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Motivation

● 7,500 active satellites as of Mar 2023 [1]

○ This is expected to grow to 58,000 by 2030 [2]

● 36,500 space debris objects larger than 10 cm[1]

● Increasing density of objects in orbit → more conjunctions

● 43,000 conjunctions with probability of collision (PoC) > 1E-6 occur monthly in LEO [3]

○ Results in approx. two actionable alerts per week per satellite [4]

● On-call personnel needs to be available 24 hrs/day, year-round

How will this scale, when conjunctions are to rise exponentially?

-> Automation is necessary!

LEO: Low Earth Orbit
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Why isn’t the Go/No Go decision automated?

Simple PoC/miss distance thresholds result in 

unnecessary maneuvers. 

Analysts also consider:

● Trustworthiness of the source of the data

● Conjunction Data Message (CDM) evolution

for the event

● Inconsistency in orbit determination process 

resulting in jumping values

● K factor — indicates if dilution region is reached 

● Prior experience/intuition 

Can AI capture the complexity of this decision-making process? 

Fig. 1: Probability dilution occurs when K < 1 [5]

K: Covariance scaling factor

PoC: Probability of Collision



4

Key contents

• Synthetic CDM series generation

• Classification by analysts

• Results on human decision-making

GSOC CDM classification 
project

AI for time series 
classification 

• AI model selection

• Model architecture

• Results from AI classification

CDM: Conjunction Data Message

GSOC: German Space Operations Center
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GSOC CDM classification project: studying decision-making

● 20 high risk events classified by GSOC analysts

● 4-5 CDMs per event, go/no go decision made by 4 analysts

● Survey conducted to understand rationale behind decisions

● Limitation: analysts are working with foreign objects

Data source:

● Privateer[6]

○ Only 1 CDM per event, time to TCA < 1 hour 

○ Radial component of covariance larger than along-track component 

○ No hard body radius info 

Synthetic generation of time series and covariance manipulation necessary

TCA: Time of closest approach

CDM: Conjunction Data Message

GSOC: German Space Operations Center
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Synthetic CDM series generation

Nominal trends across CDM series as TCA 

nears:

• Covariance decreases 

• Covariance ellipses converge 

• Mean position (X,Y,Z) in new CDM lies 

within covariance of previous CDM 

Monte Carlo simulation used to generate 

1000 CDMs per event. 4-5 CDMs selected.

Median values of the 20 events:

• Probability of collision: 6.855E-5

• Miss distance: 720 m

Fig. 2: Covariance evolution. 4 is furthest from TCA.

TCA: Time of Closest Approach

CDM: Conjunction Data Message
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GSOC CDM processing tool 

● For each CDM, the TCA is recomputed 

○ Recalculating miss distance by propagating objects around original TCA  

○ Covariance is the same as in the CDM, but PoC is updated 

● Outputs seen by analysts

○ Summary text file

○ Approach geometry

○ PoC in the B-plane

○ Maneuver cost (delta-V) and impact on PoC

○ Covariance history 
PoC: Probability of Collision

TCA: Time of Closest Approach

CDM: Conjunction Data Message

GSOC: German Space Operations Center
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CDM processing — summary text file 

Fig. 3: Summary of event evolution. Entries followed by ‘GSOC’ pertain to those computed by the processing tool. 
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CDM processing — approach geometry 

Fig. 4: Conjunction approach geometry in N-T and R-T frames. R: Radial direction in RTN frame

T: Along-track direction in RTN frame

N: Normal direction in RTN frame
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CDM processing — B-plane analyses

Fig. 5: Probability of Collision in B-plane. Centered on Obj 1. Fig. 6: Maneuver cost in B-plane. Centered on Obj 1.
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CDM processing — covariance history

Fig. 7: Covariance history in N-T and R-T frames. Centered on final CDM.

R: Radial direction in RTN frame

T: Along-track direction in RTN frame

N: Normal direction in RTN frame

CDM: Conjunction Data Message
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Survey specifics 

● Time taken to make decision

● Impression of mission 

○ Definitely maneuver

○ Wait for another CDM if possible

○ Maneuver not necessary, but close call 

○ Not a concerning event 

● Why did you make this decision?

● Rank importance of each feature in text file/plots for decision-making

CDM: Conjunction Data Message
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Which features affect decision-making?

