same (proprietary) dataset as this thesis. The model is designed to take physical rela-
tions into account. Applying it to other datasets requires substantial knowledge about
the underlying processes. While it works well on obvious, direct faults, it performs
poorly on more complex fault types.

Siffer et al. [13] present a method for AD on time series based on the Extreme Value
Theory (EVT). While the input to this method is not some kind of (reconstruction) error
as for the previous two methods, it can also be the value of a variable itself. The method
calculates some sort of threshold. If this is surpassed, an anomaly has been detected.
The threshold is computed and updated in a completely unsupervised setting. Similar
to the method of Hundman et al. [1], it assumes the data to be structured as one long
time series.

Another LSTM based approach is described by Wang et al. [14]. Here, the Mahalanobis
distance is used instead of a vanilla reconstruction error in order to compute an anomaly
score.

OmniAnomaly is a multivariate time series AD algorithm by Su et al. [15]. This ap-
proach that can deal with explicit temporal dependence among stochastic variables.
The method combines Gated Recurrent Units, planar Normalizing Flows, stochastic vari-
able connection, and an adjusted Peaks-Over-Threshold (POT) method to achieve high
performance on real-world datasets.

1.2 Why Unsupervised Reconstruction-based Anomaly De-
tection?

While Dresia et al. [3] present an approach that has been evaluated on the same dataset
used in this thesis and shows decent results, it has been built with substantial system
knowledge and thus requires a redesign if the system itself is modified or in order to
apply the model to another system. A more general approach that makes use of the
reconstruction error of an AE could reduce this engineering constraint. It could also
improve the performance for the non-trivial relationships not taken into account by the
forecasting model. In addition, the prediction part of the AD does not need to be con-
strained to a static threshold but can be extended using more sophisticated methods,
such as the ones presented by the other approaches in Section 1.1.2. If these methods

3



Chapter 1. Introduction

can be modified to work well on shorter time series, they present a more robust and sta-
ble solution for anomaly detection compared to a fixed threshold tuned under optimal
conditions.

1.3 Objectives and Requirements
The goal is to design a more sophisticated AD mechanism that can detect less obvious,
non-fatal anomalies after the test has finished or even during the test. For security
reasons, this system can not replace the fixed thresholds entirely. If the rate of false
positives is reasonably low for the test operators (i.e., practically zero), the AD system
could support the test abort system to find anomalies earlier and thus increase the safety
of the system. In reality, stochastic uncertainties exist, so some false positives have to
be tolerated in order to be able to detect anomalies, even when using the conventional
red lines method for test aborts. Consequently, the tolerated false positive rate is set
to 1%, which is the ratio between the number of false positives and the number of
nominal measurements. Although this false positive rate might sound too high for the
test bench operators, it could give insights for the customers on how much they could
rely on the results of the test run and whether additional attention is required when
gaining insights from the collected data.

1.4 Outline
This thesis is organized into five chapters. In Chapter 2, the theoretical and mathemati-
cal background is presented. Chapter 3 explains the methods in greater detail. Chapter
4 presents the results using the test bench dataset. Finally, Chapter 5 contains a sum-
mary and conclusions. In addition, supplemental material is listed in the appendix.

4



Chapter 2

Theory

An elementary reconstruction technique is Principal Component Analysis (PCA). While
this thesis uses AEs to compute a reconstruction error, PCA helps to understand the
dataset and introduces the concepts of encoding and decoding data. In Section 2.1, the
mathematical background for PCA is explained. This is followed by the central concepts
and ideas of AEs in Section 2.2.

2.1 Principal Component Analysis
Principal component analysis (PCA) is a technique that can be used to reduce the dimen-
sionality of a dataset. The following section summarizes PCA as described by Jolliffe
and Cadima [16].

2.1.1 Calculation of Principal Components

Principal components are linear combinations of the variables that capture the maxi-
mum amount of variance in a dataset. They are vectors forming an orthogonal coordinate
system. In order to find principal components alongside their explained variance, PCA
uses basic linear algebra. Usually, they are calculated with the help of the eigenvector-
eigenvalue problem as presented in Equation 2.1, using the sample covariance matrix S as-
sociated with the dataset. In order to have a well-defined solution to this problem, the
vectors are restricted to unit-length [16], i.e., aTa = 1.

{(a, λ)|Sa = λa} (2.1)

These eigenvectors ak are sorted in descending order by the magnitudes of their corre-
sponding eigenvalues λk. The principal components can be obtained by multiplying the

5



Chapter 2. Theory

corresponding eigenvectors on the right of the data X . However, some authors call the
eigenvectors themselves principal components.

2.1.2 Dimensionality Reduction
If the dataset X should be reduced to a dimension k, then using the first k principal
components results in the best representation of variance in the dataset. When normalized
eigenvalues are used such that their sum is 1.0, they correspond to the explained variance
of the corresponding principal component. With a dataset X , transformation matrix T
containing the first k sorted eigenvectors as columns, and the reduced dataset Y , the
following formula is used to reduce dimensionality with PCA:

Y = TX (2.2)

The reversed operation is:

X = T−1Y (2.3)

In real systems, the input dataset should be standardized or normalized to avoid the
dominance of high values over smaller ones. This standardization or normalization has
to be reversed for the inverse transformation, too. PCA does not require the variables to
be normally distributed. While PCA is relatively inexpensive in terms of computational
complexity, its limitation to linear operations causes trouble when reducing data that
has nonlinear behavior.

6



Chapter 2. Theory

2.2 Auto-Encoders
Auto-Encoders constitute a nonlinear extension of PCA. Instead of using determinis-
tic linear operations, they fall under the scope of Neural Networks (NNs). This section
briefly introduces the AE concept along with some NN basics. An AE is an NN that is
trained to attempt to reproduce its input [17]. AEs learn representations unsupervised.
They have many applications such as dimensionality reduction, feature extraction, de-
noising, or anomaly detection [18].

2.2.1 Terminology
An Auto-Encoder is a special form of NN. This section introduces the concepts and ter-
minology relevant for AEs although some of them are actually valid for NNs in general.

Structure

Typically, AEs consist of an encoder and a decoder. The n-dimensional input is reduced to
a z-dimensional latent vector and then extracted back to an n-dimensional output vector.
If z < n, the latent layer is called bottleneck. A compressing AE is depicted in Figure 2.1.

x1
1

x1
2

x1
3

x1
4

h2
1

h2
2

h2
3

z31

z32

h4
1

h4
2

h4
3

y5
1

y5
2

y5
3

y5
4

Figure 2.1: A Feedforward Auto-Encoder with five layers, confer to Robertazzi and Shi
[19]

Loss Function

Like all NNs, AEs need to be trained before they can be used to predict. In order to
define what an optimally trained model is, a loss function is required. The model training
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Chapter 2. Theory

optimizes the model parameters such that the loss function is minimized. In this thesis,
the reconstruction error in form of the Mean Squared Error (MSE) is used:

L(x, x̂) =
√∑

i

(xi − x̂i)2 (2.4)

The subscript i denotes the ith component of the feature vector x and its reconstruction
x̂.

Regularization

The term regularization refers to the techniques that are required to force a model not to
overfit on the training data. Overfitting occurs when a model does not learn the under-
lying features but fits well to the noise of the training data. If an AE overfits, this can
result in learning the identity function, thus copying the input as is to the output without
any sort of processing. The reconstruction error then will be zero for all input values.

Feedforward

In this thesis, Feedforward Auto-Encoders (FF AEs) are used to compute a reconstruction
error for AD. A Feedforward model uses only fully connected layers. An example of this
form of AE is shown in figure 2.1. In an FF AE, each neuron consists of a linear layer
with the following operation

y = Ax+ b (2.5)

where A is the weight matrix and b is the bias vector. In addition, the output is passed
through an activation function in order to introduce nonlinearities.

Activation Functions

An activation function is a non-linear function R → R. Here, several common activation
functions are presented. These are used to modify the output of nodes:

linear(x) = x1 (2.6)
relu(x) = max{0, x} (2.7)

leakyrelu(x) = max{αx, x} 0 < α < 1 (2.8)

sigmoid(x) =
1

1 + e−x
(2.9)

tanh(x) =
ex − e−x

ex + e−x
(2.10)

8



Chapter 2. Theory

Figure 2.2 shows the plots of the used activation functions. Some activation functions
like tanh or sigmoid show a relatively high slope around the origin while being flat for
extreme values. This results in low gradients for values far from the origin, which can
impose difficulties for optimization algorithms. Leaky-ReLU as well as ReLU are not
differentiable in the origin, which is a problem that has to be handled in software (such
that the gradient is set to a value for a zero input).
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Figure 2.2: Common activation functions

1A linear or identity function does not qualify as activation function. However, it can be used to mea-
sure the impact of an activation function on the model performance.
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Chapter 3

Methodology

This chapter elaborates on the details of the P5 LOX dataset in Section 3.1. The pre-
processing of this dataset is presented in Section 3.2. Section 3.3 deals with the appli-
cation details of AEs. The training process is elaborated in Section 3.3.4, followed by
the method of Hyper-Parameter (HP) tuning in 3.4. The AD methods that have been
evaluated in this thesis are described in Section 3.5.

