
ScOSA on the Way to Orbit: Reconfigurable
High-Performance Computing for Spacecraft

Daniel Lüdtke∗ , Thomas Firchau† , Carlos Gonzalez Cortes∗ , Andreas Lund‡ , Ayush Mani Nepal∗ ,
Mahmoud M. Elbarrawy‡ , Zain Haj Hammadeh∗ , Jan-Gerd Meß† , Patrick Kenny‡ , Fiona Brömer∗ ,
Michael Mirzaagha‡ , George Saleip∗ , Hannah Kirstein† , Christoph Kirchhefer† , Andreas Gerndt∗§
∗Institute for Software Technology
German Aerospace Center (DLR)

Braunschweig, Germany

†Institute of Space Systems
German Aerospace Center (DLR)

Bremen, Germany

‡Institute for Software Technology
German Aerospace Center (DLR)

Weßling, Germany

§University of Bremen
Bremen, Germany

Abstract—The German Aerospace Center (DLR) is developing
ScOSA (Scalable On-board Computing for Space Avionics) as
a distributed on-board computing architecture for future space
missions. The ScOSA architecture consists of commercial off-
the-shelf (COTS) and radiation-tolerant nodes interconnected by
a SpaceWire network. The system software provides services
to enable parallel computing and system reconfiguration. This
allows ScOSA to adapt to node errors and failures that COTS
hardware is susceptible to in the space environment. In the ongo-
ing ScOSA Flight Experiment project, a ScOSA system consisting
of eight Xilinx Zynq systems-on-chip with dual-core ARM-based
processors and a LEON3 radiation-tolerant processor is being
built for launch on DLR’s next CubeSat in late 2024. In this flight
experiment, not only all 18 cores but also the programmable logic
will be used for high performance on-board data processing. This
paper presents the current hardware and software architecture
of ScOSA. The scalability of ScOSA is highlighted from both
hardware and software perspectives. We present benchmark
results of the ScOSA system and experiments of the ScOSA
system software on ESA’s OPS-SAT in orbit in combination with
a machine learning application for image classification.

Index Terms—COTS, FPGA, SpaceWire, Multi-core, Com-
puter Architecture, Hybrid, LEON3, Reconfiguration, Bench-
mark

I. INTRODUCTION

Spacecraft computers face unique challenges due to the
harsh environment of space. This has led to the development
of special versions of processors and other electronic circuitry
that are tolerant of the radiation and thermal stresses of the
environment. Typically, these specialized processors provide
significantly less computing power than commercial off-the-
shelf (COTS) components used in terrestrial embedded sys-
tems such as cars or smartphones. In addition, the cost of
radiation-tolerant components is typically much higher than
COTS components. On the other hand, the need for much
more on-board processing power is also evident in the space
domain. The amount of sensor and image data generated by
new mission concepts and the still limited communication
bandwidth require a considerable amount of on-board data
processing (OBDP) to achieve the mission objectives. This
is especially true with respect to the capabilities of deep

learning networks that have been proposed for use in OBDP
applications, e.g. [1]. Increased autonomy requirements for
deep space robotic missions also demand high computational
power, as demonstrated by Ingenuity’s flights on Mars [2].

The Scalable On-board Computing for Space Avionics
(ScOSA) architecture is a hybrid distributed computing archi-
tecture that provides high performance on-board processing
while maintaining high reliability compared to traditional on-
board computing approaches. The ScOSA architecture consists
of a set COTS-based high-performance nodes (HPN) and
radiation-tolerant reliable computing nodes (RCN) [3]. All
nodes are connected by a SpaceWire network. The ScOSA
system software provides services to enable parallel computing
and system reconfiguration. This allows ScOSA to adapt to
node errors and failures that COTS hardware is prone to, and to
reconfigure for different mission phases that require different
applications at different times.

An important design goal of the ScOSA architecture is
scalability. The number of nodes and the node architecture
are adaptable to mission requirements. ScOSA systems can
be built with a minimum of three HPNs, two RCNs, one
RCN combined with two HPNs, or with many more nodes of
different types. The ScOSA Flight Experiment, scheduled for
launch in late 2024 on a 12U CubeSat, will combine eight
HPNs and one RCN. The ScOSA architecture is intended
for spacecraft or rovers with high computational requirements
that have sufficient power and thermal capacity to operate the
required number of nodes. The hardware is designed to be
easily scaled to the physical dimensions of CubeSats or larger
satellite structures.

ScOSA has already come a long way on its path to orbit.
The first activities started in 2012 and were continued until
2016 in the On-Board Computer-Next Generation (OBC-NG)
project [4]. The project focused on the development of recon-
figurable COTS-based high-performance on-board computers
for future missions. The research continued with the ScOSA
project [3], which proposed and developed an on-board com-
puter architecture that combined radiation-tolerant hardware
with the OBC-NG components and demonstrated a variety

©2023 IEEE

Published Paper:
D. Lüdtke et al., "ScOSA on the Way to Orbit: Reconfigurable High-Performance
Computing for Spacecraft," 2023 IEEE Space Computing Conference (SCC), 
Pasadena, CA, USA, 2023, pp. 34-44, doi: 10.1109/SCC57168.2023.00015.

https://orcid.org/0000-0002-6758-1562
https://orcid.org/0000-0001-5404-2482
https://orcid.org/0000-0001-5936-9708
https://orcid.org/0000-0002-3828-2088
https://orcid.org/0000-0002-4412-5839
https://orcid.org/0009-0007-1064-0318
https://orcid.org/0000-0001-7539-2393
https://orcid.org/0000-0002-2117-3483
https://orcid.org/0000-0003-1242-0582
https://orcid.org/0000-0003-1788-7173
https://orcid.org/0000-0003-4307-7270
https://orcid.org/0000-0003-2123-3412
https://orcid.org/0000-0002-8051-3425
https://orcid.org/0009-0006-2166-8511
https://orcid.org/0000-0002-0409-8573
https://dx.doi.org/10.1109/SCC57168.2023.00015


of on-board applications from robotics, navigation, command
and data handling, and image processing. A fault-tolerant and
reconfigurable middleware was developed to ensure reliability
and performance. Since 2020, the ScOSA Flight Experiment
has been working to improve the technology readiness level
(TRL) of ScOSA [5] in order to test it in orbit. As part of this
effort, ScOSA has demonstrated the ability to run on-board
data analysis applications in parallel [6].

During the in-orbit testing of ScOSA, benchmark applica-
tions will be run to evaluate the performance of the computer
and the fault detection and mitigation techniques. In addition,
the following four on-board applications will demonstrate
ScOSA’s capabilities:

1) An On-board Data Analysis and Real-time Information
System (ODARIS) that includes an Iridium modem
to directly alert users about relevant observations in
processed camera images [7].

2) An on-orbit rendezvous navigation experiment that pro-
cesses (simulated) LIDAR and camera images [8]. The
experiment includes the ground control to test the full
process of a rendezvous for an on-orbit servicing sce-
nario.

3) An on-board image data compression experiment using
the programmable logic of the FPGA in the HPNs [9].

