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ABSTRACT

Context. Correlated noise in exoplanet light curves, such as noise from stellar activity, convection noise, and instrumental noise,
distorts the exoplanet transit light curves and leads to biases in the best-fit transit parameters. An optimal fitting algorithm can provide
stability against the presence of correlated noises and lead to statistically consistent results, namely, the actual biases are usually within
the error interval. This is not automatically satisfied by most of the algorithms in everyday use and the testing of the algorithms is
necessary.
Aims. In this paper, we describe a bootstrapping-like test to handle with the general case and we apply it to the wavelet-based Transit
and Light Curve Modeller (TLCM) algorithm, testing it for the stability against the correlated noise. We compare and contrast the
results with regard to the FITSH algorithm, which is based on an assumption of white noise .
Methods. We simulated transit light curves with previously known parameters in the presence of a correlated noise model generated
by an Autoregressive Integrated Moving Average (ARIMA) process. Then we solved the simulated observations and examined the
resulting parameters and error intervals.
Results. We have found that the assumption of FITSH, namely, that only white noise is present, has led to inconsistencies in the
results: the distribution of best-fit parameters is then broader than the determined error intervals by a factor of 3–6. On the other hand,
the wavelet-based TLCM algorithm handles the correlated noise properly, leading to both properly determined parameter and error
intervals that are perfectly consistent with the actual biases.

Key words. methods: data analysis – techniques: photometric – planets and satellites: general

1. Introduction

The precise and accurate determination of parameters that char-
acterise an exoplanet and its orbit are of key importance. Stellar
activity such as spots (see e.g. Lagrange et al. 2010; Barros
et al. 2013; Haywood et al. 2014; Mazeh et al. 2015) or pulsation
(von Essen et al. 2014; Sarkar et al. 2018), instrumental effects
(Mazeh et al. 2013), and even binning (Kipping 2010; Ji et al.
2017) result in the appearance of correlated noise in the studied
light curves. As a consequence, the smooth light curve dis-
tortions, jumps, and sudden flux-changes lead to biases in the
best-fit parameters, and the error intervals may be also widened.
In case of small distortions, the uncertainty intervals will be
still consistent with the real values of parameters. The biases are
more egregious if the best-fit parameters end up more biased than
their derived uncertainty range at a given high confidence level,
leading to possible internal inconsistencies in the derived param-
eters and inaccuracies in the derived datasets, and suggest, for
instance, transit timing variations (TTV) which have no physical
origin. The parameter biases, along with the question of whether

the resulting parameter+error pairs are consistent, should be
evaluated for each given case (transit and noise parameters and
sampling), unless the applied algorithm is tested prudently.

In the following, we give an example of the inconsistencies
and inaccuracies introduced by the time-correlated noise using
the case of TTVs. These variations may be caused by a per-
turbing object in the system such as a stellar mass companion
of the host or another planet (Holman & Murray 2005; Agol
et al. 2005; Borkovits et al. 2011), by exomoons (Simon et al.
2007), stellar activity (see e.g. Oshagh et al. 2013), or other non-
dynamical phenomena (Szabó et al. 2013). Since TTVs have a
wide range of possible origins, their analysis may be applied of
many different phenomena in a given exoplanetary system. We
argue, however, that correlated noise may cause phenomena that
mimic TTVs, making proper noise handling essential as under-
estimating the uncertainties may result in false TTV detections,
while overestimating them may hide real phenomena.

The amount of photometric data from exoplanet systems
is continuously increasing. This can primarily be attributed
to the high-precision photometry of space missions such as
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CoRoT (Baglin et al. 2006), Kepler (Borucki et al. 2010), K2
(Howell et al. 2014), TESS (Ricker et al. 2015), CHEOPS (Benz
et al. 2021), PLATO (Magrin et al. 2018), and Ariel (Tinetti
et al. 2021). The increasing amount of data requires more and
more automatic data analysis and parameter determination. As
we will be comparing data from different space- and ground-
based telescopes, evaluated by different algorithms, consistency
issues shall arise. The various research teams also have some-
times different statistical standards, which makes the comparison
of results and accuracies even more difficult.

There are a number of software that are used for the
modelling of transit light curves (and/or RV data) includ-
ing EXOFAST (Eastman et al. 2013), PYCHEOPS1, PYANETI
(Barragán et al. 2019), PYTRANSIT (Parviainen 2015), and
TLCM (Csizmadia 2020).