3.1 P5 LOX Dataset
The following section describes the relevant details of the data generation process. For
this thesis, synthetic data from the rocket engine test facility P5 in Lampoldshausen has
been used. This data has been generated in advance by Dresia et al. [3] using the simu-
lation software EcosimPro. As this process is not part of the thesis work, refer to Dresia
et al. [3] for more details about the generation. Some Information about the system can
be found in Section 3.1.1 while Section 3.1.2 gives an overview of the data generation
process. Details and variables of the data are explained in Section 3.1.3. As synthetic
anomalies have been simulated as well, these are presented in Section 3.1.5. As it is
common practice in the space sector, the data cannot be published as a whole. Anyway,
detailed analysis can be presented using a generic sequence authorized for publication
by the test bench operators.

3.1.1 P5 LOX System
The Liquid Oxygen (LOX) system of the P5 test facility at DLR Lampoldshausen has been
modeled in advance by Dresia et al. [3] and provides a fair amount of experimental data
from previous test campaigns. Under these conditions, the LOX system represents a
candidate to evaluate the potential of ML based AD in rocket engine test facilities [3].

The system is situated above the engine in order to provide the engine with oxidizer
pressurized according to requirements defined by the operators. A schematic version

10
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Figure 3.1: Testbench P5

of the system is provided in Figure 3.2. The LOX system contains two separate circuits.
The upper part is a pressurization circuit. With the help of Gaseous Nitrogen (N2) and
controlled by a Proportional Integral (PI) controller, this system regulates the pressure of
the LOX tank. The LOX tank is filled with up to 200m3 LOX. It is the starting point of
the LOX circuit. The tank is followed by a series of sensors and pipes that terminate in
the engine interface. Refer to Table 3.1 for details on the sensors and actuators.
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LOX 
Tank PFRO

AVX141
CVO150

CVO743 POMP

Interface

N2

Interface

LOX Pump

POEP

QOPER

LOX Run
Line

Figure 3.2: Simplified scheme of P5 LOX system, according to Dresia et al. [3]

Table 3.1: Subsystems of the LOX system of the P5 test bench

N2 circuit

POMP Pressure of the pressure regulator between N2 tanks and the pipes
AVX141.pos Ventilation valve
COOX141.Amp Command for AVX141
CVO150.pos Large N2 pressure regulator valve
CVO743.pos Small N2 pressure regulator valve
CVO150Arc Reference tank pressure
POMP N2 supply pressure

LOX circuit

PFRO tank pressure in bar
Tank.Vl Volume of liquid in tank
QOP2MA LOX mass flow rate
POEP engine interface pressure

12
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3.1.2 Simulator
The P5 LOX system has been simulated using the software EcosimPro along with the
European Space Propulsion System Simulation (ESPSS) library. The software provides
valves, sensors, pipes, tanks, and other components to simulate complex fluid systems
[20].

3.1.3 Simulation Output
The simulation output contains sensor and actuator data. The simulation produces ad-
ditional outputs that lack a physical representation and are excluded from any analysis
in this thesis. The output is grouped into independent time series, also called runs. Each
run is started with a randomized LOX tank volume. The control sequences for the actu-
ators are also randomized using realistic assumptions [3]. The data is time discrete with
an interval of 1 second between measurements.

3.1.4 Nominal
15000 runs have been generated without modifications to the generation process. This
means, the simulation uses a structure similar to Figure 3.2. This data represents the
nominal part and is used for training and validation.

3.1.5 Faulty
For a separate part of the data, different parts of the system have been modified. These
simulated faults can be grouped into sensor faults and system faults. The faults taken
into account are sensor offsets, drifting sensors, frozen sensors, and leaks. These mod-
ifications occur at a random point in the run, so that the start is essentially a nominal
run. Once a fault has been introduced into the system, it will stay active until the end
of the run. For each anomalous run, there is exactly one sort of anomaly present. The
faults can be grouped into two distinct groups.

Sensor Faults Here, the values of the POEP sensor have been modified to model a
sensor failure. Figure 3.3 illustrates these three types of faults.

• Sensor Frozen
The value of one of the sensors in the system stops being updated as soon as the
fault is introduced.

• Sensor Offset
Upon introduction of this fault, a random constant is added to the value of the
sensor for each reading. The random offsets range from 0.5 to 1.5 bar.

• Sensor Drift
An increasing value is being added on top of the reading of a sensor. This drift
rate can range from 2 to 4mbar / s.

13



Chapter 3. Methodology

150 200 250 300 350

−1.0

−0.6

−0.2

0.2

Time [s]

N
or

m
al

iz
ed

V
al

ue
[-

]

Nominal Input
Sensor Drift

Sensor Freeze
Sensor Offset

Figure 3.3: Fault influences on the interface pressure POEP for the generic sequence

System Faults In addition to the faulty sensors, faults can occur in pipes and valves.
A small selection of the possible system faults has been generated for the analysis. The
Figures 3.4, 3.5, and 3.6 give an impression of the influence of these faults on the system.
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Figure 3.4: POEP for the generic sequence
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Figure 3.5: PFRO for the generic sequence
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Figure 3.6: CVO150.pos for the generic sequence

• τCVO150

The fault consists of changing the average time constant of the first order transfer
function in the simulation of moving the CVO150 valve. CVO150 is controlled by a
PI controller which takes the difference between a desired LOX tank pressure and
PFRO. Thus, the control process will be modified, and PFRO and, subsequently,
POEP change.

• LOX Leakage
An extra outlet with an average mass flow of 11.2 kg s−1 is simulated in the LOX
line in order to simulate a leak in this system. This reduces the pressure POEP
at the end of the LOX line. To some extent, the tank pressure PFRO is also get-
ting reduced. In consequence, with the help of the controller, this also changes
CVO150.
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3.2 Preprocessing
Before the data can be used by a model, it has to be read and scaled. Details on this will
be described in Section 3.2.1. In addition, Section 3.2.2 describes how and why sliding
windows are created out of the dataset.

3.2.1 Scaling

Three different types of scalers will be used in order to move the different features into a
similar range. This is necessary in order to avoid situations where one feature is orders
of magnitude greater than the other features and thus dominates the computation of the
MSE. The scalers are described as implemented in Scikit Learn 1.2.0 [21].

• Standard Scaler
Assuming a standard distribution for the values of a feature, a standard scaler re-
moves the mean and scales to unit variance. The standard score of a sample x is
calculated as

z =
x− u

s
(3.1)

using the sample mean u and sample standard deviation s.
• MinMax Scaler

This scaler does not make assumptions about the distribution of the data. It moves
and scales the data such that any value lies between a minimum and a maximum.
The transformation is provided by

Xstd =
X −min{X}

max{X} −min{X}
(3.2)

Xscaled = Xstd · (∂+ − ∂−) + ∂− (3.3)

using a sample X , a desired minimum ∂− and a desired maximum ∂+. When using
a MinMax scaler in models, the output layer should contain a suitable activation
function. In the case of ∂− = 0 and ∂+ = 1, this will be the sigmoid function. When
using ∂− = −1 and ∂+ = 1, a tanh activation function should be used. This will limit
the output values to the range of the scaled input values.

• Robust Scaler
The MinMax scaler and, to some extent, the standard scaler, scale a dataset poorly
if it contains outliers. These are values that have a large distance from the high-
density part of the data distribution. They can change the mean significantly and
force a MinMax scaler to use a large range. To be less affected by these outliers, the
robust scaler can be used. Instead of removing the mean, it removes the median. In
addition, it uses the interquartile range to scale the data into a range. The interquar-
tile range is the range between the first and third quartiles of a distribution. The
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robust scaler computes as

z =
x−m

b− a
(3.4)

with median m, first quartile a and third quartile b.

3.2.2 Sliding Windows
The time series data used in this thesis contains temporal dependencies. The most ob-
vious one is the relation between PFRO and CVO150.pos. A PI controller commands
CVO150.pos using the error between desired tank pressure and PFRO. By using the
plain, scaled variables, a FF model would not be able to learn this kind of dependency.
The usual workaround is to use sliding windows. For any time t ≥ k, t and the values
from t − 1, t − 2, . . . , t − k are being stacked. Assuming equal times of 1 s between
time steps, this gives the model the opportunity to take past values into account. The
span k + 1 is called sliding window size in the following. A sliding window size of one is
equivalent to skipping the stacking step.

3.3 Details on Auto-Encoders
While the foundations of AEs are described in Section 2.2, this section presents methods
that are applied on AEs in this thesis. These are greater details on regularization in Sec-
tion 3.3.1 and the role of a bottleneck in Section 3.3.2 as well as details on the activation
function in Section 3.3.3.