4) A single event upset (SEU) detection and mitigation
experiment on the HPNs to determine SEU rates and
evaluate fault tolerance mechanisms.

In this paper, we present the hardware and software architec-
ture of ScOSA with a focus on the ScOSA Flight Experiment
and show first results of some preliminary tests.

The remainder of the paper is structured as follows: in
Section II, we present some related work. In Section III, we
describe the ScOSA system in terms of its hardware and in
Section IV in terms of its software components, followed by
the results of two different experiments we performed with the
ScOSA system software in Section V. Finally, we conclude the
paper and give an outlook in Section VI.

II. RELATED WORK

The need for COTS-based on-board computers arose from
two main requirements: the development of low-budget sci-
entific satellites and autonomous missions that require high-
performance computing that space-grade hardware cannot
provide. COTS devices are typically more affordable than
radiation-hardened hardware, but they are more vulnerable
to the space environment. The effect of space radiation on
COTS devices has been studied, for example, by Nikicio et
al. [10]. [11] presented evaluations of COTS failure rates
in space. Several approaches are being considered to enable
COTS devices for the space environment. At the hardware
level, shielding is possible, as well as extensive testing and
careful selection of components [12]. Another approach, which
is more independent of hardware components, is mitigation at
software level.

The high performance capabilities of on-board computers
are particularly important for applications that need to pro-

cess image data, such as vision-based navigation described
in [13] or the NGIS project described in [14]. To meet the
high performance requirements, hybrid architectures combin-
ing radiation-tolerant processors with COTS components have
been proposed. NASA has developed a hybrid architecture
called High Performance, Dependable Multiprocessors [15].
The architecture combines one to two dependable processors
and N independent high-performance COTS processors. The
architecture is supported by a middleware that implements
online load balancing strategies.

More recently, the multiMIND, CHICS, and Leopard
Data Processing Unit (DPU) onboard computers were intro-
duced [16]–[18]. These three solutions are high-performance,
hybrid, fault-tolerant on-board computers based on radiation-
hardened supervisors and the Xilinx Zynq Ultrascale+ COTS
system-on-chip. They implement a number of fault-tolerance
techniques such as SEU and single event latch-up detec-
tion and mitigation, software and hardware isolation, ECC-
protected memory, and hardware redundancy, among others.
On the other hand, the De-RISC and ICU4SAT solutions
are based on RISC-V fault-tolerant processors and FPGA-
based data processing units [19], [20]. The ICU4SAT project
also introduces the use of FPGA-GPUs with the advantages
of reconfigurability and a unified application development
workflow. Also, Vasileios et al. explored in [21] fault-tolerance
techniques for integrating the Zynq FPGA and the Myriad
Vision Processing Unit (VPU) as COTS devices to accelerate
the payload processing. There is a clear need for high-
performance, reliable, and cost-effective hybrid on-board com-
puting solutions. Therefore, we propose a scalable hardware
architecture with as many reliable and high-performance nodes
as needed, creating a distributed system ideal for computation-
ally expensive or highly parallel workloads.

In addition, reconfiguration-based solutions are being con-
sidered for autonomous systems to implement different func-
tionalities with limited computational resources. Bubenhagen
et al. presented in [22] a Dynamically Reconfigurable Process-
ing Module (DRPM) between space-qualified processors and
space-qualified SRAM-based FPGAs for the DPU within the
Solar Orbiter PHI instrument. Our work is interested in static
reconfiguration between COTS-based processors where the
phases of the mission, i.e., the functionalities to be executed,
are known and planned off-line. In addition, our solution uses
reconfiguration as a fault-tolerant mitigation for node failures.

III. SCOSA FLIGHT EXPERIMENT HARDWARE

The hardware configuration for the in-orbit demonstration
of ScOSA consists of an RCN and a total of eight HPNs
distributed across four Multi-HPN Modules (MHMs).

A. Modular System

ScOSA as a system is targeted for those spacecraft that need
the computing power but can also provide sufficient electrical
power. In such spacecraft, the equipment for each subsystem
can usually also be grouped into one or more dedicated boxes,
which are then mounted on the spacecraft structure.



Fig. 1: ICA-UMF modules (red) in a 3U and 6U CubeSat
structure as well as in a customer-specific housing.

Fig. 2: Reliable computing node implemented in an ICA-UMF
module for use in a CubeSat.

For the in-orbit demonstration of ScOSA, only the limited
resources and accommodation space of a 12U CubeSat are
available. In order to meet this challenge, the Integrated Core
Avionics - Unified Module Framework (ICA-UMF) developed
at the DLR will be used.

The Unified Module Framework is based on Compact PCI
(CPCI) Serial Space and includes specifications for a set
of module types, their mechanical characteristics, and their
logical and electrical interconnections. The resulting avionics
systems can be integrated into both CubeSats and stand-
alone enclosures while maintaining compatibility with full-size
CPCI Serial for Space systems [23]. Example integrations are
shown in Fig. 1.

In comparison to CPCI Serial for Space, ICA-UMF defines
a narrower module format with a reduction in width from
100 mm to 94 mm. The reduction in width comes at the ex-
pense of the thermal interface to the mechanics for conduction
cooling. Given the small capacity of a CubeSat for cooling
its subsystems, this is considered an acceptable trade-off.
For the intended target applications in larger spacecraft with
classic boxed equipment, the module width can be increased
to improve thermal contact, or left as is and mounted on
a different mechanical frame that adapts the module to the
standard size. A visualization of an ICA-UMF module with
an RCN is shown in Fig. 2.

CPCI Serial Space uses a backplane to connect modules.
For use in a CubeSat, ICA-UMF features a smaller backplane
but maintains the same interfaces between it and the modules.
This ensures that modules can be tested with commercial CPCI
Serial Space or non-space backplanes.

CPCI Serial Space also defines two logical module types.
Up to two system modules and up to seven peripheral modules

Fig. 3: RCN architecture.

can be used. The redundant system modules are each at
the center of a separate star topology network. For the star
network, CPCI Serial Space allows either PCI Express Serial,
several Ethernet-based standards, or SpaceWire to be used. To
avoid compatibility issues and simplify the module interfaces,
ICA-UMF only uses SpaceWire as it is comparatively simple,
robust, and widely used in the space domain.

In addition to the star network, an optional mesh network
is available that provides a direct connection between each
module. Again, CPCI Serial Space allows different interface
technologies, but ICA-UMF limits the choice to SpaceWire
for the time being.

For the ScOSA Flight Experiment, the four MHMs are
peripheral modules and the RCN is the only system module.

B. Reliable Computing Node (RCN)

The reliable computing node is implemented by a radiation-
tolerant LEON3 processor and a mix of military and automo-
tive grade COTS parts. The COTS parts have been qualified for
space through successful use in a payload on the Eu:CROPIS
mission [24], [25]. Fig. 3 shows the important parts of the
RCN architecture and Fig. 2 the physical implementation.

In addition to SDRAM, the processor is connected to small
Magnetoresistive RAM (MRAM). The memory matrix of
MRAM is radiation resistant and is used to store the critical
boot loader.