These algorithms follow two general approaches. They either
include a white noise assumption (i.e. assuming that the noise
is completely uncorrelated) or a reconstruction of the noise
correlations, and, in some of them, there is a possibility to
switch between the two approaches within one code. The most
widespread method to handle the correlated noise is to recon-
struct it as a Gaussian process (GP; Foreman-Mackey et al. 2017)
or taking a wavelet approach (Carter & Winn 2009). These two
approaches (GP and wavelet) mostly differ in the fact that in GP
there is a normality assumption in the noise (see e.g. Kac &
Siegert 1947), whereas in the wavelet-based method there is no
normality assumption and its inner parametrisation can (more or
less force) the solution to be close to the priors.

In this paper, we test the stability, precision, and accuracy
of parameter determination with wavelet-based methods using
the Transit and Light Curve Modeller (TLCM; Csizmadia 2020)
algorithm. For the sake of comparison, a linear optimisation
approach with pattern determination was used via lfit, the
transit analyzing software from the FITSH software package
(Pál 2012).

In Csizmadia et al. (2023a, hereafter Paper I), a regulari-
sation condition was added in the form of a Bayesian-prior to
the wavelet-analysis technique. This prior compares the mean
residuals of the fit to the mean photometric uncertainties of the
observations to avoid overfitting. Paper I validated this approach
by taking 310 ten-day long segments of Kepler Q1 SAP light
curves. These light curves exhibited all common noise sources:
spot activity, spot decay, flares, microflares, granulation, and
pulsation, as well as cosmic ray hits, sudden flux changes up
and down (flux-jumps), data leaks, and so on. Data leaks are
gaps (series of missing data) in the continuity of the photomet-
ric time series. Such gaps can be planned, as in the case of
TESS, where the data are downloaded from the satellite for typ-
ically 1.5 days in the middle of every sector and there are no
observations carried out during it. They can be unplanned, for
example, in the case of the safe-mode operation of a telescope or
deleted data due to any kind of flag, caveat, or operation failure).
Simulated transits, occultations, and phase curves were injected
into these light curves and every light curve had five such real-
isations of synthetic data injections. In total, the retrieval of
the parameters were performed on 1550 realisations and con-
clusions were drawn from the comparison of the injected and
retrieved parameters. No pre-filtering of the light curves were
made before modelling, the transit+occultation+phase curves
(including reflection, beaming, and ellipsoidal effects) model
were fitted simultaneously with the wavelet-based noise model.

1 https://github.com/pmaxted/pycheops

Table 1. Parameters for the simulated light curve.

P (days) tC (HJD) p b2 ω (day−1)

1.0914222 2455229.31035 0.1416 0.460 19.328

Paper I determined the minimum signal-to-noise ratios needed
to retrieve the individual parameters.

Csizmadia et al. (2023b, hereafter Paper III) contains an
application of the technique to KELT-9b. More accurate tran-
sit parameters were obtained by reducing the effect of correlated
noise in the light curves than in previous studies reported.

This paper is structured as follows. In Sect. 2, we describe the
simulating process, including the time-correlated noise model
and the software used for light curve analysis. In Sect. 3, we
present an approach for error estimation without treating the
correlated noise, while showing the biasing that the red noise
induces in the transit parameters, as well as presenting the power
of wavelet formulation in handling the time-correlated noise. We
also present a possible application in TTV analysis. We give our
conclusions in Sect. 4.

2. Methods

In order to examine the biasing induced by the red noise, we
made use of a synthetic light curve based on the model of Mandel
& Agol (2002) and simulated using the FITSH/lfit software (Pál
2012). This code describes the transit light curve of an exoplanet
in terms of the time of the midstransit, tC, the ratio of the plane-
tary and stellar radii, p = RP/RS, the squared impact parameter,
b2 = RS/a cos i, and the ω = (a/RS)(2π/P)(1− b2)−1/2 parameter
(Pál 2009), where P is the orbital period, i is the inclination of
the orbital plane relative to the life of sight, and a is the semi-
major axis. The limb darkening of the host star was taken into
account using a quadratic formula with the parameters u1 and
u2. We assumed a circular orbit and a spherically symmetric
star and planet. The values chosen for each parameter (Table 1),
correspond roughly to a hot Jupiter but are otherwise arbitrary.