3.3.1 Regularization
Kukaka et al. [22] provide an overview on regularization methods that are summarized
in this section. A large variety of different methods exist to regularize a model. Regular-
ization enables a model to perform well on unseen data. Conventionally, regularization
is understood as a modification of the loss function, i.e., the addition of a regularization
term to it. A common term is the L2 term. This sort of regularization can be called direct
regularization in contrast to indirect methods. Indirect regularization includes the choice
of the loss function, dropout on the nodes, batch normalization, a bottleneck, as well as the
choice of optimization and the activation function.

3.3.2 Bottleneck
Yong and Brintrup [23] elaborate whether a bottleneck is required for AD using AEs. The
reasoning is summarized in this section. Specifically for AEs, regularization is impor-
tant to prevent overfitting or, in extreme cases, learning the identity function. The model
would copy the inputs directly to the outputs without extracting meaningful features.
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In the use-case of Anomaly Detection, this would mean that the reconstruction error be-
comes zero for any input value, and thus, no anomalies could be detected.

Usually, a bottleneck is used to avoid this undesirable behavior. This means that the la-
tent dimension is smaller than the input/output dimension. This should prohibit the
AE in learning the identity function instead of relevant features. However, the paper
proposes that in the case of AD, non-bottleneck AEs result in better detection of anoma-
lies and not in learning of the identity function. Options to remove the bottleneck include
skip connections and over-parametrization of the latent layer. There is no proof that a bot-
tleneck is necessary to avoid learning the identity function. While counter-intuitive, the
other regularization measures, such as random initialization, non-linear activation func-
tions, and the ADAptive Moment estimation (ADAM) optimizer, make sure the model
learns the relevant features.

3.3.3 Output Activation
The result of each node is often passed through an activation function such as sigmoid,
tanh, relu or leakyrelu [24]. These add nonlinearities to the models. For the activation
functions in the output layer, different considerations become relevant. As AEs have
to recreate the input, their output range should correspond to the input range. Thus,
depending on whether the input has been scaled to a range, activation functions can be
the linear function in the case of real-number input, the tanh function for input values
between −1 and 1 and the sigmoid function for values between 0 and 1.

3.3.4 Training
The models have been implemented using Pytorch Lightning (PL). The frameworks used
are described in greater detail in the appendix (A.1). In order to select well-working
combinations from the vast amount of possible HP combinations, a HP study is being
run using Optuna (details in Section A.1) for each model architecture. The study is set
up to search for the highest True Positive Rate (TPR) at a False Positive Rate (FPR) of 1%.
The FPR has been set to a fixed value as False Positives (FPs) are highly undesired in the
test bench operation. To reduce the training time, the loss is monitored. If the loss does
not improve significantly within a validation period, the learning rate is reduced by a
factor. In addition, early stopping is activated: If the loss does not improve for several
validation periods, the training is stopped.

3.4 Hyper-Parameter Tuning
While the training could be run directly without further thought about the model con-
figuration, this will seldom produce the desired results. This chapter deals with the de-
tails of the model configuration, especially an automatic method to find well-working
configurations.
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3.4.1 Hyper-Parameters
In order to understand what parts of a model and its training have to be configured,
some terms have to be defined. There are two types of parameters in machine learning:
Model parameters are set during the training process. Hyper-Parameters (HPs) have to
be set in advance [25]. For the latter, different values can have a huge effect on the
performance of the model. The possible values of all HPs combined form the search
space.

3.4.2 Random Search
In order to find well-performing configurations, the search space is being explored by
taking random samples [25]. In order to avoid unnecessary computations and thus
shorten the search time, some assumptions on the ranges for HPs are necessary. This
thesis uses the random search method. While this approach takes longer than methods
that take earlier results into account [25], it is very easy to set up as the only information
required is the search space and an optional random seed. Because no prior state is
required, random search could easily be parallelized [25]. In addition, complex search
algorithms that require many parameters can lead to trouble when these have not been
set carefully. As a result, they might underperform or yield misleading results.

3.4.3 Optimization of the Hyper-Parameter Tuning Runtime
In order to avoid spending a lot of time on the training of under-performing models, the
search space should be narrowed after training a representative number of models [25].
If necessary, new search spaces can be explored too. The initial search space should be
defined using some prior experiments and constraints.

3.4.4 Hyper-Parameters and Their Ranges for the Feedforward Auto-
Encoder

A first step in the process of HP tuning is to train some models with different HPs.
In this thesis, these sample models have been chosen taking into account the technical
limitations in terms of runtime and memory as well as some heuristics based on the
knowledge gained from Dresia et al. [3]. The actual search for well-working HPs is
performed in two rounds. In a first round, relatively broad ranges for many parameters
are used, as presented in Table 3.2. While the choice of an optimizer is also a Hyper-
Parameter, it has been set to the ADAM optimizer. After training 181 models selected by
random search, the study is interrupted by manual intervention.

Evaluating the ten best models of the first round is then used for a redefinition of the
search space for another round of 144 models. Some of the HPs can be set to a con-
stant value as they do not seem to influence the model performance enough to justify
spending search time on them. Thus, the updated ranges are presented in Table 3.3.
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Table 3.2: HP ranges for the first round

HP Type of choice range

Related to training

Learning Rate logarithmic 10−3 . . . 10−1

Number of Epochs integers 5 . . . 50
Batch Size selection 512, 1024, 2048
Learning Rate Decay Factor logarithmic 0.05 . . . 0.2
Learning Rate Patience integers 0 . . . 2
Learning Rate Threshold logarithmic 0.01 . . . 0.2
Early Stopping Minimal
Delta

logarithmic 0.01 . . . 0.1

Early Stopping Patience integers 5 . . . 15

Related to the model

Latent Dimension integers 2 . . . 128
Activation Function selection ReLU, Tanh, LeakyReLU,

Sigmoid
Number of Layers (hidden
layers)

integers 0 . . . 3

Neurons per (hidden) Layer integers, logarithmic 2 . . . 256
Dropout float, relevant when more

than 0 hidden layers
0.0 . . . 0.2

Features selection from all features 3 . . . 10 features
Sliding Window Size integers 1 . . . 30
Scaler Type selection Standard Scaler, Robust

Scaler, MinMax Scaler(-1,
1), MinMax Scaler(0, 1)
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Table 3.3: HP ranges for the second round

HP Type of choice range

Learning Rate logarithmic 0.001 . . . 0.08
Number of Layers (hidden
layers)

integers 0 . . . 1

Neurons per (hidden) Layer integers, logarithmic 150 . . . 250
Features selection from all features 4 . . . 10 features
Number of Epochs integers 11 . . . 49
Sliding Window Size integers 4 . . . 27
Scaler Type selection Standard Scaler, Robust

Scaler, MinMax Scaler(-1,
1), MinMax Scaler(0, 1)

Batch Size selection 512, 1024, 2048
Latent Dimension integers 32 . . . 128
Activation Function selection Tanh, LeakyReLU, Sigmoid
Dropout float, only relevant for

AEs with more than 0 hid-
den layers

0.0 . . . 0.2

Learning Rate Decay Factor fixed 0.1
Learning Rate Patience fixed 2
Learning Rate Threshold fixed 0.05
Early Stopping Minimal
Delta

logarithmic 0.01 . . . 0.09

Early Stopping Patience fixed 13
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3.5 Thresholding Methods
As an Auto-Encoder (AE) does not predict anomalies, some algorithm is required to pro-
ceed from the results of the AE to predicted labels. According to the Anomaly Detec-
tion (AD) theory, the reconstruction error of the AE can be used as anomaly score di-
rectly [4]. For this thesis, the Mean Squared Error (MSE) (L2 norm) of the difference
between the sliding windows of original data and reconstruction is being used as input
for AD methods. For the evaluation of AD methods, the structure of the data is relevant.
The training data is purely nominal. A total of 1250 runs contain constructed, labeled
faults. Thus, it is possible to tune AD methods in a supervised manner.

3.5.1 Static Thresholding
Static thresholding is the most basic method for performing AD from the reconstruction
error of the AE. Using MSE as input, any value that exceeds a certain threshold is
flagged as anomalous. Thus, the corresponding measurement has to be anomalous.
Depending on the requirements of the task, this threshold can be set to a specific value.

• 0% False-Positive Rate on Validation Data
The threshold can be set entirely unsupervised, taking into account that the train-
ing (and thus, the validation) data are purely nominal. The idea of this method
is to set the threshold high enough so that no measurement in any validation run
is flagged as anomalous. Depending on how well the model learns to reconstruct
the input, the reconstruction error on nominal data can still be quite high from
time to time.

• 1% False-Positive Rate Faulty Data
Taking into account that the faulty data is labeled, the threshold can be set with
the help of the Receiver Operating Characteristic (ROC) curve of the reconstruction
errors on the faulty data against the labels [26]. Here, the requirement on the FPR
should be taken into account in order to set the threshold. The corresponding TPR
can be used as a score to compare the performance of different AEs.