A SpaceWire link between the processor and the FPGA
provides access to the rest of the system. A Remote Memory
Access Protocol (RMAP) target core in the FPGA provides
access to the NAND flash controller. The connected NAND
flash devices store multiple copies and versions of the flight
application.

At power-up, the boot loader accesses the NAND flash
via the SpaceWire link and the FPGA to locate and load
the chosen version of the flight application. Once the flight



Fig. 4: HPN architecture.

Fig. 5: MHM architecture.

application has been loaded into RAM and verified to be error
free, it is handed over for execution. The flight application
can then communicate with the rest of the system through the
SpaceWire router.

C. High-Performance Nodes and Multi-HPN Module

The high-performance nodes each consist of a Xilinx
Zynq 7020 System-on-Chip (SoC), which combines two
ARM A9 general-purpose computing cores and an FPGA in
one package, DDR3 RAM, and two NAND flash memories.
The architecture of the HPN is shown in Fig. 4.

The FPGA part of the Zynq SoC is used to add a SpaceWire
router and other external interfaces to the system. An internal
SpaceWire interface to the router is accessible to the processor
cores via the internal data bus. The FPGA also provides room
for additional custom accelerator cores.

The HPNs provide significantly more processing power than
the RCNs, but are considered less reliable. They are therefore
isolated, grouped, and managed by an additional controller on
Multi-HPN modules. Fig. 5 shows the architecture of an MHM
with two HPNs.

The controller on the MHM can turn the HPNs on and off,
monitor their currents and voltages, and provides an additional

Fig. 6: SpaceWire network connections through the backplane.

SpaceWire router that connects the SpaceWire star network
to the HPNs. The controller also provides a serial interface
(UART) switch so that external peripherals can communicate
through both HPNs.

The HPNs are also connected to each other and to the
optional mesh network via the MHM’s backplane connection.

D. SpaceWire Network

Both the Multi HPN modules and the RCN module provide
multiple SpaceWire interfaces to the backplane. Fig. 6 shows
how the backplane connects all the modules.

The blue lines represent the SpaceWire network with the star
topology and the RCN at the center. The green lines represent
the mesh network. Considering that within the modules there
are also SpaceWire routers at each interface, there are multiple
ways to reach each node on the network, even when individual
interfaces or nodes fail.

Fig. 6 also shows external devices connected to the system.
For the ScOSA Flight Experiment, a real-time communication
modem with an externally mounted antenna and a camera are
planned.

IV. SCOSA SYSTEM SOFTWARE

The ScOSA system software enables and unleashes the
full potential of the distributed architecture described in the
previous section. In the following, we present the overall
architecture of the entire software stack as well as the ar-
chitecture of the middleware. We also explain the basic fault-
tolerance and resilience mechanisms and briefly describe how
we generate different configurations and configuration trees
using a model-based systems engineering tool.

A. Middleware & Software Stack

The ScOSA middleware consists of three main compo-
nents [5]:



Applications

Telecommand/Telemetry

Outpost Library

Distributed Tasking Framework

SpaceWire-IPC

Operating System

Hardware

System Management

Reconfiguration Service

Checkpointing Service

Voter Service

System Alert Service

Monitoring Service

Plausability Service

Reintegration Service

System Management Services

Execution Platform

Network Protocol

Fig. 7: ScOSA’s layered software stack [5].

• SpaceWireIPC is a reliable message-passing protocol de-
signed to operate over SpaceWire or Ethernet links [26].
It provides Inter-Process Communication (IPC) over
SpaceWire. The protocol supports error detection and
handling services, including timeouts and delivery ac-
knowledgments, and packet fragmentation for seamless
transmission of large messages from the application layer.

• Distributed Tasking Framework is a distributed version
of the Tasking Framework [27] that allows tasks to
be seamlessly executed on remote nodes. This allows
computationally intensive tasks to be delegated to more
powerful computing nodes or distributed across multiple
nodes. Communication is realized by SpaceWireIPC.

• System Management Services are a set of services de-
signed to provide Fault Detection, Isolation and Recov-
ery (FDIR) techniques to the middleware. They include
the Reconfiguration Service, Monitoring Service, Voting
Service, Updates Service, and Telecommand/Telemetry
Service. The services are mainly implemented as threads
and use the SpaceWireIPC protocol to communicate with
the rest of the nodes and keep the distributed system state
consistent.

SpaceWireIPC and the Distributed Tasking Framework are
being developed as part of ScOSA. Fig. 7 shows a layered view
of the ScOSA software stack. User applications are built on
top of the execution platform and system services. Application
designers use the tasking model to build distributed applica-
tions using the communication and activation capabilities of
the Tasking Framework. The Reconfiguration Service stores
information about task-node mappings, i.e. configurations, for
different system states. Configurations are stored as a tree and
are automatically applied in the event of node failures.

The execution platform is based on two proven technolo-
gies: Tasking Framework and OUTPOST. The Tasking Frame-
work provides an event-driven, multi-threaded task execution
mechanism [27]. On the other hand, OUTPOST [28] is a
modular library that provides a set of common low-level space

system functionalities and the abstraction layer to different
operating systems and hardware platforms. Therefore, ScOSA
supports GNU/Linux and the RTEMS real-time operating
systems. OUTPOST also provides a set of standardized com-
munication protocols for integration into a variety of satellite
buses or even as a standalone product with self-managed
space-to-ground communication. It is currently successfully
used in several DLR satellites, space and launcher missions,
including Eu:CROPIS and MMX [29].

B. Fault-Tolerance & Resilience

ScOSA aims to increase the reliability of the spacecraft by
incorporating several fault-tolerance and resilience techniques.

The most important of these techniques is ScOSA’s ability
to reconfigure its task distribution among its distributed nodes.
This reconfiguration ensures that a node failure can be com-
pensated at any time by reassigning its tasks to the remaining
nodes. However, it is not limited to compensating for node
failures, but is also capable of reassigning a complete new set
of tasks to the distributed system. This feature allows ScOSA
to support different mission phases with the same hardware.
The reconfiguration mechanism is implemented by the Recon-
figuration Service in cooperation with the Monitoring Service
and the SpaceWireIPC module.

SpaceWireIPC provides the feature of reliable messaging,
which means that a transmission must be acknowledged
by the receiver. If the transmission is not acknowledged,
SpaceWireIPC retransmits it three times. After the third time-
out for a response, an alarm is triggered indicating a node-loss
failure. This mechanism is used by the monitoring service to
observe if the nodes in the system are still responding. For
this reason, the service sends heartbeat requests as reliable
messages that must be acknowledged by the receivers. We
leave the ability to monitor the nodes to a special node, called
the coordinator. To monitor the health of the coordinator,
an observer role has been introduced that repeats the above
procedure by sending a heartbeat request to the coordinator.
All other nodes are internally addressed as worker nodes.