We added a randomly selected segment of a simulated
correlated noise model to the synthetic light curve, thereby con-
structing a realistic transit light curve which we then solved
using the packages FITSH/lfit and TLCM. We repeated this
process until we had a statistically significant sample size that
enabled the tests for parameter stability. For the sake of com-
parison, we repeated this process using only white noise and the
FITSH/lfit code. This approach is similar to naive bootstrapping,
however, instead of simply resampling the noise model, as is typ-
ically done in the classical non-parametric bootstrapping step,
we replaced the entire selected realisation of the partly corre-
lated noise. Our approach also resembles a Monte Carlo (MC)
simulation in the sense of simulating a measurement with noise,
however, in the case of the MC, the parameter values are sought
along the parameter grid; here, we are mapping the error interval
of the input parameters from a reconstruction.

2.1. Noise model

The spectral density of correlated noises is ∝ 1/ f γ, where f
is the frequency, with γ = 0 being the special case of ‘white
noise’ (i.e. totally uncorrelated noise). There are various terms
used for the correlated noises, and in some works, it is only
the γ = 2 case that is called ‘red noise’, however, other sce-
narios are also commonly referred to as ‘red’, including the
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Fig. 1. Three different randomly selected realisations of the noise model (top row), with durations equal to that of the input light curve, and their
spectra (bottom row).

γ = 1 case of ‘pink noise’. The noise model used in this study is
characterised by γ ≈ 1.2, thus we shall refer to it as correlated
noise or red noise.

In order to get a sufficiently long noise model that retains
its characteristics, yet still differs from realisation to realisation,
we cloned our model via an ARIMA2 process (as input, we
used the publicly available data of Teachey & Kipping 2018) to
clone an HST-like noise. Different segments and their respective
spectra are shown in Fig. 1. Just by looking at Fig. 1, we can eas-
ily deduce that our model is time-correlated and quasi-periodic;
these properties result in the distortion of the transit parameters.
Converting into the magnitude system used during the fitting, the
red noise model has a mean value of ≈6.3 mmag and a standard
deviation of ≈586.9 mmag.

2.2. Solving the light curve

The simulated noisy transit light curves were solved using two
different software programmes: FITSH/lfit and TLCM. Here, we
present a brief description of the relevant fitting processes.

The first code, lfit, uses an extended Markov chain Monte
Carlo (XMMC) algorithm to minimise χ2 during the fitting
process, while the error estimation is done through refitting to
synthetic data sets (EMCE) and XMMC (Pál 2009). Although it
accomplishes the fitting process reasonably quickly, it does not
account for the correlated noise. We treated tC, p, b2, and ω as
free parameters, while P, u1, and u2 were set to the input val-
ues. A typical light curve is shown in Fig. 2. In this study, we fit
10,000 light curves using this software.

2 Autoregressive Integrated Moving Average.
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Fig. 2. Typical example of a simulated noise transit light curve (upper
panel, red), its lfit solution (upper panel, blue) and the residuals (lower
panel). Note: both during the ingress an egress phases, the blue curve
is shifted to the left of the simulated points, meaning that purely the
presence of correlated noise can induce TTV-like phenomena. The dif-
ference between the simulated and best-fit curves during these phases is
emphasised using the two inset plots.
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Fig. 3. Same simulated light curve shown in Fig. 2 (upper-left panel, in red), along with the fitted transit light curve via TLCM (upper-left panel, in
blue) and the residuals (lower-left panel). Note: the TTV-like phenomena is not present in this case, as is visible on the two inset plots. The upper-
right panel shows the residuals (or, ideally, the identified noise) with cyan, while the red curve denotes the fitted correlated noise. The residuals of
the noise fitting are shown on the bottom-right panel.

The second code, TLCM, utilises a generic algorithm to min-
imise the logarithmic likelihood, a simulated annealing refines
the fit, and MCMC is used to estimate the error bars (Csizmadia
2020). In this fitting procedure, tC, p, a/RS, and b were treated as
free parameters, while in this case, P, u1, and u2 were set to their
input values as well. As the limb darkening was known a priori,
we chose to fix u1,2 in both fitting codes, even though Csizmadia
et al. (2013); Agol et al. (2020) suggest that leaving them as free
parameters would increase the precision of the planetary radii.
However, TLCM allows for the handling of the correlated noise
using the wavelet formulation routines of Carter & Winn (2009),
which are built from the Daubechies fourth-order wavelet basis
(Daubechies 1988) . For further details, we refer to Paper I. These
describe the red noise in terms of σw (white component) and
σr (red component). As this method is more time-consuming,
we solved only 1500 light curves using this procedure. For a
tentative comparison, Fig. 3 left column shows the same sim-
ulated light curve as Fig. 2. We note that the analysis of the
nature of the correlated noise component is beyond the scope of
this paper.

