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Abstract. Both horizontal interleaving as well as the sum-rank metric
are currently attractive topics in the field of code-based cryptography,
as they could mitigate the problem of large key sizes. In contrast to
vertical interleaving, where codewords are stacked vertically, each code-
word of a horizontally s-interleaved code is the horizontal concatenation
of s codewords of s component codes. In the case of horizontally inter-
leaved linearized Reed–Solomon (HILRS) codes, these component codes
are chosen to be linearized Reed–Solomon (LRS) codes.
We provide a Gao-like decoder for HILRS codes that is inspired by the
respective works for non-interleaved Reed–Solomon and Gabidulin codes.
By applying techniques from the theory of minimal approximant bases,
we achieve a complexity of Õ(s2.373n1.635) operations in Fqm , where
Õ(·) neglects logarithmic factors, s is the interleaving order and n de-
notes the length of the component codes. For reasonably small interleav-
ing order s ≪ n, this is subquadratic in the component-code length n

and improves over the only known syndrome-based decoder for HILRS
codes with quadratic complexity. Moreover, it closes the performance
gap to vertically interleaved LRS codes for which a decoder of complex-
ity Õ(s2.373n1.635) is already known.
We can decode beyond the unique-decoding radius and handle errors of
sum-rank weight up to s

s+1
(n− k) for component-code dimension k. We

also give an upper bound on the failure probability in the zero-derivation
setting and validate its tightness via Monte Carlo simulations.

Keywords: Gao-like Decoding · Horizontal Interleaving · Linearized
Reed–Solomon Codes · Sum-Rank Metric · Code-Based Cryptography
· Minimal Approximant Bases

1 Introduction

The American National Institute of Standards and Technology (NIST) started a
competition for post-quantum cryptography (PQC) in 2016. After three rounds,
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the lattice-based key-encapsulation mechanism (KEM) CRYSTALS-Kyber [8]
was standardized in July 2022 [3]. Moreover, NIST announced a fourth round to
which four KEM candidates advanced: BIKE [4], Classic McEliece [14], HQC [1],
and SIKE [9]. SIKE is the only candidate based on hard problems in the area
of isogenies and was broken by [17] shortly after NIST’s round-4 announcement.
The remaining three candidates in this round rely on coding-theoretical problems
in the Hamming metric.

In his seminal paper [32] in 1978, McEliece proposed the first code-based
cryptosystem, which still serves as a blueprint for most of the recent proposals.
The McEliece framework essentially resisted the cryptanalytic effort of 45 years.
However, it suffers from large key sizes and is thus not usable in many practical
applications.

Rank and Sum-Rank Metric As the syndrome-decoding problem in the rank
metric is harder than its Hamming-metric counterpart [7,10], many McEliece-
like schemes based on rank-metric codes as e.g. [18,19,28,27] were considered.
Unfortunately, most of them were broken by structural attacks. A new approach
is to consider the sum-rank metric which covers both the Hamming and the rank
metric as special cases. Even though the gain in terms of key size might not be
as large as for the rank metric, it is reasonable to hope that rank-metric at-
tacks cannot be adapted to the sum-rank-metric case [21] and the corresponding
systems will remain secure.

Interleaved Codes Another way to reduce the key size is to use codes with higher
error-correction capability. An increased error weight will result in higher com-
plexities for generic attacks like [37] and thus require smaller parameter sizes to
achieve the same level of security. One well-known code construction to improve
the (burst) error-correction capability is interleaving, where each codeword of
the s-interleaved code consists of s vertically or horizontally stacked codewords
of s component codes, respectively.

Metzner and Kapturowski [33] showed that vertically interleaved Hamming-
metric codes can be efficiently decoded with negligible failure probability as soon
as their interleaving order s is high compared to the error weight t. This result
was generalized to the rank metric [40,38] and recently also to the sum-rank
metric [24]. As no knowledge about the code structure is needed for Metzner–
Kapturowski-like decoders, this is a direct generic attack on any code-based
cryptosystems based on vertically interleaved codes with high interleaving or-
der. Thus, horizontal interleaving appears to be better suited for cryptographic
purposes. This is also reflected in recent proposals as for example in the KEM
LowMS [6] that is based on horizontally interleaved Gabidulin codes, in the sig-
nature scheme Durandal [5] based on the closely related rank-support-learning
(RSL) problem [10], and in the cryptosystem [2] that makes use of horizontally
interleaved low-rank parity-check (LRPC) codes [39].