3.5.2 Other Anomaly Detection Methods
The static thresholding methods suffer from two issues: They require a very controlled
environment with the same mean and variance of the nominal reconstruction error as
used for the threshold selection. In addition, the distribution of the reconstruction error
for nominal values must not change during a run.

Parametric Thresholding

Hundman et al. [1] propose an AD method for dynamic environments. Parametric Thresh-
olding is based on the idea that a long time series of data can show slow changes in
mean and variance in the reconstruction error, which are not anomalies. In a phase of
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relatively low mean and variance, a sudden but still low-level increase in the recon-
struction error hints at the occurrence of an anomaly. In other parts of the time series,
even the mean and variance of nominal data can exceed this value.

nowt

W

L values
µW , σ2

W

µS

S values

Figure 3.7: Overview of the variables used in parametric thresholding

According to Hundman et al. [1], two sliding windows are being calculated for each
value. The long one, called W , is used to find the mean µW and variance σ2

W of the
current phase of the time series. The short window is used to smooth the reconstruction
errors at the moment and find a mean µs. Then, the anomaly likelihood L is calculated
as

L = 1−Q

(
µs − µw

σ2
W

)
(3.5)

using the tail probability, also called Q-Function. The Q-Function describes the proba-
bility for a random variable that its value will exceed a threshold [27]. An anomaly is
detected if

L ≥ 1− εnorm (3.6)

using an anomaly threshold εnorm. In the paper of Hundman et al. [1], a long window of
length lW = 2100, a short window of length ls = 10 and εnorm ∈ {0.01, 0.0001} have been
used.

However, the data used for this thesis has a form that does not allow for these values to
be used. The typical run length is of the order of several hundred seconds. Every run
is independent of the others. That said, some modifications have been made to make
an implementation possible. An overall mean and variance can be calculated using the
nominal data or the nominal parts of the faulty runs. For the start of the runs, the mean
and variance to be used in the Q-Function will be calculated using a weighted average
of a sliding window from start to the current value with the overall mean and variance.
In addition, the length of the long window is decreased to a size that is smaller than
most runs.

Peaks-Over-Threshold

As the original version for parametric thresholding requires a sliding window size that
is longer than the time series in the P5 LOX dataset, the method might show weak
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performance. As an alternative, another statistical method is presented in this section.
Siffer et al. [13] propose POT, a method designed to be more stable in more open envi-
ronments. The approach is based on EVT. EVT is a method to find a distribution for
extreme events. This tail of a distribution can also be fit using the POT approach [13]. A
sub-variant of this method adjusts the anomaly threshold dynamically.

Stationary This method calculates anomalies by taking the whole input at once. From
the values, an initial threshold t is computed. Any value greater than the threshold t
is selected. The threshold is then subtracted from the value. This selection is called the
peaks set. The peaks set is then fitted on a Generalized Pareto Distribution with the help
of the Grimshaw trick, yielding γ̂ and σ̂. Grimshaw’s trick is a method to reduce a two-
variable optimization problem (here the fit of two parameters for the distribution) to a
single-variable equation. The mathematical details can be found in the original paper
by Siffer et al. [13]. The quantile or anomaly threshold can then be calculated with

zq ' t+
σ̂

γ̂

((
qn

Nt

)−γ̂

− 1

)
, (3.7)

using the threshold t as defined above, the “desired probability” q, n as the total number
of observations, and Nt as the number of peaks, i.e., the size of the peaks set from above.
Any value above the threshold zq is then flagged as anomalous.

Streaming For an initial set, thresholds t and zq are computed. Then, for any further
value, if it exceeds zq, it is added to the anomalies. Otherwise, if it exceeds the threshold
t, it (minus the threshold t) is added to the peaks set and used to update the Generalized
Pareto Distribution and, subsequently, the threshold zq.

Streaming with Drift For “normal” streaming, no drift in the data is taken into ac-
count. If the data itself is dynamic, this will result in unsatisfactory detection. To counter
this issue, the algorithm is executed on some sort of sliding window. A mean M is cal-
culated from nominal initialization data. In an initialization loop, this mean is updated
using the next n values. In each step, the mean is subtracted from the current value,
and the result is added to the POT initialization set. After the initialization loop, the
thresholds t and zq are calculated with the stationary POT algorithm. For any following
value, the current mean is subtracted. If the result is greater than zq, it is added to the
anomalies, and the current mean becomes the next mean. If the result is greater than
t, it (minus the threshold t) is added to the peaks set. From the updated peaks set, the
Generalized Pareto Distribution and, subsequently, the threshold zq are updated. In this
case as well as when the value is less than t, the mean is updated from a window of
(unmodified) values shifted by one.
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Results and Discussion

This chapter presents an evaluation of the AD methods presented in the previous chap-
ters. Section 4.1 defines the scores and metrics used later to evaluate and compare the
AD methods. Prior to the actual analysis of the AD methods, the data itself is analyzed
with the help of PCA in Section 4.2. The model resulting from the HP study is presented
in Section 4.3. Section 4.3.1 compares this model for different forms of regularization.
This is followed by the evaluation of the bottleneck in Section 4.3.2. Section 4.4 com-
pares the effects of different thresholding methods. The key results are summarized and
discussed in Section 4.5.

4.1 Evaluation Metrics
When an AD method is evaluated on labeled data (in this case, on the test data con-
taining faults), the performance of the algorithm can be measured with several scores,
depending on the requirements. The scores used in this thesis will be described in this
section as defined by Fawcett [28]. For the presented scores, the terms True Positive (TP),
FP as well as True Negative (TN) and False Negative (FN) are defined as the number of
expectation-prediction pairs that fulfill the following definitions:

• TP
The expected label and the predicted label are both positive. This is also known
as hit.

• FP
The expected label is negative, while the predicted label is positive. This is also
known as false alarm.

• TN
The expected label and the predicted label are both negative, which is also known
as correct rejection.
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• FN
While the expected label is positive, the predicted label is negative. This is also
known as miss.

Confusion Matrix These terms can be grouped into a matrix as presented in Table 4.1
which is then called confusion matrix. This matrix contains all the data necessary to
compute the following scores.

Table 4.1: Confusion matrix

Predicted Positive Predicted Negative

Actual Positive TP FN
Actual Negative FP TN

The confusion matrices for the methods and fault types can be found in the appendix in
Section A.3.

Scores The confusion matrix lacks the simplicity of a score that can be compared eas-
ily. In order to evaluate the performance of the AD model, the following scores are
used:

• False Positive Rate
The False Positive Rate (FPR) is the probability of a false alarm. It is estimated as

FPR =
FP

FP + TN
. (4.1)

• True Positive Rate/Recall
The True Positive Rate (TPR) is the probability of hit or hit rate. It is estimated as

TPR =
TP

TP + FN
. (4.2)

• Precision
The precision is estimated as

precision =
TP

TP + FP
. (4.3)

In other words, it measures how many of the predicted positives are actual positives.
• F1 Score

The F1 score is calculated as the harmonic mean of precision and recall:

F1 = 2
precision · recall
precision + recall

=
2TP

2TP + FP + FN
(4.4)

The only number that is not taken into account by the F1 score is the number of True
Negatives. Other than that, this score combines all information from the confusion
matrix so it creates an overall impression of a classifier’s performance.
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Receiver Operating Characteristics Curve The ROCs are traditionally defined for meth-
ods that contain a static threshold. Then, TPR and FPR are evaluated for different
thresholds to calculate their relationship. For a quantative evaluation of the perfor-
mance, the TPR is plotted over FPR. This results in the ROC curve as illustrated in
Figure 4.1.
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Figure 4.1: The ROC curve for a fictional classifier

4.2 Principal Component Analysis
As the given number of variables is already low, another reduction using PCA does not
seem necessary. However, the correlation matrix as depicted in Figure 4.2 can help to
understand the dependencies of the variables on each other.

Within the N2 circuit, some striking negative correlations exist. First, the pressure POMP
is strongly negatively correlated with CVO150.pos and CVO743.pos, to some lesser
extent also with CVO150Arc. As open inlet valves in the N2 circuit increase the velocity
at the valves, its static pressure is reduced. CVO150.pos and CVO743.pos are often
controlled in a similar way as they both control the N2 flow. As CVO150Arc is the
desired value for the PI controller of CVO150.pos, it correlates to the valve position.
However, CVO150Arc correlates even more with the pressures PFRO and POEP in the
LOX circuit as the valves should regulate the PFRO pressure.

AVX141.pos and COOX141.Amp are grouped together as they correspond to a valve
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Figure 4.2: Correlation matrix of the features. Values greater than 1 exist due to
numerical inaccuracies

and its command. AVX141.pos and COOX141.Amp show a positve correlation with
POMP and a negative correlation with CVO150.pos, CVO150Arc, and CVO743.pos. A
condition of the test series generation is to not open the ventilation valves when the
CVO150 and CVO743 valves are open. Thus, the static pressure in POMP must be high
during ventilation.