The sequence of a reconfiguration due to a node failure is
as follows (see Fig. 8): When a node fails, the Reconfiguration
Service is notified with an error notification sent by the
SpaceWireIPC protocol handler. The service will then inform
all other nodes of the failed node with a UpdateFailedNode
message, immediately followed by a RequestReconfiguration
message containing the ID of the task configuration to which
the nodes should switch. Such a configuration contains the
mapping of tasks to nodes. Many of these configurations must
be kept in the middleware to cover as many scenarios as
possible where nodes may fail. After informing all nodes
of the new configuration, the issuing coordinator waits for
FinishReconfiguration messages from all still-running nodes
indicating that the nodes have switched to the requested
configuration. Meanwhile, the coordinator itself changes the
configuration by finishing all tasks that are still running, then
disabling all connections between tasks and channels so that
no task is triggered for execution, and finally establishing the



other Nodesother NodesCoordinator other Nodes

node loss
UpdateFailedNode

RequestReconfiguration
Configuration i

Apply
Configuration i
to all tasks on

node

FinishReconfiguration

SysReconfFinish
Restart

scheduler

Fig. 8: The messaging sequence between the coordinator and
the other nodes when a node fails.

connections between the tasks and channels that are assigned
to it according to the new configuration. Once all nodes
have applied the new configuration, the coordinator will send
SysReconfFinish messages to all nodes, which will restart their
task schedulers upon receipt.

The entire reconfiguration process is based on precom-
puted configurations. This approach was chosen to ensure
determinism and traceability as well as speed compared to
online strategies. All nodes have the possible configurations
stored in a tree structure, where the tree nodes indicate
the configurations and the edges indicate failed nodes. The
transition from a node C1 along an edge N1 to a node C2
represents the transition from configuration C1 to C2 when
node N1 fails. When a node fails, the selection of the next
configuration during runtime is very fast. In addition, it is easy
for ground operators to track what changes have been applied,
as the pre-computed configuration tree is also available on
the ground. The disadvantage of this approach is that all
scenarios to be covered must be precomputed and included
in the ScOSA system software, which consumes memory. In
addition, if an unforeseen situation occurs, the reconfiguration
algorithm cannot handle it. It will switch to a safe mode and
wait for ground interaction. However, resilience requires that
the system also responds to unanticipated failures and their
effects by maintaining its availability. This is not provided
by a safe mode approach, so we investigate the possibility of
an online reconfiguration algorithm. However, such an online
algorithm may be slower than its offline counterpart, and
the configuration changes will be more difficult for ground
operators to track.

Triple Modular Redundancy (TMR) is a well-known and
widely used technique to counteract soft errors in tasks. A
task is executed three times, either in parallel on different
hardware or sequentially on the same hardware. The three
results are then compared and the majority value is selected.
ScOSA offers the same principle with the Voter Service, but
multiple instances, not just three, of the same task can be run
and their results compared. The service will send an alarm if

no majority can be found among the instances.
If a node fails while executing a task, the current state of

that task is lost. After reconfiguration, the task would start
on a new node with a completely new state. To prevent this
loss of information, ScOSA provides the Checkpoint Service.
It periodically receives the state of a task, stores it in a non-
volatile memory of the hardware and additionally sends it to
another node, which also stores the state in its non-volatile
memory. The receiving node is selected using the configuration
tree mentioned above. The service checks which configuration
will be selected if its own node fails and selects the node from
the new configuration to which the corresponding task will
migrate after this reconfiguration.

C. Model-based Systems Engineering

As described above, ScOSA’s reconfiguration mechanism
is an offline and static approach. All possible configurations
(task-to-node mappings) for the different node states are stored
in memory within the middleware. When a node state changes,
the appropriate configuration is selected by the coordinator
node, which then informs all other nodes of the configura-
tion change. Creating all these configurations covering the
many different combinations of node states is cumbersome,
especially when ScOSA has to support many mission phases
with different task to node mappings. For this reason, we have
developed an automatic configuration generator. The generator
solves a combinatorial optimization problem of mapping tasks
to processing nodes for every node either with an SMT
solver or by using a genetic algorithm while avoiding node
overload [30]. The tool generates a dedicated configuration
tree for each mission phase. The automatic configuration
generator is developed as an extension of DLR’s model-based
systems engineering tool Virtual Satellite (see Fig. 9).

V. FIRST RESULTS

The first flight of a ScOSA on-board computer is planned
for the end of 2024. In addition to the space applications men-
tioned in Section I, a number of benchmarks will be performed
to characterize the system and test all FDIR mechanisms. In
this section, we present two activities to prepare for the ScOSA
Flight Experiment in 2024 and to pre-qualify parts of the
software framework. First, a set of benchmarks is presented
and second, an in-orbit experiment of the ScOSA software
framework on ESA’s OPS-SAT is described.

A. Benchmarks

The ScOSA Flight Experiment system consists of eight
Xilinx Zynq 7020 SoC with dual-core ARM Cortex A9
(ARMv7-A) processors at 886 MHz and 1.0 GB RAM. For
preliminary results, a ScOSA software development model
with three Zynq 7020 modules is used.

We use a set of benchmarks to evaluate the available
computing power and to establish a baseline for future com-
parison. Space applications can vary in nature and complexity,
so we selected a set of general purpose and space-domain
benchmarks and evaluated their applicability to ScOSA [31].



Fig. 9: The automatic configuration generator as an extension
of the model-based systems engineering tool Virtual Satellite.

TABLE I: Benchmark (BM) comparison.

BM Relevance Verifiability Scientific
popularity Openness

Access to
reported

data
Type

Whetstone 0 + + + + + + + + Synthetic
BMsDhrystone 0 + + + + + + + +

LINPACK 0 + + + + + + + + Application
BMsLAPACK 0 + + + + + + + +

TPC - - + + - - 0 General
purpose

CPU BMs
SPCE - - + + - - 0

GeekBench - - + + + + +
MiBench 0 + + + + 0

Embedded
BMs

MediaBench 0 + + + + 0
BDTI 0 0 0 - - -

EEMBC 0 + + + 0 +
GPU4S + + + + + + + + Space

application
BMs

OBPMark + + + + + + + +
(+ +): Excellent. (+): Good. (0): Neutral. (-): Bad. (- -): Worse

Therefore, according to Table I, we selected the following
benchmarks: LINPACK, Dhrystone, and OBPMark [32].

For each benchmark, our evaluation methodology is as
follows:

• Design and implement a single-node ScOSA application
• Design and implement a distributed ScOSA application
• Run the single node and distributed applications locally

on our reference machine1

• Run the single node and distributed applications on the
HPN’s software development model board2

• Analysis results

In the following, a brief summary of the first results of the
study is presented.

1) LINPACK: This benchmark assesses the performance by
generating a dense system of linear equations and measuring

118 core Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz, 128GB RAM,
Ubuntu 20.04.5 LTS

23 x Zynq 7020 SoC, dual core ARM Cortex A9 CPU @ 886 MHz, 1 GB
RAM, Xilinx PetaLinux v2020.2

Event TaskChannel Input

Event Results1

Node 2

LinpackTask1
Results

Collector

Event Results2aLinpackTask2

Event Results3aLinpackTask3

Writer/Reader

Writer

Writer

Reader

Reader

Results2b

Results3b

Node 3

Node 1

Intra-process
link (API call)

Inter-processor
link (SpW/Eth)

Fig. 10: Distributed version of the LINPACK benchmark.

