AI for Collision Avoidance – Go/No Go Decision-Making

International Conjunction Assessment Workshop 2023 **Pavithra Ravi**, Andrea Zollo, Ralph Kahle, Hauke Fiedler German Aerospace Center (DLR)

Motivation

- 7,500 active satellites as of Mar 2023^[1]
 - $\circ~$ This is expected to grow to 58,000 by 2030 $^{[2]}$
- 36,500 space debris objects larger than 10 cm^[1]
- Increasing density of objects in orbit \rightarrow more conjunctions
- 43,000 conjunctions with probability of collision (PoC) > 1E-6 occur monthly in LEO^[3]
 Results in approx. two actionable alerts per week per satellite^[4]
- On-call personnel needs to be available 24 hrs/day, year-round

How will this scale, when conjunctions are to rise exponentially? -> Automation is necessary!

Why isn't the Go/No Go decision automated?

Simple PoC/miss distance thresholds result in unnecessary maneuvers.

Analysts also consider:

- Trustworthiness of the source of the data
- Conjunction Data Message (CDM) evolution for the event
- Inconsistency in orbit determination process resulting in jumping values
- K factor indicates if dilution region is reached
- Prior experience/intuition

Can AI capture the complexity of this decision-making process?

Fig. 1: Probability dilution occurs when $K < 1^{[5]}$

K: Covariance scaling factor PoC: Probability of Collision

Key contents

GSOC CDM classification project

- Synthetic CDM series generation
- Classification by analysts
- Results on human decision-making

Al for time series classification

- Al model selection
- Model architecture
- Results from AI classification

CDM: Conjunction Data Message GSOC: German Space Operations Center

GSOC CDM classification project: studying decision-making

- 20 high risk events classified by GSOC analysts
- 4-5 CDMs per event, go/no go decision made by 4 analysts
- Survey conducted to understand rationale behind decisions
- Limitation: analysts are working with foreign objects

Data source:

- Privateer^[6]
 - $\circ~$ Only 1 CDM per event, time to TCA < 1 hour
 - Radial component of covariance larger than along-track component
 - No hard body radius info

Synthetic generation of time series and covariance manipulation necessary

TCA: Time of closest approach CDM: Conjunction Data Message GSOC: German Space Operations Center

Synthetic CDM series generation

Nominal trends across CDM series as TCA nears:

- Covariance decreases
- Covariance ellipses converge
- Mean position (X,Y,Z) in new CDM lies within covariance of previous CDM

Monte Carlo simulation used to generate 1000 CDMs per event. 4-5 CDMs selected.

Median values of the 20 events:

- Probability of collision: 6.855E-5
- Miss distance: 720 m

Fig. 2: Covariance evolution. 4 is furthest from TCA.

TCA: Time of Closest Approach CDM: Conjunction Data Message

GSOC CDM processing tool

- For each CDM, the TCA is recomputed
 - Recalculating miss distance by propagating objects around original TCA
 - Covariance is the same as in the CDM, but PoC is updated
- Outputs seen by analysts
 - Summary text file
 - Approach geometry
 - PoC in the B-plane
 - Maneuver cost (delta-V) and impact on PoC
 - Covariance history

PoC: Probability of CollisionTCA: Time of Closest ApproachCDM: Conjunction Data MessageGSOC: German Space Operations Center

CDM processing – summary text file

PRJ	DT [d]	DT [d]	DATA		TCA [UTC]	DIST [km]	ANGL [deg]		OBJ	1_SIGMA [km]		0BJ2	2_SIGMA [km]	PMAX (K<1)	PTRUE (K>1)	к
TST TST	1.0	1.0	CDM GSOC	2023-02-28 2023-02-28	10:16:08.624 10:16:08.624	0.723 0.723	0.0 (85.0 (0.116 0.116	0.896 0.896	0.081) (0.081) (0.307 0.307	1.882 1.882	0.320) 0.320)	0.00e+00 2.80e-04	6.73e-05 2.18e-04	0.0 0.7
TST TST	1.4	1.4	CDM	2023-02-28	10:16:08.624	0.886	0.0 (85.0 (0.127 0.127	1.010 1.010	0.085) (0.085) (0.312 0.312	2.133 2.133	0.321) 0.321)	0.00e+00 6.53e-04	5.95e-05 2.54e-04	0.0 0.4
TST TST	1.7		GS0C	2023-02-28	10:16:08.620	0.884	0.0 (85.0 (0.131 0.131	1.527 1.527	0.086) (0.086) (0.326 0.326	2.292 2.292	0.329) 0.329)	0.00e+00 2.12e-04	3.00e-05 1.61e-04	0.0 0.7
TST TST	2.0	1.7	CDM GSOC	2023-02-28 2023-02-28	10:16:08.624 10:16:08.625	1.006 1.006	0.0 (85.0 (0.132 0.132	1.601 1.601	0.087) (0.087) (0.331 0.331	2.961 2.961	0.329) 0.329)	0.00e+00 3.43e-04	2.98e-05 1.59e-04	0.0 0.5
TST TST	2.4	2.0	CDM GSOC	2023-02-28 2023-02-28	10:16:08.624 10:16:08.689	0.873 0.566	0.0 (85.0 (0.155 0.155	1.613 1.613	0.091) (0.091) (0.338 0.338	3.192 3.192	0.342) 0.342)	0.00e+00 3.00e-04	7.89e-06 1.44e-04	0.0 0.5
		2.4	CDM GSOC	2023-02-28 2023-02-28	10:16:08.624 10:16:08.637	1.731 1.726										