The volume of LOX in the tank, Tank.Vl, is reduced by increasing the amount of N2
in the upper part of the tank. Opening the CVO150 and CVO743 valves will increase the
pressure in the N2 circuit and thus press LOX out of the tank. On the contrary, releasing
N2 using the AVX141 valve allows the LOX to stay in the tank which leads to a slightly
negative correlation between these features. QOP2MA describes a mass flow rate and
POEP the static pressure nearby. As the static pressure decreases with a higher flow of
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LOX, a negative correlation exists between both variables.

4.3 Model Architecture
An HP study is performed on the HPs of the FF AEs and its training process. With
the help of random search, several models that score well have been found. The best
model has a TPR of 0.790 for a tolerated FPR of 0.010. Its Hyper-Parameters are listed in
Table 4.2.

Table 4.2: HPs of the best model of the HP study

Hyper-Parameter Value

Latent dimension 110
Sliding Window Size 5
Activation function tanh
Features PFRO, POMP, CVO150Arc, AVX141.pos, QOP2MA, POEP,

CVO743.pos, COOX141.Amp, Tank.Vl, CVO150.pos
Batch size 2048
Scaler type Robust scaler
Initial learning rate 7.6773 × 10−3

Maximal number of
epochs

32

4.3.1 Regularization
This model lacks a bottleneck, but the performance in AD indicates that some sort of reg-
ularization takes place in this model. Direct regularization can be evaluated by training
the model with and without L2 regularization. In another comparison, the activation
function of the model is replaced with the identity function in order to demonstrate
its effect on the model’s performance. For the resulting four combinations, the perfor-
mance is evaluated using a static threshold set to allow for a FPR of 1% on the faulty
data. The results are presented in Table 4.3.

Table 4.3: TPs for combinations

No L2 L2

With activation function tanh 0.79 0.77
Without activation function 0.12 0.26

While the L2 regularization does not influence the original model much, it increases the
performance without an activation function. The models without activation function
perform significantly worse than those with a tanh activation. This indicates that the
choice of the activation function contributes significantly to the regularization.
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4.3.2 Bottleneck

Out of the 20 best models from the HP study, the six best models are all expanding in
latent space, most of them by a factor of around 2. The best performance of a model
with compression is TPR = 0.720 with a compression rate of 1.35. The results and some
details about their architecture can be found in Table 4.4.

Table 4.4: The 20 best models from the HP study.

Compression In-Features Latent Size Scaler Activation Function TPR

0.45 50 110 Robust tanh 0.790
0.36 40 110 Robust sigmoid 0.789
0.19 24 124 Standard tanh 0.788
0.57 25 44 Standard sigmoid 0.786
0.61 75 123 Robust tanh 0.773
0.65 72 110 Standard sigmoid 0.763
1.35 135 100 MinMax (-1, 1) leaky-relu 0.720
0.93 96 103 Robust tanh 0.719
1.35 153 113 Robust sigmoid 0.703
1.39 161 116 MinMax (0, 1) sigmoid 0.701
0.64 54 85 MinMax (-1, 1) tanh 0.650
1.14 40 35 MinMax (-1, 1) leaky-relu 0.647
0.65 80 124 MinMax (-1, 1) leaky-relu 0.614
0.79 96 122 MinMax (-1, 1) sigmoid 0.592
0.77 99 128 Standard sigmoid 0.586
2.48 260 105 Standard tanh 0.558
0.75 80 106 MinMax (0, 1) sigmoid 0.544
1.54 63 41 Robust leaky-relu 0.535
0.72 64 89 MinMax (-1, 1) leaky-relu 0.524
1.17 110 94 Standard sigmoid 0.519

The over-expanding models show on average better performances than their bottlenecked
counterparts. In addition, they do not compress to a very small bottleneck but still to
a relatively high latent size. The better performance of over-expanding architectures in-
dicates that no identity function has been learned by them. Instead, they seem to learn
the internal features of the data. The plots of the MSE in Section 4.4 can also hint that
the reconstruction error behaves in the expected way: For nominal values, the recon-
struction errors are mostly low. They are significantly higher for anomalies. In addition
to the over-expanding architectures, the absence of the ReLU activation function is re-
markable. In fact, the ReLU activation has been excluded from the second round of the
HP study for poor performance.This activation function is very similar to the identity
function. Given the results of Section 4.3.1, the ReLU function cannot introduce enough
nonlinearity into the architecture in order to regularize the model.
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4.4 Thresholding
This section presents the results of various thresholding methods applied on the recon-
struction error of the AE. The approaches are presented, starting with static thresholding
and its variations and continuing with statistical methods. In this section, examples for
a generic run are shown. The different fault types have been simulated with the same
start time and with the same nominal part. For the different thresholding methods, the
runs are presented that illustrate their strengths and weaknesses best.

4.4.1 Static Thresholding
For the static thresholding methods, values that surpass a threshold value are flagged
as anomalous. For the first two methods, 0 % False-Positive Rate on Validation Data and
1 % False-Positive Rate on Faulty Data, the MSE is used without modification. The later
methods change the MSE for some parts of the runs. The methods are used as described
in Section 3.5.1.

0% False-Positive Rate on Validation Data

This method tunes the threshold on the Mean Squared Error (MSE) of the validation data.
It is part of the data that simulates the nominal behavior of the test bench. The threshold
is set to the maximum of the MSE which is 0.00068 for the selected model. An overview
of the performance for the different fault types is presented in Table 4.5.

Table 4.5: Performance on different fault types for 0% False-Positive Rate on Validation
Data, thus using a threshold of 0.00068

Metric All
Faults

Sensor
frozen

Sensor
drift

Sensor
offset

LOX
leakage

Changed
_CVO150

FPR 0.000 0.000 0.000 0.000 0.000 0.000
TPR 0.479 0.642 0.744 0.999 0.000 0.002
F1 0.648 0.782 0.853 0.999 0.000 0.004

In the case of the static threshold tuned on nominal data, the LOX leakage cannot be
detected despite a relatively high rise in MSE, as depicted in Figure 4.3. However, for
a frozen sensor, an anomaly is detected after a short delay, which is plotted in Fig-
ure 4.4. The MSE of this fault grows exponentially in the visible area. This indicates that
the model is having more and more difficulties reconstructing these previously unseen
measurements. The MSE for the LOX leakage stays below the selected threshold for the
whole duration of the anomaly, as can be seen in Figure 4.3. A lower threshold would
have detected almost the whole anomaly, even without FPs for this specific run. A sim-
ilar argumentation is possible for the changed τCVO150, although with a lower threshold,
more FPs, and longer periods without detection that are created by the nature of this
anomaly. Such a threshold can be set with help of the ROCs.
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Figure 4.3: 1% False-Positive Rate on Validation Data evaluated on a LOX leakage
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Figure 4.4: 1% False-Positive Rate on Validation Data evaluated on a frozen sensor
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Figure 4.5: 1% False-Positive Rate on Validation Data evaluated on a sensor offset
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Receiver Operating Characteristics

For the labeled faulty data, the Receiver Operating Characteristics (ROCs) curves are given
for all fault types in Figure 4.6. In each plot, the location of the threshold set with
FPR = 1%, using all faulty data, is indicated by an orange dot. This corresponds to
the requirement for AD in this thesis. The green diagonal line represents a hypothetical
random-guessing classifier. The blue curve corresponds to the ROC of the evaluated
model.
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Figure 4.6: ROC curves for the selected fault types, the maximal allowed FPR is
highlighted with an orange dot

For the LOX leakage and the sensor faults, the curves are close to an optimal classifier.
This seems to contradict the results from the first presented thresholding method, but
realistic ROC curves converge towards a TPR of 0 when no FPs are tolerated, when very
large datasets are used, assuming Gaussian noise. However, the model seems to shows
poor performance on the changed τCVO150. As the fault types are equally represented in
the faulty dataset, the combined ROC curve corresponds to the average of the individual
curves. Except for an ideal classifier when the integral of the ROC curve is 1.0, there
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is always a trade-off between FPR and TPR. If the FPR should be kept low, this will
result in a low detection rate. By allowing more False Positives, more True Positives will be
detected, too.

1% False-Positive Rate on Faulty Data

While setting the threshold from nominal data is an unsupervised method, the nature of
the faulty data can be used to tune the threshold. Based on the requirements, a tolerated
False Positive Rate (FPR) of 1% on the faulty data is used to tune the threshold. Table 4.6
presents an evaluation by fault type.