TABLE II: LINPACK benchmark results.

Machine Nodes
LINPACK

Single prec.
MFLOPS

LINPACK
Single prec.

Ratio

LINPACK
Double prec.

Mflops

LINPACK
Double prec.

Ratio

Reference
1 4553 1.00 3515 1.00
2 8799 1.93 6923 1.97
3 13063 2.87 10035 2.85

HPN
1 107 1.00 67 1.00
2 215 2.01 134 2.00
3 321 2.99 201 3.01

Problem size N=1000. Values shown are the average of three runs.

how much time it takes to solve this matrix. The measuring
unit is floating point operations per second (FLOPS) [33].

We are interested in the accumulated performance of the
system. Therefore, we need to parallelize LINPACK. Our
parallelization strategy is to create a LINPACK task to execute
the main loop of the benchmark and assign this task to
each node. Since the LINPACK benchmark score is based on
the rate of random floating-point operations, we consider the
operations of the nodes to be independent; thus, we benchmark
each CPU individually. A result collector task calculates how
many operations per second were achieved by adding up each
CPU result as shown in Fig. 10.

The execution results are shown in Table II. They give us
reference values for the processing power available on the
tested three-node ScOSA computer. They are 320 MFLOPS
for single and 200 MFLOPS for double precision, respectively.

2) Dhrystone: Dhrystone is a non-numeric synthetic bench-
mark that measures source language features of system-
type programming. System-type programming includes fewer
loops, simpler computations, and more branches and function
calls. Thus, Dhrystone evaluates the integer performance of
processors. The unit of measurement is Dhrystone millions of
instructions per second (DMIPS) [34].

In this case, our parallelization strategy is to implement a
map-reduce scheme in ScOSA. Thus, we distribute the Dhrys-
tone independent workload across multiple nodes. As shown in
Fig. 11, the SplitTask distributes and synchronizes the remote
nodes, then each node executes the corresponding number
of Dhrystone loops, and finally the ReduceTask receives the
partial results and computes the global performance measures.

The benchmark results are shown in Table III. We see
that the Zynq 7020 embedded system achieves 1983 DMIPS.
ScOSA’s ability to distribute the workload results in a speedup



Event Results1

Node 2

DhrystoneTask1 ReduceTask

Results2aDhrystoneTask2

Results3aDhrystoneTask3

Writer

Writer

Reader

Reader

Results2b

Results3b

Node 3

Node 1

Data2

Data3

Data1

CPU Benchmark

SplitTask

Writer

Reader

Writer

Reader

CPU Benchmark

CPU Benchmark

Data3

Data2

Event TaskChannel InputWriter/Reader Intra-process
link (API call)

Inter-processor
link (SpW/Eth)

Fig. 11: Distributed version of the Dhrystone benchmark.

TABLE III: Dhrystone benchmark results.

Machine Nodes Dhrystone/second DMIPS Ratio
Reference 1 58,548,383 33323 1.00
Reference 3 175,191,437 99711 2.99

HPN 1 3,483,188 1983 1.00
HPN 3 10,400,857 5920 2.99

Dhrystone loops = 500,000,000. Values shown are the average of three runs.

of 2.99 when the benchmark is run on three nodes.
3) OBPMark: The European Space Agency and the Bar-

celona Supercomputing Center work on a set of benchmarks
called OBPMark (On-Board Processing Benchmarks) that en-
compass software often used on spacecraft [35]. In particular,
we are using the Benchmark #1.1: Image Calibration and
Correction [36].

The original image processing workload consisted of the
pipeline shown in Fig. 12. The input is a set of frames (8
images) and the output is only one processed frame. The
measured result is the total processing time. The parallelization
strategy also includes a map-reduce operation, where the same
pipeline in Fig. 12 is applied to different sections of the
input images. As shown in Fig. 13, the input images are split
horizontally into as many parts as available processing nodes.
The split has to consider an overlapping area because some

Offset
Correction

Bad Pixel
Correction

Particle
Scrubbing

Gain
Correction

Spatial
Binning
(2x2)

Output
Image

Raw
Frames

Fig. 12: OBPMark image processing workload (image adapted
from [36]).

Fig. 13: Image split strategy for the distributed OBPMark
benchmark [32]. S1, S2 and S3 represent the subimages when
splitting for three nodes.

Event ProcFrames1

Node 2

OBPMarkTask1 MergeTask

ProcFrames2OBPMarkTask2

ProcFrames3OBPMarkTask3

Writer

Writer

Reader

Reader

ProcFrames2

ProcFrames3

Node 3

Node 1

SubFrames2

SubFrames3

SubFrames1

CPU Benchmark

System Benchmark

SplitTask

Reader

Reader

CPU Benchmark

CPU Benchmark

Writer

Writer

SubFrames3

SubFrames2

Event TaskChannel InputWriter/Reader Intra-process
link (API call)

Inter-processor
link (SpW/Eth)

Fig. 14: Distributed version of the OBPMark benchmark.

TABLE IV: OBPMark Image Processing benchmark results.

Machine Nodes
OBPMark

Task execution
(milliseconds)

OBPMark
MPixels/s

OBPMark
Ratio

Reference 1 374 22.43 1.00
3 449 18.63 0.83

HPN 1 8660 0.97 1.00
3 4390 1.91 1.97

Processed pixels = 8x1024x1024 = 8.389 MPixels.
Values shown are the average of three runs.

of the pipeline steps require the pixel surrounding values to
calculate the output. This is considered in the design of the
distributed application shown in Fig. 14.

The execution results are reported in Table IV. We can see
an improvement in the processing time for the HPN modules,
but not on the reference machine. To better understand these
results, we present detailed time measurements in Table V.

It shows the time required to execute each task and send
image data through channels. We can observe that it takes
about 230 ms to transmit the approx. 12 MiB of input data
to each task on the remote nodes on the reference machine
and about 1450 ms on the HPN. Thus, the measured data
rates are 52.17 MiB/s and 8.27 MiB/s respectively. Therefore,
the overhead of sending input data to the remote nodes and
sending the partial results back to the first node is significant.
Moreover, on the reference machine, the task execution time
is considerably lower than the time required to send data; thus,
the overall execution time is heavily affected by this overhead,
and we see a decreasing performance when the workload is

TABLE V: OBPMark benchmark detailed execution times.

Reference
milliseconds

HPN
milliseconds

SubFrames1 channel Tx time* 3 33
SubFrames2 channel Tx time* 230 1295
SubFrames3 channel Tx time* 233 1450
ProcFrames1 channel Tx time† 259 1219
ProcFrames2 channel Tx timev 18 195
ProcFrames3 channel Tx time† 15 17

SplitTask execution time 54 293
OBPMarkTask1 execution time‡ 113 2743
OBPMarkTask2 execution time‡ 121 2382
OBPMarkTask3 execution time‡ 195 2355

MergeTask execution time 16 20
Total Execution time 449 4390

Values shown are the average of three runs. Total execution time is the critical path along node 1.
*Input data size = 12185644 bytes
†Output data size = 716832 bytes
‡Number of processed pixels (frames x height x wdth) = 8 x 1024 x 1024



distributed. The HPN case is similar, but the task execution
time and the data transmission time are in the same order of
magnitude, so we can still see a performance improvement.