There are several other applications of wavelets in exoplan-
etary science. Wu et al. (2010) and Li et al. (2019) performed
model fits to transit light curves in the wavelet domain in the
context of the Data Validation of the Kepler Science Opera-
tions Control and the performance of the Kepler Science Data
Processing Pipeline in relation to limb-darkened transit model-
fitting and multiple-planet search algorithms. Jenkins (2002)
used a wavelet-based approach to characterise the correlated
noise processes imposed onto transit light curves of the Kepler
light curves (Jenkins et al. 2020) due to stellar variability.

2.3. Analysis of the resulting datasets: Statistical moments

The distributions of the datasets compiled in this way were ana-
lyzed primarily through their statistical moments. The third and
fourth central moments for a univariate data, X1, X2, . . . , XN , is

given by:

gµ =

∑N
i=1

(
Xi − X

)µ
/N

σµ
, (1)

where X is the mean (the first moment), σ is the standard devia-
tion (the positive square root of the second central moment, the
variance), and µ ∈ {3, 4}.

In the case of µ = 3, g3 is called the skewness of the distribu-
tion. As the skewness of a normal distribution is zero, negative
skewness results from data that are skewed left (i.e. the left tail is
long relative to the right tail), while a positive value for g3 means
data that are skewed right (i.e. the right tail is long relative to the
left tail).

In case of µ = 4, g4 is the kurtosis of the distribution. The
kurtosis of a Gaussian distribution is 3, meaning that kurtosis
values larger than 3 indicate data that are heavy-tailed, while a
kurtosis lower than 3 implies a light-tailed distribution.

3. Results

To examine the distortion caused by the red noise, we calculated
three sets of solutions with the different fitting algorithms and
compared the best-fit values of tC, p, b2, and ω that were the
result of different noise models or fitting algorithms. The noise
characteristics (correlated and uncorrelated parts) were chosen to
be identical. As we made use of a simulated transit light curve,
we knew the true values of the fitted parameters and we were
able to compare the actual differences to the error terms given by
the fitting algorithms. We emphasise that prior knowledge of the
transit parameters does not influence the fitting and error estima-
tion processes. This is enforced by selecting wide fitting intervals
(i.e. uniform priors) for each parameter.

First, we compared the results of the linear optimisation
approach of lfit for both noise models. Figure A.1 shows the dis-
tribution of the absolute errors of the fitted parameters, while
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Fig. A.2 compares the experienced errors (the difference of
the input and fitted parameters) to the error estimate calcu-
lated by the algorithm itself. We then compared the correlated
noise dataset from Figs. A.1 and A.2 to the wavelet-based light
curve solutions of TLCM. The absolute and relative error dis-
tributions resulting from these two (generally different) fitting
algorithms and their statistical momenta are shown in Figs. A.3
and A.4.

There are two kinds of light curve solutions computed by
TLCM: the statistical median within the region of acceptance
(where all MCMC solutions are statistically indistinguishable
from the data) and the single best-fit solution. We compared
these solutions to test the robustness of our methods. Comput-
ing the cumulative distribution function for the two types of
solution, the two-sample Kolmogorov–Smirnov test allows the
comparison of the two distributions (see e.g. Feigelson & Babu
2012). Exploring this statistic for the tC, p, b, and a parame-
ters, we may conclude that the resulting p-value of 1 means
that the null hypothesis (that the two cumulative distribution
functions are equal) is acceptable. The parameters presented in
Figs. A.3. and A.4. are calculated from the median solution, how-
ever, this means that the selection of solutions should be of no
consequence.

3.1. Time of midtransit

The lfit algorithm reproduces the experienced error of tC in
the case of white noise only, but it has been found to be too opti-
mistic when red noise arises. The distributions of the resulting
tC values can be seen in Figs. A.1–A.4 (upper-left panels).