The cryptanalysis of the underlying hard problems ensures reliable security-
level estimates. However, also performance improvements for decoding horizon-
tally interleaved codes have a significant impact as they directly speed up de-
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cryption and verification within the corresponding cryptosystems and digital
signatures.

HILRS Codes Horizontally interleaved linearized Reed–Solomon (HILRS) codes
combine the usage of an alternative decoding metric for higher generic-decoding
complexity and the interleaving construction for higher error-correction capa-
bility. Both approaches promise to reduce the key size in a McEliece-like setup.
The component codes of an HILRS code are linearized Reed–Solomon (LRS)
codes which were introduced by Martínez-Peñas in 2018 [29]. Up to now, LRS
codes are one of the most studied code families in the sum-rank metric. They
are evaluation codes with respect to skew polynomials and form the natural gen-
eralization of Reed–Solomon (RS) codes in the Hamming metric and Gabidulin
codes in the rank metric.

As the performance of code-based cryptosystems strongly depends on the
decoding speed for the underlying codes, fast decoders for HILRS codes are
crucial. Currently, the only known decoder for HILRS codes is syndrome-based
and has a quadratic complexity in the length sn of the interleaved code (ongoing
work [23] extending [22]). It can handle a combination of errors, row erasures,
and column erasures.

In contrast, vertically interleaved linearized Reed–Solomon (VILRS) codes,
which are constructed by vertically stacking s LRS codewords, allow for decoding
with lower complexity Õ(sωM(n)) ⊆ Õ(s2.373n1.635) [12,13]. Here, ω and M(n)
denote the matrix-multiplication coefficient and the cost of multiplying two skew
polynomials of degree at most n, respectively, and Õ(·) neglects logarithmic
factors.

Contributions This paper presents a Gao-like decoder for HILRS codes. It is
based on the original Gao decoder for Reed–Solomon codes in the Hamming
metric [20] as well as on its known extensions to Gabidulin codes [46,45] and their
horizontally interleaved version [36] in the rank metric. We consider probabilistic
unique decoding beyond the unique-decoding radius and derive an upper bound
on the decoding-failure probability in the zero-derivation case. We achieve a
decoding radius of s

s+1 (n − k) for the interleaving order s and for n and k

denoting the length and the dimension of the component codes, respectively.
We further show how a major speedup can be obtained by using the theory

of minimal approximant bases [11]. The fast variant of the Gao-like decoder
achieves subquadratic complexity in the length n of the component codes for a
fixed interleaving order s. Particularly, we obtain Õ(sωM(n)) ⊆ Õ(s2.373n1.635)
and thus close the performance gap with respect to the decoding of VILRS codes.

Our conceptually new approach to solving the Gao-like key equation results
in the fastest known decoder for HILRS codes in the sum-rank metric. Moreover,
the special case obtained for the rank metric yields the fastest decoder for hori-
zontally interleaved Gabidulin codes in the rank metric, improving on [41,42,36].

Outline We start the paper in Section 2 by giving basic preliminaries on skew
polynomials, on HILRS codes in the sum-rank metric, and on the channel model
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we consider. Then, we present a Gao-like decoder for HILRS codes in Section 3
and analyze its decoding radius, complexity, and failure probability. Section 4
deals with a speedup for the shown decoder that is based on the theory of
minimal approximant bases. Finally, we summarize the main results of the paper
in Section 5 and give an outlook on future work.