Table 4.6: Performance on different fault types for 1% False-Positive Rate on Faulty Data
with a threshold value of 1.34 × 10−5

Metric All
Faults

Sensor
frozen

Sensor
drift

Sensor
offset

LOX
leakage

Changed
τCVO150

FPR 0.010 0.010 0.006 0.009 0.013 0.012
TPR 0.790 0.916 0.961 1.000 0.994 0.080
F1 0.879 0.954 0.977 0.997 0.994 0.146

The frozen sensor in Figure 4.7 and the sensor offset in Figure 4.8 show that the lower
threshold separates anomalies well from the nominal values at the starts of the runs.
However, especially at the start of the run, a higher reconstruction error results in False
Positives. When the input features are analyzed, this higher MSE corresponds to a valve
operation pattern. The system has a delay between sending commands to the valves,
executing the commands, and the effect taking place. The spikes hint that the AE might
have issues learning the temporal dependencies with the given sliding windows. A third
example is presented with a changed τCVO150. A plot of this run can be found in Fig-
ure 4.9. For this fault type, anomalies are reported only for some short phases. As
a τCVO150 is the first order time constant of the CVO150 valve, it can best be observed
when the valve changes position. The position of the CVO150 valve for the generic se-
quence together with the corresponding prediction is plotted in Figure 4.10. Except for
the initial spikes, an anomaly is reported when the valve closes but not when it opens.
The reason for this unexpected reconstruction behavior requires to understand which
intrinsic features of the data have been learned by the FF AE model. However, the anal-
ysis of the model parameters lies definitely beyond the scope of this thesis.

35



Chapter 4. Results and Discussion

150 200 250 300 350
0

2

4

·10−5

Time [s]

A
no

m
al

y
Sc

or
e

[-
]

MSE
Threshold

Start of anomalies
Predicted anomalies

Figure 4.7: 1% False-Positive Rate on Faulty Data evaluated on a frozen sensor
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Figure 4.8: 1% False-Positive Rate on Faulty Data evaluated on a sensor offset
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Figure 4.9: 1% False-Positive Rate on Faulty Data evaluated on a changed τCVO150
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Figure 4.10: The CVO150 valve for the generic sequence, the corresponding anomaly
prediction is highlighted in red
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4.4.2 Modifications of the Static Threshold
The static thresholding can be tuned to reduce the number of false positives. However,
this also leads to a reduction in True Positives. The methods presented in the following
aim to identify structures in the detection results that point to possible False Negatives.
This works best if the structure of the anomalies is taken into account, as described in
Chapter 3.1.5. The proposed methods require a delay of a few seconds as they include
future reconstruction errors or predicted labels in order to identify whether an anomaly
should be kept or dropped.

Remove Spikes

Assuming that anomalies have a minimal length of t, short spikes of a few seconds
should be ignored. Thus, any sequence of positive labels in the prediction that is shorter
than t can be reclassified to nominal. If this method should be used to increase the TPR
too, the following approach can be used:

Algorithm 1 RemoveSpikes

1: Let A be the reconstruction error list
2: Let a be a value slightly less than the threshold that should be used later.
3: Let b have a value slightly less than a.
4: Let t be the minimal duration of anomalies.
5: Let l = 0 be the length of the current anomaly
6: for i = 1, 2, . . . do
7: if Ai > a then
8: increment l
9: else if Ai ≤ a and l > 0 then

10: set Ai-l, Ai-l + 1, . . . , Ai to b
11: set l = 0
12: else
13: set l = 0

In the following, a minimal duration of anomalies of t = 10 is assumed. Depending
on the selected threshold, this method either increases the TPR by about one percent or
decreases the FPR by a factor of seven while decreasing the TPR slightly due to pruned
short spikes in the anomalous regions. For the latter variant, the metrics for the different
fault types are shown in Table 4.7.

The MSE plots illustrate how the spikes from the start of the sequence are mitigated by
reducing the MSE from the original result. For the generic sequence, no FP is left in
the nominal part. In Figure 4.11, the two longer positive predictions are kept while a
short spike is mitigated. For a purely nominal run, as depicted in Figure 4.12, no fault
is detected. The frozen sensor in Figure 4.13 can be clearly separated from the nominal
part of the run.

38



Chapter 4. Results and Discussion

Table 4.7: Performance on different fault types for Remove Spikes, using 1.27 × 10−5 as
threshold

Metric All
Faults

Sensor
frozen

Sensor
drift

Sensor
offset

LOX
leakage

Changed
τCVO150

FPR 0.001 0.001 0.001 0.001 0.002 0.002
TPR 0.783 0.915 0.961 1.000 0.994 0.046
F1 0.878 0.956 0.961 1.000 0.994 0.088
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Figure 4.11: Remove Spikes evaluated on a changed τCVO150
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Figure 4.12: Remove Spikes evaluated on a nominal run
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Figure 4.13: Remove Spikes evaluated on a frozen sensor
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Flag Faulty

This method makes use of the special structure of the faulty test runs as described in Sec-
tion 3.1.5. As soon as a fault is introduced, it stays until the end of a run. That means, if
there is a high probability for an anomaly, the following values can be flagged as anoma-
lous even if they do not qualify as anomalous from the AD. However, it is important to
note that in case of any FP, many nominal values will be flagged as anomalous. This can
lead to a high and thus undesired increase of the FPR. In order to avoid flagging a fault
too early, the spikes are first removed before the faults are flagged. In the implemen-
tation, the reconstruction error is modified. As soon as a value surpasses the anomaly
threshold, the following values are set to a higher value. This higher value is defined to
be the maximum of all previous values to keep the structure of the reconstruction error
to some extent for manual analysis. Otherwise, it could also be set to a high constant.

The metrics for each fault type are shown in Tables 4.8. The thresholds have been tuned
for a False Positive Rate of 1%. As the changed τCVO150 is nearly invisible when the
CVO150 valve is kept at a position, flagging should have the greatest impact for this
type of fault. The corresponding test run is shown in Figure 4.14.

Table 4.8: Performance on different fault types for Flag Faulty with a threshold of
1.27 × 10−5

Metric All
Faults

Sensor
frozen

Sensor
drift

Sensor
offset

LOX
leakage

Changed
τCVO150

FPR 0.010 0.011 0.000 0.016 0.014 0.008
TPR 0.824 0.936 0.948 1.000 0.993 0.246
F1 0.901 0.964 0.948 0.995 0.992 0.393
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Figure 4.14: Flag Faulty on a changed τCVO150
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4.4.3 Other Anomaly Detection Methods

While a static threshold and its variations work well in static environments, they suffer
under dynamic and more realistic conditions. However, as this work is using synthetic
data under clearly defined conditions, the main motivation for the test of other AD
methods is the following observation: When comparing Figure 4.12, which is the run
without any faults, with Figure 4.11, which depicts the changed τCVO150, the MSE is
visibly higher when the fault is active compared to the nominal version. If a method
could use the context and detect an anomaly if the MSE behaves in a suspicious way,
this could increase the detection rate and maybe even mitigate some more False Positives.

Parametric thresholding

This method calculates an anomaly likelihood based on the mean and variance of a long
window and the mean of a short window as described in Section 3.5.2. Here, the long
window is set to 60 prior values, while the short window consists of ten prior values.
The value for the long window is actually limited by the minimal run length in the faulty
data. In order to be able to detect anomalies close to the start of a run, the mean and
variance of the long window before the 60th value are calculated taking the weighted
average of a shorter window and the mean and variance from 2100 values sampled
from the nominal part of the faulty runs. As this method cannot be tuned from the ROC
but only with an anomaly parameter ε, the FPR for ε = 0.01 is very high, as presented in
Table 4.9. Unfortunately, the vast majority of anomaly likelihoods are either 0 or 1 so
that the ε parameter cannot be fine-tuned well.

Table 4.9: Performance on different fault types for Parametric Thresholding

Metric All
Faults

Sensor
frozen

Sensor
drift

Sensor
offset

LOX
leakage

Changed
τCVO150

FPR 0.293 0.283 0.299 0.295 0.287 0.293
TPR 0.841 0.832 0.984 1.000 0.996 0.391
F1 0.828 0.829 0.904 0.913 0.912 0.496

The results of this method evaluated on a changed τCVO150 and the nominal version are
shown in Figures 4.15 and 4.16. Unfortunately, this method detects a high amount of
False Positives for the runs, while the detection of the changed τCVO150 is also limited.
To understand this behavior, the effects of the two window sizes need to be described.
The short sliding window smooths the MSE by calculating an average. The long slid-
ing window however provides a context with long-term nominal behavior. In order
not to skip the first 60 values of each run, the corresponding long windows have been
combined with another nominal sample as described in Section 3.5.2. As the nominal
MSE of the faulty runs is on average much lower than the start of the generic sequence,
anomalies are detected right at the beginning. The same problem occurs in later parts
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of the nominal run. The sliding window of length 60 adapts to quickly to low values so
that even the relatively low spikes in the later part are predicted to be anomalous.
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Figure 4.15: Parametric Thresholding evaluated on a changed τCVO150
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Figure 4.16: Parametric Thresholding evaluated on a nominal run

Peaks-Over-Thresholds

Due to the poor performance of the Parametric Thresholding, another unsupervised, sta-
tistical method is investigated. The Peaks-Over-Threshold (POT) method is evaluated in
its streaming variant with drift. A detailed description of this method can be found in
Section 3.5.2. While the initialization uses the nominal part of the faulty runs, the other
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parameters remain unchanged from the version of Siffer et al. [13]. Thus, the proba-
bility for anomalies is set to 10−3, the depth to 450 1, and the level parameter to 0.98.
Tuning these values to an optimum would require a search similar to the HP study as
three-variable optimization problems result in too many possible combinations to be
tuned manually which is not in the scope of this thesis. The individual runs are ana-
lyzed separately as they are independent of each other. The results of each run are then
concatenated for further analysis. The metrics for each fault type can be found in Ta-
ble 4.10. In comparison, the static thresholding achieves an overall TPR of 0.752 for the
same FPR.