The comparison between the two cases (white noise only
and red noise only) solved via lfit yields the following results
(Figs. A.1 and A.2). The median of the distribution of the abso-
lute error in case of the uncorrelated noise model is 0 and in the
red noise cases, it is ∼2.6 s (within the estimated uncertainty of
6.2 s and it is, therefore, insignificant). For both histograms, the
presence of correlated noise increases the variances by roughly
an order of magnitude (by a factor of 17.7 and 23.7). Visually,
this appears as a broader histogram with long ’tails’, where the
parameters describing the fitted transit light curve have values
much different than the original ones. For a Gaussian distri-
bution, the variance of the relative error distribution is unity
and, indeed, for the white noise case, this has been repro-
duced. However, in the red noise case, we may conclude that
the uncertainties are ∼5.4 times underestimated by lfit on
average. The negative values of the skewness of every distri-
bution suggest that tC tends to be overestimated, meaning that
the fitted light curves are shifted more often to the right of the
true midtransit.

Comparing the wavelet-based approach of TLCM to the
white assumption of lfit while using the same red noise model
for the simulations (Figs. A.3, A.4), we find that the median of
these absolute and relative error distributions is also ∼0. While
the variance of the absolute distribution is about 17.7 times lower
than for the case of the lfit data, the proper error estimation of
the wavelet-formulation results in a variance that is ∼9.6 times
lower where the relative errors are concerned. The skewness is
also negative in these cases, while the kurtosis of this more com-
plex approach is lower for both the absolute and relative errors
(4.7 and 1.1 times, respectively). Visually, this translates to a lack
of elongated tails, and in the case of Fig. A.4, it exhibits a nar-
rower distribution. We note that the small discrepancies between
the values of the statistical momenta shown in Figs. A.2 and A.3
are due to the differences in bin sizes.

3.2. Ratio of the planetary and stellar radii

The top right panels of Figs. A.1–A.4 show the absolute and rela-
tive errors for the fitted values of p. In examining the differences
between the effects of the white and correlated noises when only
the white noise is accounted for (Figs. A.1 and A.2), we find
a similar behaviour to what was observed for tC. All four dis-
tributions share a median value ∼0 (the value of 10−5 is lower
than the average estimated uncertainties of 20.1 × 10−5). How-
ever, the reduced variances in the parameter determined by the
lfit algorithm is increased by a factor of 18.0 and 27.3 when
the red noise appears (and we, of course, do not account for it).
Combining this with the kurtosis values, we find that fitting the
light curves simulated using correlated noise results in more out-
liers. The negative skewness mean that, for both noise models,
p tends to be underestimated more often via lfit.

The benefits of the wavelet-based approach can clearly be
seen from the data in Figs. A.3 and A.4. The median resulting
from the fitting done via TLCM (−7.5× 10−5) is negligible com-
pared to the average uncertainties of 91.8 × 10−5. The variances
for the absolute and relative cases are lower by a factor of 1.5 and
20.4, respectively. The negative values for the skewness of both
distributions suggest that the radii are also overestimated more
often. The values of the kurtosis (1.707 and 1.625), along with
the higher values for the variance, suggest that the white assump-
tion leads to a broader distribution consisting of more outliers.
The comparison of the distribution from the untreated corre-
lated noise to a Gaussian distribution suggest that the estimated
uncertainties are underestimated by a factor of 5.4 as well.

3.3. Impact parameter

The absolute and relative errors of b2 are shown in the bottom
left panels of Figs. A.1–A.4. Here, we witness a very similar
behaviour to that of the already discussed parameters.

The difference between the untreated correlated noise and
the purely white noise models are similar to the cases of tC and
p (Figs. A.1 and A.2). The median of all four distributions is
0, while the variance is lower by a factor of 19.4 and 24.0 for
the light red noise cases. The negative skewness values for the
distribution of the absolute and relative errors for the two distri-
butions suggest that with both noise types, the impact parameter
tends to be overestimated. In both distribution types, the kurtosis
is lower for the correlated noise cases (10.760 and 2.030 com-
pared to 17.584 and 2.751). Visually, we see broader histograms
with tails for the red noise when comparing the two noise mod-
els that are caused by outliers, where the fit did not converge to
the true value of b.