Rank Analyst A Analyst B Analyst C Analyst D

1 PoC PoC PoC, position uncertainty, 
B-plane plot

PoC

2 Miss distance Miss distance, position 
uncertainty

- Position uncertainty

3 B-plane plot - - Relative position in RTN

4 Position uncertainty Cov. history plot Relative position in RTN Collision geometry

5 Relative position in 
RTN, relative velocity

Relative position in 
RTN

Miss distance B-plane plot

6 - B-plane plot Collision geometry Miss distance 

7 Collision geometry Collision geometry Cov. history plot Cov. history plot

8 Cov. history plot Relative velocity Relative velocity Relative velocity

PoC: Probability of Collision
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Key findings from GSOC CDM Classification Project 

● With tie-breaker: 10 Go’s and 10 No-Go’s

● Analysts disagreed on 4 out of 20 cases

● Tricky cases characterized by

○ Inconsistent CDM trends

○ Covariance — how much uncertainty is acceptable to make a decision?

● Elements of subjectivity — risk averseness varies 

● Time taken

○ 2 minutes per event, 40 minutes for 20 events

Can AI mimic human decision-making in this context?

CDM: Conjunction Data Message
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Selecting an AI model

● Model needs to

○ Learn from multiple features (PoC, miss distance, etc.)

○ Accept a time series input  

○ Produce many-to-one classification result 

● Long Short-Term Memory (LSTM)

○ Type of recurrent neural network (RNN) 

○ Avoids vanishing gradient problem

○ Information flows through cell states

○ Forget gate, Input gate, Output gate — manipulate 

stored memory 

Fig. 8: Recurrent Neural Network.

xt is an input, ht is an output [7].

Fig. 9: LSTM model with 2 time steps [7].



16

LSTM architecture

● Built using Keras in Python

● 20 samples, 5 time steps, 10 features 

● Feature scaling using Z-normalization

● Hyperparameter optimization (KerasTuner)

● Performance metric: test accuracy

○ evenly split classes

● 4 layers 

Pads shorter 
sequences

270 units
Dropout_rate = 

0.2
1 unit, sigmoid 

activation

Masking layer LSTM layer Dropout layer Dense layer

Fig. 10: Graph of sigmoid function [8].

LSTM: Long Short-Term Memory
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Model results

High Test Loss with High Test Accuracy: high prediction error on misclassified cases! 

Fig. 11: Loss and Accuracy performance on training (12 samples) and test (8 samples)  sets.
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LSTM application findings

● Model is learning from training data and improving predictions 

● Tendency to overfit — perfect training accuracy

● More training data needed 

● Test set accuracy is 75%

Scope for model improvement:

● Feature selection

● Different feature scaling methods 

● Explainable AI with ranked feature importance

LSTM: Long Short-Term Memory
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Next steps: scaling! 

● Critical CDM time-series generation

○ Cases which would typically involve humans

○ Database for training both humans/AI decision-makers 

○ Work with GSOC analysts to classify events 

● Train LSTM model with more samples (~1000 events) 

○ How well can AI learn from time series data in this context? 

○ Can it adapt to new target labels? 

● AI needs to be reliable and explainable 

○ Hybrid AI-human decision-making systems 
LSTM: Long Short-Term Memory

CDM: Conjunction Data Message

GSOC: German Space Operations center
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Thank you! 

Pavithra Ravi 
Munich Aerospace PhD Scholar

DLR Oberpfaffenhofen | Space Operations and Astronaut Training
82234, Weßling, Germany

Always open to questions, feedback, collaborations! ☺

Pavithra.Ravi@dlr.de

mailto:Pavithra.Ravi@dlr.de


21

References

[1] ESA, Space debris by the numbers, 2023.

https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers

[2] United States Government Accountability Office, Large Constellations of Satellites, 2022.

https://www.gao.gov/assets/gao-22-105166.pdf

[3] D. McKnight, E. Dale, R. Bhatia, C. Kunstadter, M. Stevenson, M. Patel,

A Map of the Statistical Collision Risk in LEO, 2022.

[4] B. Virgili, T. Flohrer, H. Krag, K. Merz, S. Lemmens,

CREAM - ESA’s Proposal for Collision Risk Estimation and Automated Mitigation, 2019. 