Table 4.10: Performance on different fault types for POT

Metric All
Faults

Sensor
frozen

Sensor
drift

Sensor
offset

LOX
leakage

Changed
τCVO150

FPR 0.001 0.001 0.001 0.001 0.001 0.001
TPR 0.751 0.849 0.924 1.000 0.958 0.024
F1 0.857 0.918 0.960 1.000 0.978 0.047

The changed τCVO150 in Figure 4.17, the LOX leakage in Figure 4.18, and the sensor drift
in Figure 4.19 demonstrate that the spikes at the beginning are not detected by the
method. The actual anomalies are detected, with a huge delay for the changed τCVO150

and a shorter delay for the sensor drift.
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Figure 4.17: drifting, streaming POT evaluated on a changed τCVO150

1Which is longer than many run lengths but should be handled by the method
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Figure 4.18: drifting, streaming POT evaluated on a LOX leakage
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Figure 4.19: drifting, streaming POT evaluated on a sensor drift
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4.5 Comparison
This section uses F1 score, precision and recall to compare the presented methods for AD.

Table 4.11: Scores for all analyzed AD methods on the whole faulty dataset

0% FPR
on val. data

1% FPR
on faulty

Remove
Spikes

Flag
faulty

Parametric
thresholding

POT

FPR 0.000 0.010 0.001 0.010 0.293 0.001
F1 0.65 0.88 0.88 0.90 0.83 0.86
Precision 1.000 0.992 0.999 0.992 0.817 0.999
Recall 0.48 0.79 0.78 0.83 0.84 0.75

The scores, together with the overall FPR, are listed in Table 4.11. 0 % False-Positive Rate
on Validation Data has the highest precision and the lowest FPR, F1 and recall. Parametric
Thresholding has the highest FPR, the lowest precision and the highest recall. Both are
heavily imbalanced, which means they do not achieve the best possible detection out of
the given reconstruction error from the AE model.

Out of the four remaining methods, the Flag Faulty method shows the best metrics ex-
cept for the FPR which is lower for POT and for Remove Spikes. The other methods Para-
metric Thresholding and Peaks-Over-Threshold underperform against the methods based
on a static threshold. As the dataset is synthetic and does not even contain artificial
noise, these methods cannot demonstrate their full potential. With the analysis of indi-
vidual runs, it becomes clear that none of the proposed methods can effectively utilize
the patterns in the reconstruction error to detect significantly more anomalous patterns.
However, removing spikes and flagging faults until the end of the runs demonstrate
that handcrafted methods can indeed reduce the amount of FPs while even increasing
the number of TPs.

For the different fault categories, most methods perform well on the sensor faults and
the detection of the LOX leakage. However, the changed τCVO150 cannot be detected well
for any of the methods. At first glance, this seems to be an issue to be solved by using
another AE model that results in higher reconstruction errors for the whole duration of
the changed τCVO150. However, the description of the fault suggests that the fault is only
visible when the CVO150 valve is moved. With information gained from the analysis of
a generic fault, the FF AE produces a high reconstruction error when the CVO150 valve
is closed. To answer why the opening of the valve can be reconstructed properly, an
analysis of the model parameters would be required.
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Summary and Conclusion

In this thesis, Machine Learning (ML) based Anomaly Detection (AD) has been evaluated
using Feedforward Auto-Encoders (FF AEs) and a collection of semi-unsupervised thresh-
olding methods and statistical methods to predict anomalies.

In the operation of rocket engine test bench systems, it is crucial to detect anomalies to
prevent major destruction in the event of failure. Significant anomalies causing strong
deviations from the expected values can be detected by applying fixed thresholds to
selected sensor values. The run is aborted if this health monitoring system records po-
tentially dangerous values. Following these rules strictly can result in unnecessary test
aborts as not every extreme sensor reading indicates a major malfunction in the test
bench. Accordingly, a system is designed with the help of ML in order to detect anoma-
lies with higher reliability.

An FF AE is trained on purely nominal data that is generated from a simulation of the
test bench. In this setup, the FF AE will learn to reconstruct nominal data well, while
any anomaly should result in a high reconstruction error. The tuning and evaluation of
the AD methods takes place on labeled test data containing different types of anoma-
lies. While the methods of this thesis are evaluated on a proprietary, synthetic dataset
from a rocket engine test facility, the insights gained from working on this data can be
transferred to datasets with similar characteristics.

A static threshold and variations thereof to increase its performance on the used dataset
have been evaluated against statistical methods. The statistical methods include a form
of parametric thresholding as proposed by Hundman et al. [1] together with the Peaks-
Over-Threshold (POT) approach from Siffer et al. [13]. While parametric thresholding suf-
fers from numerical issues and a high False Positive Rate (FPR), POT reaches a perfor-
mance similar to static thresholding, albeit further tuning is required to demonstrate the
full potential of this method. Setting the threshold high enough such that no anomaly
would be detected in the validation dataset proves inefficient with an F1 score of 0.65
while allowing up to 1% False Positives (FPs) in the faulty dataset results in a much
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higher F1 score of 0.88. While a removal of short spikes in the reconstruction error
does not change the performance significantly, further utilization of the structure of
the anomalies results in another improvement in FPR, F1 and recall with a constant pre-
cision. This method keeps anomalies flagged until the end of each run, resulting in an
F1 score of 0.90.

ML-based AD combines methods from two different fields. While the training of Neural
Networks (NNs) is based on heuristics and best-practices, AD relies on statistical meth-
ods. While the Auto-Encoder (AE) and the actual AD are two distinct parts of the method,
they have been integrated and adapted to each other. At the same time, the inherent
modularity has been used to test replacements for the AD component. The same could
be done for the AE part of the method.

5.1 Lessons Learned
Unfortunately, the implemented methods are not yet reliable enough to support the red-
line approach (applying absolute limits on selected sensor readings) currently used in
the test facility. The detection results should be taken with a grain of salt by the opera-
tors. The limited size of the nominal rocket engine test facility (P5 Liquid Oxygen (LOX),
described in Section 3.1) dataset and the structure of its test dataset are challenges for
the successful implementation of AD. Strikingly, a purely nominal dataset is the best
way to make sure that an AE will struggle to reconstruct any kind of anomaly. And at
the same time, the dataset imposes difficulties on the implementation with its special
structure of many independent short time series.

Time series datasets often contain temporal dependencies. Using just the current val-
ues of the features as input for an FF AE will not be able to properly reconstruct any
features that are connected by temporal dependencies. While sliding windows can be
used as a workaround to use FF AEs on time series data, they do not perform much
better on the given dataset compared to FF AEs without sliding windows . In fact, a
Hyper-Parameter (HP) study on the sliding window size produces way shorter window
sizes than anticipated.

Another surprising result of the HP study is the high performance of overexpanding
models compared to their bottlenecked counterparts. As observed by Yong and Brin-
trup [23], these architectures should be taken into account for the ML model used for
reconstruction-based AD.

5.2 Future Work
As several variants of AD have been researched by this thesis, the insights from these
methods make the quest for future work. While this work demonstrates the potential of
reconstruction-based AD itself, the AE component has never been changed in principle.
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Instead of the commonly used FF AE which is not designed for time series data, the
performance of Long Short-Term Memory (LSTM) AEs should be investigated. However,
they require substantially more computation time and memory for training and predic-
tion than FF AEs, an evaluation of this type of AE cannot be part of this thesis due to a
lack of computational resources.

As the data is synthetic, adaption to more realistic scenarios is necessary. While all
imaginable types of faults in the system and the sensors should be generated, this will
also include the addition of artificial noise and a fine-tuning of the AE and the AD
methods on real data. It is questionable whether the best combination of this work could
handle this scenario based on the assumptions necessary to compute a static threshold.
Instead of the used FF AE, a variational AE might be useful. In addition, the statistical
methods might finally outperform the methods based on a static threshold. In general,
other methods for univariate time series should be applied to the reconstruction error.