4) Discussion: The preliminary set of benchmarks selected
and adapted to run as ScOSA applications provide relevant
information about the available computing power. LINPACK
and Dhrystone are commonly used to characterize and com-
pare computer systems, although they are not representative
space applications compared to OBPMark. Thus, the results
presented provide now a baseline against which to com-
pare further improvements in hardware and software, and to
understand how the space environment affects performance.
These results also demonstrate ScOSA’s ability to distribute
workloads across remote nodes for parallel processing. Our
primary interest was to benchmark the Zynq 7020 CPU. For
this purpose, we considered the LINPACK and Dhrystone
benchmarks as an independent workloads: Thus, we reported
the overall system performance as the sum of each CPU
metric. Further testing is required to include the distributed
system synchronization overhead in the performance and to
report more realistic scalability results.

However, the OBPMark Image Processing Benchmark is a
good example of a more realistic space application workload.
We have designed a generic map-reduce ScOSA applica-
tion and developed a distributed version of the OBPMark
Benchmark #1.1: Image Calibration and Correction. A key
difference from the other selected benchmarks is that the
image processing benchmark requires realistic data distribution
to remote nodes. This data transfer adds significant overhead
to the overall execution time and exposes a bottleneck in our
network stack implementation. Thus, the performance metrics
presented are the baseline for understanding the effect of
further improvements in the middleware.

In further activities, we will develop benchmarks to assess
and evaluate the fault tolerance and resilience of ScOSA.
For this purpose, we will collect metrics that can be used
to benchmark a fault tolerance mechanism, such as the time
and memory consumed by the technique, commonly known as
overhead. These benchmarks will then be used to compare the
aforementioned online and offline reconfiguration algorithms.

B. In-orbit Software Experiments on ESA’s OPS-SAT

ESA’s OPS-SAT mission [37] provides a unique opportunity
to test new software ideas and operational concepts directly in
orbit. OPS-SAT is designed to establish a reliable and robust
data processing platform on a satellite using COTS hardware
and open source software. The OPS-SAT computing platform
consists of an Altera Cyclone V SoC with an ARM dual-core
Cortex-A9 MPCore processor running Linux. It also includes a
Cyclone V FPGA. This configuration in OPS-SAT facilitates
the safe execution of open source software and allows the
implementation of high-level programming languages such as
Java and Python to control and monitor the entire satellite.

The OPS-SAT platform was used as a testbed to evaluate the
reconfiguration logic and memory management capabilities of
the ScOSA software. Given the constraint of having only a

single processor available for experimentation on OPS-SAT, it
was not feasible to fully test the reconfiguration logic using
physically separate computing nodes. Nevertheless, the recon-
figurability of the ScOSA software was evaluated using two
virtual nodes implemented as separate processes on the same
processor. To support this, a Java application was developed
that implemented the NanoSat Mission Operations Framework
(NMF) provided by ESA for the purpose of monitoring and
controlling the satellite. This Java application was responsible
for setting the desired attitude mode, initiating the camera, and
forwarding captured images to the ScOSA middleware using
the SpaceWireIPC protocol.

In addition to evaluating the reconfiguration logic, the
memory management capabilities of the ScOSA software were
tested by implementing neural network inference on satellite
images. This was done to enable selective downlinking of
images. The varying lighting conditions in space can result in
satellite images that are not visually informative. Therefore,
in order to optimize the limited downlink bandwidth, it is
necessary to pre-select data before sending it.

1) Experiment 1: In the first experiment, a single instance
of the ScOSA software was executed, consisting of three tasks:
the Receiver task, the Classifier task, and the Logger task.
The Receiver task received the camera images transmitted by
the Java application and passed them to the Classifier task.
The Classifier task processed the received images by passing
them through a binary Convolutional Neural Network (CNN)
classifier, which categorized the images as good or bad. The
logger task recorded the classification results.

The CNN classifier model was trained on the ground before
being transmitted to the satellite. Since training such image
classifiers typically requires a large dataset, we used the
transfer learning technique. Transfer learning involves reusing
and building on a generic model that has been previously
trained on large datasets. We used the MobileNet V2 CNN as
the feature extractor, which was pre-trained on the ImageNet
image dataset [38]. We fine-tuned the model using an archive
of about 4000 images previously downlinked from OPS-SAT.
Finally, to reduce the size and inference latency of the CNN
model, it was quantized to 16-bit floating-point precision.

Out of nine images taken by OPS-SAT during the on-
orbit experiment, five were correctly classified as bad and
three were correctly classified as good. One bad image was
misclassified as good. Examples of both types are shown in
Fig. 15.

2) Experiment 2: The second experiment focused on eval-
uating the reconfigurability of the ScOSA software. For this
purpose, two instances of ScOSA were executed as separate
processes, simulating the execution on two virtual computing
nodes. The experiment was divided into two mission phases. A
mission phase corresponds to a set of tasks that are performed
when ScOSA has been configured for that phase.

The first mission phase consisted of the image acquisi-
tion tasks. After approximately 35 minutes of execution, the
ScOSA system transitioned to the second mission phase in
which 20 instances of a Ping task and 20 instances of a Pong



(a) Good image (b) Good image

(c) Bad image (high exposure) (d) Bad image (too dark)

Fig. 15: Images taken by OPS-SAT during the ScOSA experiments.

task were initiated. Each task sent and received one byte of
data to and from its counterpart. Initially, all Ping tasks ran in
one process, and all Pong tasks were configured to run in the
other process, simulating a two-node scenario.

After one minute of execution, one of the ScOSA processes
was deliberately terminated, simulating a failure of the virtual
compute node. In response, ScOSA automatically reconfigured
itself to continue execution without interruption, transferring
all 20 Pong tasks to the still-running ScOSA instance. This
demonstrated ScOSA’s ability to adapt to a node failure and
maintain service continuity.

3) Discussion: The ScOSA experiments on OPS-SAT in
orbit, and the much larger ground-based experiments in prepa-
ration, have achieved the following goals:

1) The ScOSA system software was successfully operated
in a relevant environment.

2) The neural network image processing application
demonstrated that the class of processors is capable of
running this type of application.

3) The ScOSA middleware was shown to be able to suc-
cessfully process large data packages such as images.

4) The reconfiguration feature was successfully demon-
strated with planned reconfiguration and fault recovery.

All of the experiments were also performed on the ground,
but putting these preliminary experiments of the actual ScOSA
Flight Experiment into orbit was a very good exercise to define
concepts of operations, potential challenges of controlling a
real CubeSat during the experiments, the interface to the
operations team, planning and performing software updates,
and much more.

