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The changing climate of the Arctic has a significant impact on
permafrost stability. Retrogressive thaw slumps (RTS) are an
indicator of degrading hillslope permafrost but difficult to detect
with earth observation data because RTS are small (<10 ha), highly
dynamic and scattered across a large and remote area. Therefore,
the potential of DL was tested to detect RTS in high-resolution
PlanetScope satellite data in combination with auxiliary datasets.
For this task, the DL architecture Unet++ performed best
compared to other state-of-the-art models (Unet, DeepLabv3).
The approach was tested for six different regions located in Russia
and Canada. Good results (maxIoU: 0.39 to 0.58) were achieved
for four areas whereas no satisfying results were derived for the
remaining two areas. Hence, this requires improvement of the
fully automated DL-approach by including more diverse and high-
quality training datasets to increase spatial transferability. Current
implementations also include the upscaling to RTS hot-spots
across the Arctic by testing the approach for Sentinel-2 data
providing full Arctic coverage and free data access [2].

Abb. 4 Workflow for calving front extraction based on multi-spectral input data
from Landsat-8 (upper). Exemplary calving front time series for Jakobshavn
Isbrae glacier 2013-2021 with seasonal dynamics (middle) and deep snakes
algorithm COBRA for gapless calving front extraction (lower). [Loebel, Heidler]
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Recent advances in artificial intelligence, especially in the field of
deep learning (DL), have allowed new insights into cryospheric
systems. Nowadays, an abundance of satellite imagery, new
developments in deep learning algorithms and easy accessibility to
computational power enable new potentials for data processing
and analysis. Here, we present a variety of deep learning
applications for cold and polar regions providing new possibilities
for observing and monitoring the cryosphere with remote sensing
data. The presented examples showcase how dynamics of
permafrost features, glacial lakes, glacier and ice shelf fronts, as
well as supraglacial lakes are revealed from earth observation data
and artificial intelligence.

The presented examples highlight the benefit of DL-based feature
extraction from remote sensing data for cryospheric research. The
results outperformed approaches with traditional image
processing techniques or made the detection of certain features
possible at all, even though, mostly segmentation tasks were
addressed and solved with improved or modified versions of a
common Unet . In return, this means that many more advances
from artificial intelligence research have to be explored and
transferred to cryospheric research questions including time series
analysis, DL-based change detection techniques or future
predictions of cryospheric change.

Thaw Slump

Arctic Hot-Spots

The influence of supraglacial meltwater accumulation on the
stability of ice shelves remains poorly constrained. Hence, the
monitoring of supraglacial lake formation and lake dynamics is of
high importance. The automated classification of supraglacial lakes
in optical imagery is performed with a Random Forest classifier
whereas the more challenging SAR data required an DL-based
approach with a ResUnet. The combined machine learning
approach achieved classification accuracies (F1-score) of approx.
93% for SAR and 95% for optical imagery. Based on this, bi-weekly
maximum lake extents for six Antarctic ice shelves were mapped
between 2015 and 2022. The high transferable and scalable
implementation will allow regular monitoring of supraglacial lakes
in Antarctica in the future [5].

Future: Deep Snakes for Calving Front Delineation (COBRA)

Workflow: Calving Front Extraction for Tidewater Glaciers

Results: Dense Time Series of Calving Front Change

Abb. 2 Retrogressive Thaw Slumps (RTS) in PlanetScope satellite data (black
boundaries) and in the field (upper). Classification probabilities of the model
output and Arctic hot-spot regions for RTS (lower). [Nitze]

Abb. 1 Study area locations (upper) and potential artificial intelligence
applications to the mountain cryosphere based on remote sensing data (lower)
[1, Baumhoer].

Glacial lakes can be an indicator for glacier retreat, ice mass loss,
changes in ice flow and risk by Glacial Lake Outburst Floods
(GLOF). Automated mapping of glacial lakes in high mountain
areas is limited by manual an semi-automated approaches.
Therefore, the deep convolutional neural network GLNet was
designed to automatically detect glacial lakes from multi-source
remote sensing data including optical, SAR and elevation
information. The neural network was trained on 660 images
selected from twelve sites across the Himalaya. The classification
results achieved an F1-score between 0.70 and 0.97 depending on
the four test regions scattered across the Himalaya. The promising
results are a first step towards the generation of a consistent
glacial lake dataset for the entire Himalaya [3].

Detected Glacial Lakes

Abb. 3 Workflow for automated glacial lake detection with GLNet and examples
of detected lakes (yellow boundaries) [Kaushik]

Continuously tracking glacier front change is essential to
understand glacier dynamics and for constraining ice sheet
models. The abundance of satellite imagery enables continuous
and automated mapping of calving front locations. Ice mélange,
clouds and difficult illumination conditions complicate the
automated extraction of tidewater glacier calving fronts with
traditional image processing techniques. Therefore, a DL-based
approach was chosen by training the convolutional neural network
UNet with different input data derived from Landsat-8 imagery
(e.g. single band, multi-spectral, textural features). The model was
trained on 585 calving front positions from 18 different glaciers
(2013-2019) and tested against 143 fronts from 25 glaciers (2020,
2021) in Greenland and Antarctica. It was shown that the
integration of multi-spectral bands leads to more accurate
predictions but textural and topographical inputs can easily lead to
overfitting and do not show improvements for all glaciers. Overall,
a mean distance error of 52.7 ± 2.2 m and a F1-score of 99 % was
achieved for multi-spectral input data [4].

Current developments go even one step further by creating direct
front predictions instead of solving a segmentation task. This deep
snakes approach called ‘COBRA’ creates direct line predictions by
combining DL and active contour models. This results in more
accurate front delineations for glaciers in Greenland and quicker
calculations as post-processing can be skipped. Still, some
drawbacks remain as training time increases compared to
segmentation models and a generalization to Antarctica is not yet
possible.

Antarctica‘s coastline is fringed with floating ice shelves restraining
the discharge of upstream grounded ice. The buttressing effect
decreases when certain ice shelf areas are lost or ice shelves
disintegrate completely with important implications for ice sheet
dynamics and sea level rise. Therefore, it is important to
continuously monitor ice shelf front positions which is only
possible with Sentinel-1 SAR data being independent from polar
night and clouds. The challenging task of front extraction is
performed with a HED-Unet [6]. This DL-model architecture
combines segmentation and edge detection in one. The accuracy
compared to manual front delineation is 209±12 m (5.2 pixel) for
dual polarized imagery and 432±21 m (8.8 pixel) for single
polarized imagery. Frontal movement can be determined with
higher accuracies of 63±68 m (1.6 pixel) for dual and 107±126 m
(2.7 pixel) for single polarized imagery. The automatically extracted
fronts (>19.000) are available at the EOC Geoservice and are
updated on a monthly basis to provide a continuous and ongoing
time series of Antarctic ice shelf front change [7,8].
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Abb. 5 Automated classification of supraglacial lakes in multi-sensor remote
sensing data based on Random Forest and ResUNet and final fusion of the
classification results. [Dirscherl]

IV. Mapping Supraglacial Lakes
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Abb. 6 Calving front change in Pine Island Bay since 2015 automatically extracted
from Sentinel-1 SAR data with the HED-Unet. The circles highlight the very detailed
front positions and different calving front dynamics are shown in the upper right
plot [7].
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