Fig. 3: Summary of event evolution. Entries followed by 'GSOC' pertain to those computed by the processing tool.

CDM processing – approach geometry

Fig. 4: Conjunction approach geometry in N-T and R-T frames.

R: Radial direction in RTN frame T: Along-track direction in RTN frame N: Normal direction in RTN frame

CDM processing – B-plane analyses

Fig. 5: Probability of Collision in B-plane. Centered on Obj 1.

Fig. 6: Maneuver cost in B-plane. Centered on Obj 1.

CDM processing – covariance history

Fig. 7: Covariance history in N-T and R-T frames. Centered on final CDM.

R: Radial direction in RTN frame T: Along-track direction in RTN frame N: Normal direction in RTN frame CDM: Conjunction Data Message

Survey specifics

- Time taken to make decision
- Impression of mission
 - Definitely maneuver
 - \circ Wait for another CDM if possible
 - \circ $\,$ Maneuver not necessary, but close call $\,$
 - Not a concerning event
- Why did you make this decision?
- Rank importance of each feature in text file/plots for decision-making

Which features affect decision-making?

Rank	Analyst A	Analyst B	Analyst C	Analyst D	
1	PoC	PoC	PoC, position uncertainty, B-plane plot	PoC	
2	Miss distance	Miss distance, position uncertainty	_	Position uncertainty	
3	B-plane plot	-	-	Relative position in RTN	
4	Position uncertainty	Cov. history plot	Relative position in RTN	Collision geometry	
5	Relative position in RTN, relative velocity	Relative position in RTN	Miss distance	B-plane plot	
6	-	B-plane plot	Collision geometry	Miss distance	
7	Collision geometry	Collision geometry	Cov. history plot	Cov. history plot	
8	Cov. history plot	Relative velocity	Relative velocity	Relative velocity	

PoC: Probability of Collision

Key findings from GSOC CDM Classification Project

- With tie-breaker: 10 Go's and 10 No-Go's
- Analysts disagreed on 4 out of 20 cases
- Tricky cases characterized by
 - $\circ \quad \text{Inconsistent CDM trends}$
 - Covariance how much uncertainty is acceptable to make a decision?
- Elements of subjectivity risk averseness varies
- Time taken
 - 2 minutes per event, 40 minutes for 20 events

Can AI mimic human decision-making in this context?

Selecting an AI model

- Model needs to
 - Learn from multiple features (PoC, miss distance, etc.)
 - Accept a time series input
 - \circ Produce many-to-one classification result
- Long Short-Term Memory (LSTM)
 - Type of recurrent neural network (RNN)
 - Avoids vanishing gradient problem
 - Information flows through cell states
 - Forget gate, Input gate, Output gate manipulate stored memory

Fig. 8: Recurrent Neural Network. x_t is an input, h_t is an output^[7].

Fig. 9: LSTM model with 2 time steps^[7].

LSTM architecture

- Built using Keras in Python
- 20 samples, 5 time steps, 10 features
- Feature scaling using Z-normalization
- Hyperparameter optimization (KerasTuner)
- Performance metric: test accuracy
 - evenly split classes
- 4 layers

Fig. 10: Graph of sigmoid function^[8].

LSTM: Long Short-Term Memory

Model results

Fig. 11: Loss and Accuracy performance on training (12 samples) and test (8 samples) sets.

High Test Loss with High Test Accuracy: high prediction error on misclassified cases!

LSTM application findings

- Model is learning from training data and improving predictions
- Tendency to overfit perfect training accuracy
- More training data needed
- Test set accuracy is 75%

Scope for model improvement:

- Feature selection
- Different feature scaling methods
- Explainable AI with ranked feature importance

Next steps: scaling!

- Critical CDM time-series generation
 - Cases which would typically involve humans
 - Database for training both humans/AI decision-makers
 - Work with GSOC analysts to classify events
- Train LSTM model with more samples (~1000 events)
 - How well can AI learn from time series data in this context?
 - Can it adapt to new target labels?
- Al needs to be reliable and explainable
 - Hybrid AI-human decision-making systems

LSTM: Long Short-Term Memory CDM: Conjunction Data Message GSOC: German Space Operations center

Thank you!