Examining the cases of the treated correlated noise (Figs. A.3
and A.4), we see that the median of these two distributions is ∼0,
however, this is the only case out of the four studied parameters
where the wavelet-based handling of the red noise yields abso-
lute errors that have a broader distribution (with a variance that is
1.3 times higher). The handling of the red noise by TLCM leads
to better estimated uncertainties, meaning that the relative errors
have a narrower distribution, where the variance is 35.1 times
higher for the linear pattern detection cases. As the skewness of
the distribution constructed from the wavelet-based solutions is
also negative, we may conclude that the impact parameter has a
tendency to be overestimated. The kurtosis values of the wavelet-
based result of 1.808 and 1.688 also suggest that there are more
outliers with the white assumption. In comparison to a Gaussian
distribution, we find that for the latter case, the uncertainties are
underestimated by about 4.9 times.

A107, page 5 of 11



A&A 675, A107 (2023)

Observed transit count

T
T

V
 [

s]

-50

-25

0

25

50

75

1 2 3 4 5 6 7 8 9 10
Observed transit count

T
T

V
 [

s]

-75

-50

-25

0

25

50

1 2 3 4 5 6 7 8 9 10
Observed transit count

T
T

V
 [

s]

-75

-50

-25

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

Fig. 4. Simulated TTV detection that results purely from the red noise as there is no input TTV into to the signal. Left panel: fitted tC values and
the statistically estimated error bars from MCMC without handling the noise, resulting in a significant TTV signal. Middle panel: tC values after
fitting the correlated noise through wavlet formulation, with no significant TTV. Right panel: same as the left panel, but with error bars increased
5.4 times, and with no significant TTV.

3.4. ω parameter

The distributions of the absolute and relative errors of the
ω parameter (proportional to the transit duration) for the two
noise models and two different fitting approaches are shown on
the lower right panels of Figs. A.1–A.4.

The comparison between the light curve solutions from the
two noise models when solving the resulting light curves with
a software based on white assumption yields similar results to
the ones seen with the previous parameters, as in the ∼0 medi-
ans are accompanied by variances that are 11.3 and 24.4 times
larger for the correlated cases (the value of 6 × 10−3 d−1 is negli-
gible compared to the average uncertainties of 0.03 day−1). The
negative skewness suggest that the ω parameter is also underesti-
mated more often. The lower values for the kurtosis of red noise
error distributions combined with the larger variances, suggest a
broader distribution with more outliers.

Comparing the results from the wavelet-based approach, we
also see similar features to those seen before (Figs. A.3 and
A.4). The median is also ∼0 and the variances are 2.5 and
287.7 times larger for the cases where the noise is not mod-
elled. This latter value suggests that the uncertainties from the
wavelet-based approach are overestimated; this is most likely
down to error propagation and, as a result, the comparison of the
relative errors should be treated carefully. The negative skew-
nesses of −0.427 and −0.337 also mean that the ω parameter
tends to be underestimated. The narrower, tailless distributions
of the TLCM results correspond to kurtosis values of 1.333 and
0.926. When comparing the red noise cases with linear pattern
detection to a Gaussian distribution, we find that the uncertainty
ranges are ∼5.1 times underestimated.

3.5. Possible application: Transit-timing variations

As we discussed above, fitting a transit light curve with corre-
lated noise that is not handled properly displays two main flaws:
(i) the fit does not necessarily converge to the true value of the
parameters that describe the light curve and (ii) the error bars for
said parameters tend to be severely underestimated. This could,
for example, manifest itself in TTV-like phenomena (see Figs. 2
and 3).

Taking a randomly selected segment from our fitted tC
database and plotting it against a simulated multiple transit
observation number (Fig. 4, left panel), we get an apparent
transit-timing variation. This effect is purely the result of the red

noise, as we have no TTV in the input data. As discussed above,
the statistical error estimate within the white noise assumption
is too optimistic. When handling the noise with the wavelet
approach, however, no such significant effect may be found
(Fig. 4, middle panel), meaning that the light curve solution
is consistent. Scaling the error bars of the estimated time of
midtransit by 5.4, as calculated from the bootstrap-like error
estimation, the significance of the previously shown false TTV
disappears (Fig. 4, right panel). We note that, in reality, this
number should be derived for each transit event individually. We
interpret the consistency of the transit midtimes as a spectacular
proof of the wavelet approach.