VI. CONCLUSIONS AND OUTLOOK

This paper presented the current state of the ScOSA on-
board computer architecture and its path to in-orbit demon-
stration. The heterogeneous and distributed nature of ScOSA
allows the combination of reliable, radiation-tolerant proces-
sors with high-performance, COTS-based multicore SoCs in
combination with FPGA-based co-processors. This hardware
architecture, together with the ScOSA system software that
enables rapid reconfiguration of active compute nodes and
task-to-node mapping, enables more autonomous on-board
computing applications by achieving high reliability.

The architecture is highly scalable from two reliable nodes
to a cluster of COTS-based multi-core SoCs. This means that
ScOSA can be tailored to specific mission requirements. It
also allows rapid adaptation to new hardware platforms (e.g.
RISC-V) and to the needs of applications in terms of real-time
requirements and development libraries. We envision ScOSA
for spacecraft or rovers of about 12U or larger.

The experiments conducted showed that the ScOSA archi-
tecture provides the computational resources to run complex
applications on a spacecraft, and the FDIR mechanisms in-
cluding the reconfiguration scheme ensure high reliability of
the system.

Due to the scalability of ScOSA, we have the opportunity
to test a minimal system consisting of our basic hardware
components (one RCN and one MHM, including two HPN)
with the SEU detection application on a 6U CubeSat mission
in the first half of 2024. The full in-orbit demonstration on a
12U CubeSat targeted for launch in late 2024 will test a larger
system as well as a number of different on-board applications
with a strong focus on on-board data processing.

Besides the selected applications, it is planned to provide
an API for additional applications that can be uploaded during
the mission. As an outreach activity, we gave students the
opportunity to develop small applications for the ScOSA flight
experiment that could be executed in orbit. Furthermore, we
plan to investigate the effects of using hypervisors in the nodes.
This would allow to keep mixed criticality guarantees even in
case of a reconfiguration where a critical and a non-critical
task will be migrated to the same node.

ACKNOWLEDGMENT

The authors would like to thank all current and former
project members of the ScOSA Flight Experiment and its
predecessor activities. We would also like to thank all our col-
leagues in the institutes and the administration who supported
the idea of a new on-board computer architecture. Without
their ideas, contributions, funding and support, ScOSA Flight
Experiment would not be possible. The authors also want
to thank the OBPMark Team for providing early access and
supporting the project. We are also grateful for the opportunity
provided by ESA to test parts of ScOSA on OPS-SAT.

REFERENCES

[1] G. Giuffrida, L. Diana, F. de Gioia, G. Benelli, G. Meoni, M. Donati,
and L. Fanucci, “Cloudscout: A deep neural network for on-board cloud



detection on hyperspectral images,” Remote Sensing, vol. 12, no. 14,
2020.

[2] T. Tzanetos, M. Aung, J. Balaram, H. F. Grip, J. T. Karras, T. K.
Canham, G. Kubiak, J. Anderson, G. Merewether, M. Starch, M. Pauken,
S. Cappucci, M. Chase, M. Golombek, O. Toupet, M. C. Smart, S. Daw-
son, E. B. Ramirez, J. Lam, R. Stern, N. Chahat, J. Ravich, R. Hogg,
B. Pipenberg, M. Keennon, and K. H. Williford, “Ingenuity Mars
helicopter: From technology demonstration to extraterrestrial scout,” in
2022 IEEE Aerospace Conference (AERO), March 2022.

[3] C. J. Treudler, H. Benninghoff, K. Borchers, B. Brunner, J. Cremer,
M. Dumke, T. Gärtner, K. J. Höflinger, D. Lüdtke, T. Peng, E.-A.
Risse, K. Schwenk, M. Stelzer, M. Ulmer, S. Vellas, and K. Wester-
dorff, “ScOSA - scalable on-board computing for space avionics,” in
International Astronautical Congress (IAC), Bremen, Germany, Oct. 1-
5, 2018.

[4] D. Lüdtke, K. Westerdorff, K. Stohlmann, A. Börner, O. Maibaum,
T. Peng, B. Weps, G. Fey, and A. Gerndt, “OBC-NG: Towards a
reconfigurable on-board computing architecture for spacecraft,” in IEEE
Aerospace Conference, Big Sky, MT, USA, March 1-8, 2014. IEEE,
2014.

[5] A. Lund, Z. A. H. Hammadeh, P. Kenny, V. Bensal, A. Kovalov,
H. Watolla, A. Gerndt, and D. Lüdtke, “ScOSA system software: The
reliable and scalable middleware for a heterogeneous and distributed
on-board computer architecture,” CEAS Space Journal, Mai 2021.

[6] P. Kenny, K. Schwenk, D. Herschmann, A. Lund, V. Bansal, Z. A.
Haj Hammadeh, A. Gerndt, and D. Lüdtke, “Parallelizing on-board data
analysis applications for a distributed processing architecture,” in 2nd
European Workshop on On-Board Data Processing (OBDP2021), June
14-17, 2021, Juni 2021.

[7] K. Schwenk and D. Herschmann, “On-board data analysis and realtime
information system - status & outlook,” in Deutscher Luft- und Raum-
fahrtkongress 2022 (DLRK 2022), September 2022.

[8] H. Frei, M. Burri, F. Rems, and E.-A. Risse, “A robust navigation filter
fusing delayed measurements from multiple sensors and its application
to spacecraft rendezvous,” Advances in Space Research, Oktober 2022.

[9] T. Freitag, “Acceleration of an autoencoder using a FPGA-SoC in a high-
performance node of a distributed onboard computer,” Master’s thesis,
TU Darmstadt, Dezember 2022.

[10] A. N. Nikicio, W.-T. Loke, H. Kamdar, and C.-H. Goh, “Radiation
analysis and mitigation framework for leo small satellites,” in 2017 IEEE
International Conference on Communication, Networks and Satellite
(Comnetsat), 2017, pp. 59–66.

[11] C. Wilson and A. George, “CSP hybrid space computing,” Journal of
Aerospace Information Systems, vol. 15, no. 4, pp. 215–227, 2018.

[12] D. Sinclair and J. Dyer, “Radiation effects and cots parts in smallsats,”
in Small Satellite Conference, 2013.

[13] G. Lentaris, K. Maragos, I. Stratakos, L. Papadopoulos, O. Papaniko-
laou, D. Soudris, M. Lourakis, X. Zabulis, D. Gonzalez-Arjona, and
G. Furano, “High-performance embedded computing in space: Evalu-
ation of platforms for vision-based navigation,” Journal of Aerospace
Information Systems, vol. 15, no. 4, pp. 178–192, 2018.

[14] D. Keymeulen, S. Shin, J. Riddley, M. Klimesh, A. Kiely, E. Liggett,
P. Sullivan, M. Bernas, H. Ghossemi, G. Flesch, M. Cheng, S. Dolinar,
D. Dolman, K. Roth, C. Holyoake, K. Crocker, and A. Smith, “High
performance space computing with system-on-chip instrument avionics
for space-based next generation imaging spectrometers (NGIS),” in
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2018,
pp. 33–36.

[15] J. Samson, J.R., E. Grobelny, S. Driesse-Bunn, M. Clark, and
S. Van Portfliet, “Post-TRL6 dependable multiprocessor technology
developments,” in Aerospace Conference, IEEE, 2010.

