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Introduction: Ground motion observations on planetary
objects (planetary seismology) are a prerequisite for a de-
tailed understanding of their interior structure and evolution.
On all Apollo missions from 1969 to 1972 seismometers were
installed on the moon and led to important discoveries of
Moon’s deep earthquakes, its internal structure, as well asits
near surface material properties. Several attempts to build
on these early missions and deploy seismic sensors on other
planets failed until in November 2018 the INSIGHT mission
landed successfully on Mars deploying a single site setup
with a 3-component broadband and a 3-component short-
period sensor that both operate ever since. Despite the rel-
atively moderate seismic activity a number of revolutionary
new discoveries could be made [1], [2, and special issues].

In the past few years the dramatic progress of com-
mercially operated spacecraft (e.g. SpaceX), the success
with reusable rocket engines, as well as the international
competition (USA, Europe, India, China) to explore space,
has led to a substantial acceleration of activities in the design
and preparation of ambitious future space mission. It is likely
that following unmanned exploratory missions to Moon and
Mars manned outposts will follow. Half a century after the
Apollo missions, several lunar missions are planned including
the Commercial Lunar Payload Services (CLPS), the Lu-
nar Geophysical Network (LGN), and the Artemis Program.
Spacecraft technology is evolving such that in the near future
payload restrictions are likely to further decrease. To prepare
for future manned and unmanned observatories, potential
sites will be explored with geophysical means. This may
involve gravity, electro-magnetic, and seismic observations.

Active seismic experiments are ideal to image the near
surface structure of planetary objects. The imaging of the
near surface structure - in particular on the moon - has strong
practical implications. First, the race is on to detect ice-
bearing rocks near the surface from which water could be
extracted and used as a resource for manned missions [3],
[4]. Second, due to the substantial bombardment of the lunar
surface with meteorites due to the lack of an atmosphere,
observatories or habitats may have to be build underground.It
has been proposed that cavities from ancient lava flows exist
below the lunar surface that could be used as natural cavities
in which to place infrastructure [5].

The current mission plans with geophysical exploration
focus on static seismic sensor (arrays) that would be restricted
in the area they can explore. This abstract shortly summa-
rizes the proposal of German Aerospace Center, Ludwig-
Maximilians University Munich and Technical University
Munich to go beyond these restrictions and develop concepts
for mobile seismic arrays that work in an autonomous way
using robot technology.

The focus of the proposed project is on aspects of ex-
perimental design and optimization of the seismic sensing
topology as well as on automated data processing and anal-
ysis, rather than robotic aspects. The scientific challenges
include theunderstanding of wavefield effectsof icy rocks
and caves in a strongly scattering environment, the provision
of optimal source-receiver configurationsto detect them,
as well as anintegrated data-processing work flowfrom
observation to subsurface image including thequantification
of uncertainties. The outcome will be detailed technical
specifications that can support the hard/soft implementation
of the entire system in future missions.

In the following we will outline two main aspects of the
proposed project in more details. First, it is investigations
related to planetary seismology as one of the planetary ex-
ploration tools; second, it is the realisation of this tool on
multi-robot system, which allows to introduce adaptivity into
a seismic sensing.

Planetary seismology:Seismology is one of the most
important tools for near surface imaging not only on our
planet Earth but also on extraterrestrial bodies like the Moon
and Mars. During the Apollo lunar missions five seismome-
ters were deployed on the near side of the Moon between
1969 and 1972 [6], [7], four of them operating continuously
until 1977. Despite the sparsity of this lunar seismic network,
important conclusions on the internal structure and seismic
sources could be drawn [8]: deep moonquakes [9], [10], the
periodicity of seismic activity due to tides [11], [12], [10], as
well as extremely strong scattering and low attenuation near
the surface for wavefields generated by impacts [9]. However,
precise data analysis was hampered by a lack of sensitivity
of the deployed seismometers as well as by unstable time
synchronization of recording systems [13].