2 Preliminaries

We denote the finite field of order q by Fq and refer to its degree-m extension field
by Fqm . We often consider vectors x ∈ F

n
qm that are divided into blocks. More

precisely, we define a length partition of n ∈ N
∗ as the vector n = (n1, . . . , nℓ) ∈

N
ℓ with

∑ℓ

i=1 ni = n and ni > 0 for all i = 1, . . . , ℓ. We write x = (x(1) | · · · |
x(ℓ)), where the blocks x(i) belong to F

ni

qm for all i = 1, . . . , ℓ. Similarly, we write

X = (X(1) | · · · | X(ℓ)) for a subdivided matrix X ∈ F
k×n
qm with X(i) ∈ F

k×ni

qm

for all i = 1, . . . , ℓ. The Fqm-linear row space of X is denoted by 〈X〉qm .
Further choose an Fqm -automorphism θ with fixed field Fq. Note that θ is Fq-

linear and satisfies both θ(a+b) = θ(a)+θ(b) and θ(a·b) = θ(a)·θ(b) for arbitrary
a, b ∈ Fqm . Moreover, we consider a map δ : Fqm → Fqm for which the equalities
δ(a+ b) = δ(a)+ δ(b) and δ(ab) = δ(a)b+ θ(a)δ(b) hold for all a, b ∈ Fqm . In the
finite-field setting, all such θ-derivations δ are inner derivations [29], i.e., they
have the form δ = γ(Id−θ) for a parameter γ ∈ Fqm and the identity Id.

The automorphism θ and the derivation δ give rise to a partition of Fqm with
respect to (θ, δ)-conjugacy [25]. Namely, two elements a, b ∈ Fqm are conjugate
if there is a nonzero c ∈ F

∗
qm with

ac := θ(c)ac−1 + δ(c)c−1.

The conjugacy class of an element a ∈ Fqm is denoted by C(a) :=
{
ac : c ∈ F

∗
qm

}

and C(0) is called the trivial conjugacy class. There are q − 1 distinct nontrivial
(θ, δ)-conjugacy classes. In the zero-derivation case, each of the first q−1 powers
of any primitive element of Fqm belongs to another nontrivial class.

2.1 Skew-Polynomial Rings

Skew polynomials were first studied by Ore in 1933 [34,35] and are used e.g.
for the construction of LRS codes [29]. The skew-polynomial ring Fqm [x; θ, δ]
contains all formal polynomials

∑
i fix

i−1 with finitely many nonzero coeffi-
cients fi ∈ Fqm . The notion of the degree deg(f) := max{i − 1 : fi 6= 0} of a
skew polynomial f(x) =

∑
i fix

i−1 carries over from Fqm [x]. The set of skew
polynomials forms a non-commutative ring with respect to conventional polyno-
mial addition and a multiplication that is determined by the non-commutative
rule xa = θ(a)x + δ(a) for any a ∈ Fqm . By Fqm [x; θ, δ]<k we denote the
subset of Fqm [x; θ, δ] containing all skew polynomials of degree less than k.
For simplicity, we refer to the skew-polynomial ring with zero derivation by
Fqm [x; θ] := Fqm [x; θ, 0].
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Fqm [x; θ, δ] is Euclidean which ensures the existence of skew polynomials
q, r ∈ Fqm [x; θ, δ] with f(x) = q(x)g(x) + r(x) and deg(r) < deg(g) for each
pair f, g ∈ Fqm [x; θ, δ] with deg(f) ≥ deg(g). We denote the remainder r of this
right-hand division by f modr g.

The literature provides two meaningful ways to evaluate skew polynomi-
als, namely, the remainder evaluation [25] and the generalized operator evalua-
tion [29]. The former corresponds to the idea of enforcing a remainder theorem
similar to the one in conventional polynomial rings and will not be of interest
for this paper. The latter is e.g. used for the construction of LRS codes that we
heavily rely on. For defining the generalized operator evaluation of skew poly-
nomials we first introduce the operator Da(b) := θ(b)a+ δ(b) and its i-th power
Di

a(b) := Da(Di−1
a (b)) for i ∈ N

∗ and any a, b ∈ Fqm . The operator simplifies
to Da(b) = θ(b)a for all a, b ∈ Fqm in the case of zero derivation. In this case,
its i-th power Di

a(b) for i ∈ N
∗ can be written as Di

a(b) = θi(b) · Ni (a), where

Ni (a) :=
∏i−1

k=0 θ
k(a) is the i-th truncated norm of a.