[16] A. Pawlitzki and F. Steinmetz, “multiMIND–high performance process-
ing system for robust newspace payloads,” in 2nd European Workshop
on On-Board Data Processing (OBDP2021), 2021.

[17] R. Costa Amorim, R. Martins, P. Harikrishnan, M. Ghiglione, and
T. Helfers, “Dependable MPSoC framework for mixed criticality ap-
plications,” in 2nd European Workshop on On-Board Data Processing
(OBDP2021), 2021.

[18] P. Kuligowski, G. Gajoch, M. Nowak, and W. Sładek, “System-level
hardening techniques used in the COTS-based data processing unit,” in
2nd European Workshop on On-Board Data Processing (OBDP2021),
2021.

[19] N.-J. Wessman, F. Malatesta, S. Ribes, J. Andersson, A. Garcı́a-
Vilanova, M. Masmano, V. Nicolau, P. Gomez, J. L. Rhun, S. Alcaide,

G. Cabo, F. Bas, P. Benedicte, F. Mazzocchetti, and J. Abella, “De-
risc: A complete risc-v based space-grade platform,” in 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2022,
pp. 802–807.

[20] P. Nannipieri, G. Giuffrida, L. Diana, S. Panicacci, L. Zulberti,
L. Fanucci, H. G. M. Hernandez, and M. Hubner, “ICU4SAT: A general-
purpose reconfigurable instrument control unit based on open source
components,” in 2022 IEEE Aerospace Conference, 2022, pp. 1–9.

[21] V. Leon, E. A. Papatheofanous, G. Lentaris, C. Bezaitis, N. Mastorakis,
G. Bampilis, D. Reisis, and D. Soudris, “Combining fault tolerance
techniques and COTS SoC accelerators for payload processing in space,”
in 2022 IFIP/IEEE 30th International Conference on Very Large Scale
Integration (VLSI-SoC), 2022.

[22] F. Bubenhagen, B. Fiethe, T. Lange, H. Michalik, and H. Michel,
“Reconfigurable platforms for data processing on scientific space in-
struments,” in 2013 NASA/ESA Conference on Adaptive Hardware and
Systems (AHS-2013), 2013, pp. 63–70.

[23] CompactPCI Serial Space Specification, PIMCG Std., 2017.
[24] J. Hauslage, M. Lebert, and H. Müller, “Eu:CROPIS – euglena and

combined regenerative organic-food production in space,” in Life in
Space for Life on Earth (Joint Life Sciences Meeting of ISGP, ESA and
CSA), Juni 2014.

[25] T. Gärtner, C. J. Treudler, F. Dannemann, and M. Jetzschmann, “Scal-
able avionics for the dlr micro- and minisatellite platforms s2tep and
compsat,” in DASIA – Data Systems In Aerospace, 2017.

[26] T. Peng, B. Weps, K. Höflinger, K. Borchers, D. Lüdtke, and A. Gerndt,
“A new spacewire protocol for reconfigurable distributed on-board
computers,” in International SpaceWire Conference, Yokohama, Japan,
October 25-27, 2016. IEEE, October 2016, pp. 175–182.

[27] Z. A. H. Hammadeh, T. Franz, O. Maibaum, A. Gerndt, and D. Lüdtke,
“Event-driven multithreading execution platform for real-time on-board
software systems,” in 15th Workshop on Operating Systems Platforms
for Embedded Real-Time applications (OSPERT), Stuttgart, Germany,
July 9, 2019, A. Lackorzynski and D. Lohmann, Eds., 2019, pp. 29–34.
[Online]. Available: https://elib.dlr.de/128249/

[28] DLR. (2022) Open modUlar sofTware PlatfOrm for SpacecrafT.
[Online]. Available: https://www.github.com/dlr-ry/outpost-core

[29] S. Ulamec, P. Michel, M. Grott, U. Böttger, S. Schröder, H.-W. Hübers,
Y. Cho, F. Rull, N. Murdoch, P. Vernazza, J. Biele, S. Tardivel,
and H. Miyamoto, “Science objectives of the MMX rover,” in 73rd
International Astronautical Congress (IAC), September 2022.

[30] A. Kovalov, T. Franz, H. Watolla, V. Vishav, A. Gerndt, and D. Lüdtke,
“Model-based reconfiguration planning for a distributed on-board com-
puter,” in 12th System Analysis and Modelling (SAM) Conference -
Languages, Methods and Tools for AI-based Systems, co-located with
MODELS 2020, Virtual Event, Oct. 19-20, 2020. Association for
Computing Machinery (ACM), October 2020, pp. 55–62.

[31] J. v. Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange, J. L. Henning,
and P. Cao, “How to build a benchmark,” in Proceedings of the 6th
ACM/SPEC International Conference on Performance Engineering, ser.
ICPE ’15. New York, NY, USA: Association for Computing Machinery,
Jan. 2015, pp. 333–336.

[32] M. M. Elbarrawy, “Performance evaluation for a distributed on-board
computer,” Master’s thesis, Deggendorf Institute of Technology, January
2023. [Online]. Available: https://elib.dlr.de/194056/

[33] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK benchmark:
past, present and future,” Concurrency and Computation: Practice and
Experience, vol. 15, no. 9, pp. 803–820, Aug. 2003.

[34] R. Weicker, “An overview of common benchmarks,” Computer, vol. 23,
no. 12, pp. 65–75, Dec. 1990.

[35] D. Steenari, L. Kosmidis, I. Rodriguez-Ferrandez, A. Jover-Alvarez, and
K. Förster, “OBPMark (on-board processing benchmarks) – open source
computational performance benchmarks for space applications,” in 2nd
European Workshop on On-Board Data Processing (OBDP2021), Jun.
2021, publisher: Zenodo Version Number: 1.0.

[36] OBPMark (On-Board Processing Benchmarks), 2022. [Online].
Available: https://github.com/OBPMark/OBPMark/wiki

[37] D. Evans and M. Merri, “OPS-SAT: A ESA nanosatellite for accelerating
innovation in satellite control,” in SpaceOps 2014 Conference, 2014, p.
1702.

[38] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Inverted residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation,” CoRR, vol. abs/1801.04381,
2018. [Online]. Available: http://arxiv.org/abs/1801.04381

https://elib.dlr.de/128249/
https://www.github.com/dlr-ry/outpost-core
https://elib.dlr.de/194056/
https://github.com/OBPMark/OBPMark/wiki
http://arxiv.org/abs/1801.04381

	Introduction
	Related Work
	ScOSA Flight Experiment Hardware
	Modular System
	Reliable Computing Node (RCN)
	High-Performance Nodes and Multi-HPN Module
	SpaceWire Network

	ScOSA System Software
	Middleware & Software Stack
	Fault-Tolerance & Resilience
	Model-based Systems Engineering

	First Results
	Benchmarks
	LINPACK
	Dhrystone
	OBPMark
	Discussion

	In-orbit Software Experiments on ESA's OPS-SAT
	Experiment 1
	Experiment 2
	Discussion


	Conclusions and Outlook
	References