From the late 1970s it took more than 40 years until
another milestone in planetary seismology was reached: In
November 2018 the NASA’s InSight (Interior exploration
using Seismic Investigations, Geodesy, and Heat Transport)
mission deployed a set of geophysical instruments on the
surface of Mars. The InSight scientific payload includes
the Seismic Experiment for Interior Structure (SEIS; [14],
[1]) that records seismic activity on Mars. This single-
point setup has allowed a large range of interesting seismic
observations from the thermal effects on the lander, local
to regional marsquakes, dust storms, as well as wavefields
generated actively by the (eventually failed) attempts to push
the heat probe into the Mars surface [15], [1], [2], [14].
The processing of the InSight data enabled the location of
marsquakes, and the determination of some internal bound-
aries from travel-time inversion, as well as receiver function
analysis [16]. The InSight observations have also highlighted

1



the strong impact of rotational motions (e.g., induced by
atmospheric effects or lander vibrations (Philippe Lognonné,
personal communication) motivating the future inclusion of
rotational motion sensing in mission concepts, as envisaged
in the EU-funded PIONEERS project [17].

The ongoing race to explore the moon as a first human
outpost on the way to Mars leads to a number of prepara-
tory measures that are planned using unmanned missions.
These include identification of appropriate landing sites,the
search for water (ice) in the near-surface rockmass, and the
identification of possible subsurface cavities that may allow
lowering manned observatories and protecting them from
impacts. To achieve these goals imaging methods need to be
devised that lead to experimental setups that are realizable in
the next decades. From a physical point of view, gravitational,
electromagnetic, and seismic wavefields provide observables
that may allow constraining the desired types of structural
heterogeneities. It is expected that ground-penetrating radar
and active seismic imaging have similar resolution power of
the near-surface. In our proposal we focus on theseismic
wavefield imaging, further exploring recent progress in in-
cluding wavefield gradient observations that improve the
resolution of near-receiver subsurface structure [18], [19].

It is well-known that seismic wavefields on the Moon
have a very different character compared to Earth: due to the
lack of any water molecules in the rock mass, the intrinsic
attenuation of the seismic wavefield is dramatically reduced
[20], [21], [22]. On the other hand, due to the bombard-
ment with interplanetary objects and the lack of atmosphere
and weathering phenomena, the top part of the lunar crust
is highly shattered (regolith) and characterized by extreme
scattering. This poses a tremendous challenge for seismic
imaging problems, that we aim to explore in this project. On
the other hand, the strong scattering offers the opportunity
to make use of coda interferometric methods, that allow
the estimation of impulse functions between station pairs of
seismic networks [23], [24], [25] that can be used to image
subsurface structure. Applications on lunar seismograms
have been reported by [26], [27]. We further aim at breaking
new ground with exploring the potential of direct gradient
observations (strain, rotations) in this interferometry-based
imaging workflow with the specific application to lunar seis-
mic experiments.

Data science technologies (in particular supervised deep-
learning approaches) are entering the field of seismic inverse
problems in particular with the opportunity to dramatically
reduce the computational requirements and speed up the
time-to-image at the expense of a previously well-trained
neural network. This tool set will be explored in the project
when optimizing imaging [28] and experimental design [29]
procedures towards a potential implementation in an au-
tonomous, mobile robotic array setting. It is clear that a lunar
active seismic experiments will have to minimize data size
and computational requirements with compressive sensing
concepts [30].

To test these concepts, high-end wave simulation tech-
nologies are required. To this end, parallel solvers that are
implemented on a local cluster (including GPU technology)
as well as SuperMUC-NG, the supercomputer at the Leibniz
Rechenzentrum Munich) will be used. Random seismic
wavefield calculations in 3D are computationally expensive,
have only recently been possible, and they themselves consti-
tute an active research field. However, it is straight forward
to initialize lunar models with random heterogeneities of
appropriate statistical properties [22] and access to large-
scale supercomputers enables the calculation of synthetic
wavefields in realistic frequency ranges. The problem of
imaging in such scattering media is substantially less well

developed.
In summary, this leads to the followingseismological

research questions with specific applications to lunar seismol-
ogy:
• What is the most efficient way to model near-surface wave
propagation through strongly scattering media (regolith)?
• What are characteristic observables of ice-bearing rocks,
cavities, and other relevant objects in strongly scattering
media (regolith)?
• What are optimal observables, experimental and inversion
strategies to image subsurface structures under such condi-
tions?
• What criteria can be defined that can steer an autonomous
mobile seismic array towards exploring relevant structures?

Multi-Agent Seismic Exploration: Ever since the suc-
cessful landing of the Sojourner rover on Mars in 1997
robotic platforms have been indispensable for planetary ex-
ploration missions. However, only recent missions such as
InSight [14], [1], ROSETTA [31] or the Mars2020 Perse-
verance have included instruments that acquire seismic or
electro-magnetic data either passively or actively (e.g. ground
penetrating radar, active seismics). For further planetary mis-
sions such as ExoMars or Dragonfly seismic data instruments
build an essential part of the platforms.