The generalized operator evaluation of a skew polynomial f(x) =
∑d

i=1 fix
i−1

∈ Fqm [x; θ, δ] at a point b ∈ Fqm and with respect to an evaluation parameter
a ∈ Fqm is defined as

f(b)a :=
d∑

i=1

fiD
i−1
a (b).

We use the notation f(b)a := (f(b1)a, . . . , f(bn)a) to denote the vector con-
taining the evaluations of f at every entry of b ∈ F

n
qm . Moreover, if b =

(b(1) | · · · | b(ℓ)) ∈ F
n
qm is subdivided according to a length partition n and

a = (a1, . . . , aℓ) ∈ F
ℓ
qm , we use the shorthand f(b)a := (f(b(1))a1 , . . . , f(b

(ℓ))aℓ
)

to evaluate f at the elements of the i-th block b(i) with respect to the evaluation
parameter ai for every i = 1, . . . , ℓ.

The evaluation of a product of two skew polynomials f, g ∈ Fqm [x; θ, δ] sat-
isfies the product rule (f · g)(b)a = f(g(b)a)a for all a, b ∈ Fqm [25].

For a vector x =
(
x(1) | · · · | x(ℓ)

)
∈ F

n
qm , a vector a ∈ F

ℓ
qm , and a parameter

d ∈ N
∗ the generalized Moore matrix Md(x)a is defined as

Md(x)a :=
(
md(x

(1))a1 | · · · | md(x
(ℓ))aℓ

)
∈ F

d×n
qm ,

with md(x
(i))ai

:=




x
(i)
1 · · · x

(i)
ni

Dai
(x

(i)
1 ) · · · Dai

(x
(i)
ni )

...
. . .

...

Dd−1
ai

(x
(i)
1 ) · · · Dd−1

ai
(x

(i)
ni )




for all i = 1, . . . , ℓ.

If a contains representatives of pairwise distinct nontrivial conjugacy classes
of Fqm and rkq

(
x(i)

)
= ni for all i = 1, . . . , ℓ, it holds rkqm (Md(x)a) =

min(d, n) [25,29].

Consider b = (b(1) | · · · | b(ℓ)) ∈ F
n
qm and a = (a1, . . . , aℓ) ∈ F

ℓ
qm . The

minimal skew polynomial that vanishes on the entries of b(i) with respect to
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the evaluation parameter ai for each i = 1, . . . , ℓ is denoted by mpol(b)a(x) and
characterized by

mpol(b)a(b
(i))ai

= 0 for all i = 1, . . . , ℓ.

According to [15], it can be computed as a least common left multiple (lclm) via

mpol(b)a(x) = lclm

{
x−

Dai
(b

(i)
ι )

b
(i)
ι

: b(i)ι 6= 0,
ι = 1, . . . , ni,

i = 1, . . . , ℓ

}
. (1)

The degree satisfies deg(mpol(b)a) ≤ n with equality if and only if the entries of

b(i) are Fq-linearly independent for all i = 1, . . . , ℓ and the evaluation parameters
a1, . . . , aℓ belong to distinct nontrivial conjugacy classes of Fqm .

Now consider an additional vector c = (c(1) | · · · | c(ℓ)) ∈ F
n
qm . Then there

exists a unique skew interpolation polynomial intpol
c

(b)a
(x) ∈ Fqm [x; θ, δ] with

deg(intpol
c

(b)a
) < n and

intpol
c

(b)a
(b(i))ai

= c(i) for all i = 1, . . . , ℓ [16].

For the complexity analysis of the Gao-like decoder, we will use O(·) to
state asymptotic costs in terms of the usual big-O notation. Moreover, the no-
tation Õ(·) indicates that logarithmic factors in the input parameter are ne-
glected. The complexity of skew-polynomial operations in the zero-derivation
setting was summarized in [11, Section II.D.]. Particularly, left and right di-
vision of skew polynomials with degree at most n as well as the computa-
tion of a minimal or an interpolation polynomial of degree at most n can be
achieved in Õ(Mq,m(n)) operations in Fqm . Here, Mq,m(n) denotes the cost
of multiplying two skew polynomials of degree n from Fqm [x; θ] and it holds

O(Mq,m(n)) ⊆ O(nmin(ω+1
2 ,1.635)) ⊆ O(n1.635). The exponent ω ≥ 2 denotes

the matrix-multiplication coefficient for which the currently best known upper
bound is ω < 2.3728639 [26].