For the proposed application itself, other non-ML based AD methods should be evalu-
ated. It is possible that statistical methods applied to the features can work better than
the current approach of redlines while reducing the number of FPs. They might as well
give a third opinion on the likelihood of a fault in the system.
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A Appendix

A.1 Frameworks
The frameworks in this section are used to implement the concepts of this thesis.

Pytorch Lightning

Pytorch Lightning is the deep learning framework with batteries included
for professional AI researchers and machine learning engineers who need
maximal flexibility while super-charging performance at scale. [29]

Pytorch Lightning (PL) ships with the LightningModule to be used for the model to
be trained, the Trainer wrapping all the training process and to deal with datasets,
the LightningDataModule. Pure Pytorch code can easily be transformed to make
use of the framework. PL shows its full potential when training on Graphics Processing
Units (GPUs) comes into play. Lots of common mistakes and bugs can be avoided by
not reinventing the wheel each time a new Machine Learning (ML) setup is being created.
This reduces the time required to implement a model.

Scikit-learn

Scikit-learn is a Python module integrating a wide range of state-of-the-
art machine learning algorithms for medium-scale supervised and unsuper-
vised problems. This package focuses on bringing machine learning to non-
specialists using a general-purpose high-level language. Emphasis is put
on ease of use, performance, documentation, and Application Programming
Interface (API) consistency. [21]

While Scikit-learn also offers Central Processing Unit (CPU)-based approach to models
and model training, the plenty of surrounding algorithms present a valuable source for
pre-processing, post-processing and analysis of data. In this thesis, Scikit-learn 1.2.0 is
used for scaling, the Principal Component Analysis (PCA), and the calculation of scores
and the Receiver Operating Characteristics (ROCs).

Numpy

Array programming provides a powerful, compact and expressive syntax
for accessing, manipulating and operating on data in vectors, matrices and
higher-dimensional arrays. NumPy is the primary array programming li-
brary for the Python language. It has an essential role in research analysis
pipelines in fields as diverse as physics, chemistry, astronomy, geoscience,
biology, psychology, materials science, engineering, finance and economics.
[30]
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Numpy provides a solid basis for efficient computations using Python. For Scikit-learn,
the Numpy array represents the data container. It can be converted to the Torch Tensor
representation and the DataFrame form of Pandas easily.

Pandas

Pandas is a Python framework for tabular data. It is used to read and write tabular data
and select columns thereof.

Optuna

Optuna [is] an optimization software [. . . ]. As an optimization software de-
signed with define-by-run principle, Optuna is particularly the first of its
kind. [31]

Optuna allows to set up a search space for several parameters easily and run a study to
find an optimal value. This is combined with (optional) pruning of non-promising trials
as well as different sampling methods in order to define the trials. Optuna can be used
with any Python ML framework and only requires few new lines of code.

A.2 Figures
The figures in this section demonstrate the influence of anomalies on the feature recon-
structions by the Auto-Encoder (AE). Plots without visible differences between original
and reconstruction have been dropped.

τCVO150

The influence of this fault type on the reconstruction is barely visible. The features
where the reconstruction issues are most prominent are plotted here. The good recon-
struction of the anomalous sequence implies that the model did not learn the changed
time constant well.
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Figure 1: Reference tank pressure and position of the CVO150 valve

LOX Leakage

While this fault takes place in the Liquid Oxygen (LOX) circuit, it influences the Gaseous
Nitrogen (N2) circuit too as demonstrated by Figure 2. The influence is more prominent
for the sensors in the LOX circuit though as plotted in Figure 3.
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Figure 2: Command and position of the AVX141 valve
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Figure 3: Pressures and mass flow in the LOX system
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Sensor Drift

The AE “distributes” the error from one sensor to various features. It assumes some neg-
ative opening value of the AVX141 valve which is very unrealistic but a clear indicator
of an anomaly.
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Figure 4: Command and position of the AVX141 valve
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Figure 5: Pressures and mass flow in the LOX system

Sensor Frozen

A frozen POEP sensor influences the reconstruction of almost all features. The features
with the strongest deviations are shown in Figure 6 and Figure 7.
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Figure 6: Command and position of the AVX141 valve
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Figure 7: Pressures and mass flow in the LOX system
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Sensor Offset

A sensor offset influences the system similar to a drifting sensor. However, the offset in
the features stays almost the same over time.
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Figure 8: Command and position of the AVX141 valve
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Figure 9: Volume of LOX in the tank, pressures, and mass flow in the LOX system
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A.3 Confusion Matrices
The confusion matrices here are computed for the whole fault dataset or the runs corre-
sponding to the fault types.

Table 1: Confusion matrices for 0 % False-Positive Rate on Validation Data
(a) All faults

Predicted

A
ct

ua
l 1 0

1 103922 4
0 113078 139783

(b) Sensor frozen

Predicted

A
ct

ua
l 1 0

1 28321 0
0 15779 27363

(c) Sensor drift

Predicted

A
ct

ua
l 1 0

1 32211 0
0 11058 27857

(d) Sensor offset

Predicted

A
ct

ua
l 1 0

1 43309 3
0 52 28099

(e) LOX leakage

Predicted

A
ct

ua
l 1 0

1 0 1
0 42800 28197

(f) Changed τCVO150

Predicted

A
ct

ua
l 1 0

1 81 0
0 43389 27841

Table 2: Confusion matrices for 1 % False-Positive Rate on Faulty Data
(a) All faults

Predicted

A
ct

ua
l 1 0

1 171351 1397
0 45649 138390

(b) Sensor freeze

Predicted

A
ct

ua
l 1 0

1 40396 176
0 3704 27187

(c) Sensor drift

Predicted
A

ct
ua

l 1 0
1 41580 263
0 1689 27594

(d) Sensor offset

Predicted

A
ct

ua
l 1 0

1 43361 269
0 0 27833

(e) LOX leakage

Predicted

A
ct

ua
l 1 0

1 42555 363
0 245 27835

(f) Changed τCVO150

Predicted

A
ct

ua
l 1 0

1 3459 325
0 40011 27516
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Table 3: Confusion matrices for Remove Spikes
(a) All faults

Predicted

A
ct

ua
l 1 0

1 169886 206
0 47114 139581

(b) Sensor frozen

Predicted

A
ct

ua
l 1 0

1 40368 21
0 3732 27342

(c) Sensor drift

Predicted

A
ct

ua
l 1 0

1 41601 20
0 1668 27837

(d) Sensor offset

Predicted

A
ct

ua
l 1 0

1 43361 42
0 0 28060

(e) LOX leakage

Predicted
A

ct
ua

l 1 0
1 42555 67
0 245 28131

(f) Changed τCVO150

Predicted

A
ct

ua
l 1 0

1 2001 56
0 41469 27785

Table 4: Confusion matrices for Flag Faulty
(a) All faults

Predicted

A
ct

ua
l 1 0

1 178850 1373
0 38150 138414

(b) Sensor frozen

Predicted

A
ct

ua
l 1 0

1 41278 303
0 2822 27060

(c) Sensor drift

Predicted

A
ct

ua
l 1 0

1 41009 0
0 2260 27857

(d) Sensor offset

Predicted

A
ct

ua
l 1 0

1 43361 459
0 0 27643

(e) LOX leakage

Predicted

A
ct

ua
l 1 0

1 42508 398
0 292 27800

(f) Changed τCVO150

Predicted

A
ct

ua
l 1 0

1 10694 213
0 32776 27628

Table 5: Confusion matrices for Parametric Thresholding
(a) All faults

Predicted

A
ct

ua
l 1 0

1 182242 40916
0 34758 98871

(b) Sensor frozen

Predicted

A
ct

ua
l 1 0

1 36671 7732
0 7429 19631

(c) Sensor drift

Predicted

A
ct

ua
l 1 0

1 42571 8322
0 698 19535

(d) Sensor offset

Predicted

A
ct

ua
l 1 0

1 43361 8297
0 0 19805

(e) LOX leakage

Predicted

A
ct

ua
l 1 0

1 42628 8089
0 172 20109

(f) Changed τCVO150

Predicted

A
ct

ua
l 1 0

1 17011 8150
0 26459 19691

63



Table 6: Confusion matrices of Peaks-Over-Threshold (POT)
(a) All faults

Predicted

A
ct

ua
l 1 0

1 162866 54134
0 151 139636

(b) Sensor frozen

Predicted

A
ct

ua
l 1 0

1 37458 6642
0 21 27342

(c) Sensor drift

Predicted

A
ct

ua
l 1 0

1 39999 3270
0 28 27829

(d) Sensor offset

Predicted

A
ct

ua
l 1 0

1 43361 0
0 31 28071

(e) LOX leakage

Predicted

A
ct

ua
l 1 0

1 40995 1805
0 42 28156

(f) Changed τCVO150

Predicted

A
ct

ua
l 1 0

1 1053 42417
0 29 27812
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