The aforementioned missions employ a single robotic
platform. However, for future planetary missions we envision
the use of multiple robotic platforms that are specifically
designed to image a planet’s subsurface in a cooperative
and autonomous manner. Such a multi-agent concept for
seismic exploration has been e.g. proposed by the Planetary
Science Institute (PSI), USA, that will act as a scientific
partner in this proposal. The proposed Autonomous Roving
Exploration System (ARES) consists of multiple small rovers
that are able to autonomously conduct a seismic survey with
an active source on the Moon (or other object) to image the
near-surface structure [32]. The concept foresees one large
stationary lander that acts as a seismic source and multiple
small mobile rovers equipped with geophones. Independent
of PSI, the authors from DLR have proposed a similar concept
but with a higher degree of autonomy [33], [34], [35]. Our
concept envisions a fully distributed multi-agent network
where one mobile rover is equipped with a seismic source
that can be relocated. Hence, there is no central station
necessary such that a higher flexibility in the seismic survey
can be achieved. Furthermore, thanks to the network aspect
of this concept we are able to design movement strategies that
position the rovers at optimal sampling positions to capture
certain features in the subsurface. This will allow to the
implement adaptive sensing strategies. To realize such a
system it is required to i) formulate the requirements and
design communication, timing and localization components
for multi-agent networks, and ii) provide a suitable numerical
method to enable an autonomous subsurface imaging over a
network of drones.

Distributed multi-agent exploration plays a central role in
the proposed system. Such exploration relies on cooperative
collection and processing of data within a network known
as “in-network processing” [36]. A distributed estimationis
done such that each agent makes “local” computations and
shares intermediate results with its neighboring agents. The
key to these computations is a decomposition of a network-
global cost function into “local” sub-objectives. Such algo-
rithms can be dichotomized intoconsensus-based algorithms
[37], [38] anddiffusion-based algorithms[39], [34]. Within
recent years distributed inference techniques slowly found
their way into subsurface imaging, e.g. for seismic sensor
networks. The main goal of such an approach is to achieve
an image of the subsurface at each sensor without a central
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entity that collects all seismic data from the network but
based on sensor-to-sensor data exchange. A few works dealt
with the problem of distributed subsurface imaging in the
past. For instance, in [40] a decentralized form of the full
waveform inversion is presented. However, for certain update
steps a central node is still required which does not enable
a fully distributed implementation. Authors in [41], [42]
propose distributed approaches for travel time tomography
and ambient noise tomography in seismic networks using
randomized gossip and consensus-based techniques. In [34]
the authors from DLR propose a distributed implementa-
tion of the full waveform inversion using above mentioned
diffusion-based techniques. Reconstructed images at each
sensor are close or same as traditionally achieved images
using a central node. Yet all mentioned approaches have not
been investigated within the scope of a mobile multi-agent
system and scattering subsurface media.

Within the project in the context of general inverse PDE
problems present in seismic inversion methods, a special fo-
cus will be placed on Bayesian learning techniques. Bayesian
methods have been used for these purposes in the past [43],
[44]. In [44], a distributed exploration of a gas field is
addressed by using a factor graph representation for the
reconstruction. However, these approaches do not cover the
case of inverse problems for seismic exploration. The advan-
tage of using a Bayesian, probabilistic framework consistsof
obtaining uncertainty measures of the reconstructed physical
parameters. Such measures can then be exploited to design a
movement strategy that identifies optimal sampling positions
of the agents for an improved parameter estimation. For
instance, based on inferred model parameters intelligent path
planning schemes can be designed [45], [46]. The methods
rely on optimal experiment design techniques to identify sam-
pling locations that reduce parameter uncertainty. Closely
related information-driven approaches [47] use information-
theoretic metrics to guide agents to more informative lo-
cations. We note that such techniques have not yet been
investigated in the context of seismic imaging to improve
estimation of subsurface parameters.

Based on the above described state-of-the-art for multi-
agent exploration the following research questions are identi-
fied:
• What is an efficient method to adapt a seismic imaging
method suitable for scattering media to distributed data pro-
cessing for a multi-agent network?
• What is the optimal movement strategy in conjunction with
the imaging method that positions the agents at sampling
points such that relevant subsurface features are resolved?
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