[5] L. Chen, X. Bai, Y. Liang, K. Li, Orbital Data Applications for Space Objects, 2017.

[6] https://www.privateer.com/

[7] C. Olah, Understanding LSTM Networks, 2015.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[8] S. Sharma, Activation Functions in Neural Networks, 2017.

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers
https://www.gao.gov/assets/gao-22-105166.pdf
https://www.privateer.com/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6


22

APPENDIX
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Synthetic CDM series generation

1. Assume TCA stays constant across CDMs

• Time to TCA ~ T-1 for last CDM, other CDMs ‘created’ at 8 hour intervals

2. Obtain ‘difference factors’ for CDM parameters

• Trends from CDM series in the Kelvin dataset & GSOC events

3. Apply these to parameters that change over CDM series, for each object:

• State vector (X, Y, Z, XDOT, YDOT, ZDOT)

• 21 covariance terms 

4. Convert states to RTN frame and calculate miss distance, relative state vector

Covariance needs to be symmetric and positive semi-definite! 
TCA: Time of closest approach

CDM: Conjunction Data Message

GSOC: German Space Operations center
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Synthetic CDM series generation

5. Ensure covariance is symmetric and positive semi-definite

• Covariance_posdef = Covariance x CovarianceTranspose

• Rescale to keep magnitudes realistic, with Cov(T,T) >> Cov(R,R) and Cov(N,N)

6. Calculate probability of collision with these perturbed CDM parameters

• PoC is a function of: states, covariances, and hard body radius of the 2 objects

• Hard body radius used in Privateer CDM found using optimization algorithm

Run Monte Carlo simulation with 1000 trials using the randn function on the difference factors 

R: Radial direction in RTN frame

T: Along-track direction in RTN frame

N: Normal direction in RTN frame

CDM: Conjunction Data Message
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Survey results

• Analysts did not agree on a maneuver decision for 4 out of 20 cases 

• Characteristics of 4 ‘problem’ cases:

Analyst A Analyst B Analyst C

Case 1 (G) PoC above threshold, 
and is consistent 

(N) Position uncertainties too 
high to decide

(G) PoC slightly above threshold

Case 2 (G) PoC slightly above 
threshold, consistent over 

CDMs

(N) PoC is critical, but wait for 
better position uncertainty

(G) Low normal separation

Case 3 (G) Critical PoC, PoC and 
radial separation are 

consistent

(N) PoC is critical, but wait for 
better position uncertainty

(G) Critical PoC, consistent over 
CDMs

PoC: Probability of Collision

CDM: Conjunction Data Message
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Survey results

Analysts disagree when faced with:

• High position uncertainties 

• Inconsistent CDM trends 

Analyst A Analyst B Analyst D (not C)

Case 4 (G) Critical PoC (N) High PoC, but high radial 
uncertainty in both objects

(G) Critical PoC

PMAX: Maximum PoC

PoC: Probability of Collision

CDM: Conjunction Data Message

K value: Covariance scaling factor

Additional insights:

• With tie-breaker: 10 go’s - 10 no-go’s

• PoC maneuver threshold is 1E-4, but no 

covariance threshold

• 80% agreeability between analysts
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Data preparation

● Input data

○ n_samples = 20, number of cases to process 

○ n_timesteps = 5, max. number of CDMs 

○ n_features = 10 (PoC, miss distance, etc.)

● Feature scaling

○ Z-normalization

● Pad shorter sequences with ‘9’s — to be ignored by model

xscaled = 
x - μ

σ

x : value from series

μ : mean of series

σ : standard deviation of series 
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Parameter selection and model setup

● Hyperparameter tuning

○ KerasTuner

● Gradient-based optimization: Adam optimizer 

○ Fast convergence

○ Adaptive learning rate

● Loss function: Binary cross-entropy

○ -[ y * log(p) + (1 - y) * log(1-p)]

○ y: true label, p: prediction

● Performance metric: test accuracy 

○ Evenly split classes

> AI for Collision Avoidance - Go/No Go Decision-Making  > Pavithra Ravi et al.DLR.de  •  Slide 28

Parameter Value

LSTM layer units 270

Learning rate 0.001

Dropout rate 0.2

Epochs 35

Batch size 2

LSTM: Long Short-Term Memory

Adam: ADAptive Moment estimation 