4. Summary

In this paper, we present the benefits of the wavelet formula-
tion as described in Carter & Winn (2009) and implemented by
the code TLCM as a means of analysing the transit light curves
in the presence of time-correlated noise. We created a cloned
noise model through an ARIMA process and used its different
realisations for a bootstrapping-like approach in order to get a
statistically significant amount of data of the parameters that
characterise the exoplanet via the Mandel–Agol model (Mandel
& Agol 2002). We also fit multiple light curves with FITSH/lfit,
which does not account for the red noise.

Modelling the red noise allows for the proper estimation of
the uncertainty ranges of each parameter. When comparing the
histograms of the relative errors from the two different fitting
procedures (Fig. A.4), we see a much narrower distribution in
the TLCM-case, the variances of which are close to unity; in
turn, this means that the error bars are correctly estimated. This
suggests that modelling the correlated noise in this way provides
reliable and consistent results for the light-curve solutions.

In order to answer the underlying question about the amount
of distortion caused by the correlated noise, we compared the
results to a white-noise model. We have found that without the
proper treatment of the red noise, it biases the transit parameters
significantly. This is manifested in two ways: (i) the distribution
of the parameters is much broader in the correlated case and it
has significant tails, meaning there is a heavy under- or over-
estimation of said parameters and (ii) the estimated error bars
display an approximately five-fold underestimation.

We have found, through extensive testing, that the simul-
taneous fitting of the transit itself and the red noise through
a wavelet formulation can handle both these issues reasonably
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well. Our analysis may also be regarded as a way to estimate
the uncertainties in the parameters describing the transit, with-
out handling the noise within a given fitting software. We have
also found that the effects of the correlated noise may mimic
TTVs, making the treatment of red noise especially useful in this
special case.
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Appendix A: Histograms of the distribution of the
examined parameters
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Fig. A.1. Distribution of the differences between the input parameters and the fitted parameters for the red- and white-noise models, shown in red
and blue, respectively. The median, variance, skewness, and kurtosis of the distributions is also shown.
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(tC,input-tC, fit)/tC,err

Re
la

tiv
e 

fre
qu

en
cy

-30 -20 -10 0 10 20 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Correlated noise
White noise

Med. = 0.500

Var. = 29.254

Skew. = -0.479

Kurt. = 1.703

Med. = 0

Var. = 1.236

Skew. = -1.169

Kurt. = 2.604

(pinput-pfit)/perr

Re
la

tiv
e 

fre
qu

en
cy

-30 -20 -10 0 10 20 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Correlated noise
White noise

Med. = 0.500

Var. = 29.310

Skew. = -0.939

Kurt. = 2.354

Med. = 0

Var. = 1.078

Skew. = -1.372

Kurt. = 3.341

(b2
input-b

2
fit)/b

2
err

Re
la

tiv
e 

fre
qu

en
cy

-30 -20 -10 0 10 20 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Correlated noise
White noise

Med. = 0

Var. = 24.132

Skew. = -0.777

Kurt. = 2.030

Med. = 0

Var. = 1.007

Skew. = -1.170

Kurt. = 2.751

(ωinput-ωf it)/ωerr

Re
la

tiv
e 

fre
qu

en
cy

-30 -20 -10 0 10 20 30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Correlated noise
White noise

Med. = 0.208

Var. = 28.184

Skew. = -0.728

Kurt. = 2.007

Med. = -0.036

Var. = 1.154

Skew. = -1.066

Kurt. = 2.345

Fig. A.2. Distribution of the differences between the input parameters and the fitted parameters, scaled with the estimated uncertainties, for the
red- and white-noise models, shown in red and blue, respectively. The median, variance, skewness, and kurtosis of the distributions is also shown.
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Fig. A.3. Distribution of the differences between the input parameters and the fitted parameters for the same correlated noise model, without the
noise fitting (red, i.e. same as in Fig. A.1) and with the red noise handled through wavelet transformation (blue). The median, variance, skewness,
and kurtosis of the distributions is also shown.
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Fig. A.4. Distribution of the differences between the input parameters and the fitted parameters for the same correlated noise model, without the
noise fitting (red, i.e. same as on Fig. A.2) and with the red noise handled through wavelet transformation (blue), scaled with the uncertainties
estimated from the fitting. The median, variance, skewness, and kurtosis of the distributions is also shown.
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