Pavithra Ravi Munich Aerospace PhD Scholar DLR Oberpfaffenhofen | Space Operations and Astronaut Training 82234, Weßling, Germany

Always open to questions, feedback, collaborations! 🕄

Pavithra.Ravi@dlr.de

References

- [1] ESA, Space debris by the numbers, 2023.
- https://www.esa.int/Space_Safety/Space_Debris/Space_debris_by_the_numbers
- [2] United States Government Accountability Office, Large Constellations of Satellites, 2022.
- https://www.gao.gov/assets/gao-22-105166.pdf
- [3] D. McKnight, E. Dale, R. Bhatia, C. Kunstadter, M. Stevenson, M. Patel,
- A Map of the Statistical Collision Risk in LEO, 2022.
- [4] B. Virgili, T. Flohrer, H. Krag, K. Merz, S. Lemmens,
- CREAM ESA's Proposal for Collision Risk Estimation and Automated Mitigation, 2019.
- [5] L. Chen, X. Bai, Y. Liang, K. Li, Orbital Data Applications for Space Objects, 2017.
- [6] https://www.privateer.com/
- [7] C. Olah, Understanding LSTM Networks, 2015.
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- [8] S. Sharma, Activation Functions in Neural Networks, 2017.
- https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

APPENDIX

Synthetic CDM series generation

- 1. Assume TCA stays constant across CDMs
 - Time to TCA ~ T-1 for last CDM, other CDMs 'created' at 8 hour intervals
- 2. Obtain 'difference factors' for CDM parameters
 - Trends from CDM series in the Kelvin dataset & GSOC events
- 3. Apply these to parameters that change over CDM series, for each object:
 - State vector (X, Y, Z, XDOT, YDOT, ZDOT)
 - 21 covariance terms
- 4. Convert states to RTN frame and calculate miss distance, relative state vector

Covariance needs to be symmetric and positive semi-definite!

TCA: Time of closest approach CDM: Conjunction Data Message GSOC: German Space Operations center Synthetic CDM series generation

- 5. Ensure covariance is symmetric and positive semi-definite
 - Covariance_posdef = Covariance x Covariance^{Transpose}
 - Rescale to keep magnitudes realistic, with Cov(T,T) >> Cov(R,R) and Cov(N,N)
- 6. Calculate probability of collision with these perturbed CDM parameters
 - PoC is a function of: states, covariances, and hard body radius of the 2 objects
 - Hard body radius used in Privateer CDM found using optimization algorithm

Run Monte Carlo simulation with 1000 trials using the *randn* function on the difference factors

R: Radial direction in RTN frame T: Along-track direction in RTN frame N: Normal direction in RTN frame CDM: Conjunction Data Message

- Analysts did not agree on a maneuver decision for 4 out of 20 cases
- Characteristics of 4 'problem' cases:

	Analyst A	Analyst B	Analyst C		
Case 1	(G) PoC above threshold, and is consistent	(N) Position uncertainties too high to decide	(G) PoC slightly above threshold		
Case 2	(G) PoC slightly above threshold, consistent over CDMs	(N) PoC is critical, but wait for better position uncertainty	(G) Low normal separation		
Case 3	(G) Critical PoC, PoC and radial separation are consistent	(N) PoC is critical, but wait for better position uncertainty	(G) Critical PoC, consistent over CDMs		

PoC: Probability of Collision CDM: Conjunction Data Message Survey results

	Analyst A	Analyst B	Analyst D (not C)
Case 4	(G) Critical PoC	(N) High PoC, but high radial uncertainty in both objects	(G) Critical PoC

Analysts disagree when faced with:

- High position uncertainties
- Inconsistent CDM trends

Additional insights:

- With tie-breaker: 10 go's 10 no-go's
- PoC maneuver threshold is 1E-4, but no covariance threshold
- 80% agreeability between analysts

PMAX: Maximum PoC PoC: Probability of Collision CDM: Conjunction Data Message K value: Covariance scaling factor Data preparation

- Input data
 - n_samples = 20, number of cases to process Ο
 - n_timesteps = 5, max. number of CDMs Ο
 - n_features = 10 (PoC, miss distance, etc.) Ο
- Feature scaling
 - Z-normalization

$$x_{scaled} = \frac{X - \mu}{\sigma}$$

Pad shorter sequences with '9's – to be ignored by model \bullet

> x : value from series μ : mean of series σ : standard deviation of series

(20,5,10)

Timesteps

Features

Parameter selection and model setup

- Hyperparameter tuning
 - KerasTuner
- Gradient-based optimization: Adam optimizer
 - Fast convergence
 - \circ Adaptive learning rate
- Loss function: Binary cross-entropy

 -[y*log(p) + (1 y)*log(1-p)]
 y: true label, p: prediction
- Performance metric: test accuracy
 - Evenly split classes

Parameter	Value		
LSTM layer units	270		
Learning rate	0.001		
Dropout rate	0.2		
Epochs	35		
Batch size	2		