2.2 The Sum-Rank Metric and the Corresponding Interleaved
Channel Model

The sum-rank weight of a vector x = (x(1) | · · · | x(ℓ)) ∈ F
n
qm with respect to

the length partition n is

wtΣR,n(x) =

ℓ∑

i=1

rkq
(
x(i)

)

where rkq
(
x(i)

)
is the maximum number of Fq-linearly independent entries of

the block x(i) for each i = 1, . . . , ℓ. The sum-rank metric is induced by the
sum-rank weight via dΣR,n(x,y) = wtΣR,n(x − y) for all vectors x,y ∈ F

n
qm .



Fast Gao-like Decoding of HILRS Codes 7

Note that we omit the index n and simply write wtΣR and dΣR when the length
partition is clear from the context.

The sum-rank metric coincides with the Hamming metric for ℓ = n, i.e.,
when every block has length one, and with the rank metric for ℓ = 1, i.e., when
the vector is considered as a single block.

Let now x = (x1 | · · · | xs) ∈ F
sn
qm with xj ∈ F

n
qm for all j = 1, . . . , s be a

horizontally s-interleaved vector for an interleaving order s ∈ N
∗. Let us further

assume for simplicity that all component vectors xj = (x
(1)
j | · · · | x

(ℓ)
j ) ∈ F

n
qm

for j = 1, . . . , s are equipped with the same length partition n. The natural way
to define the sum-rank weight of x ∈ F

sn
qm is with respect to the block-ordered

length partition ñ = (sn1, . . . , snℓ), i.e., as

wtΣR,ñ(x) :=
ℓ∑

i=1

rkq(x
(i)) for x(i) = (x

(i)
1 | · · · | x(i)

s ).

As for the conventional sum-rank metric, we often omit the length partition in
the index and simply write wtΣR(x) when ñ is clear from the context. Figure 1
illustrates how the sum-rank weight of horizontally interleaved vectors is com-
puted by grouping the same-indexed blocks of the component vectors. It shows
how the block-ordered length partition arises naturally in this setting.

x =
(

x
(1)
1 x

(2)
1 · · · x

(ℓ)
1

︸ ︷︷ ︸
x1∈Fn

qm

x
(1)
2 x

(2)
2 · · · x

(ℓ)
2

︸ ︷︷ ︸
x2∈Fn

qm

· · · x(1)
s x(2)

s · · · x(ℓ)
s

︸ ︷︷ ︸
xs∈Fn

qm

)

∈ F
sn
qm

wtΣR(x) = rkq

(

x
(1)
1 x

(1)
2 · · · x(1)

s

)

+ rkq
(

x
(2)
1 x

(2)
2 · · · x(2)

s

)

+ . . .+ rkq

(

x
(ℓ)
1 x

(ℓ)
2 · · · x(ℓ)

s

)

Fig. 1. Illustration of the sum-rank weight for a horizontally s-interleaved vector x =
(x1 | · · · | xs) ∈ F

sn
qm .

We now consider the transmission of an interleaved vector x ∈ F
sn
qm over a

sum-rank error channel with output

y = x+ e (2)

where the error vector e is understood as a horizontally s-interleaved vector
e = (e1 | · · · | es) ∈ F

sn
qm of sum-rank weight wtΣR,ñ(e) = t. We further assume

a uniform channel distribution, that is, that the error e is drawn uniformly at
random from the set

{x = (x1 | · · · | xs) ∈ F
sn
qm : wtΣR,ñ(x) = t}. (3)

The described channel is illustrated in Figure 2.
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x = (x1 | · · · | xs)
∈ F

sn
qm

y = (y1 | · · · | ys)
= x+ e ∈ F

sn
qm

e = (e1 | · · · | es)

of sum-rank weight t

Fig. 2. The additive sum-rank channel for horizontally interleaved vectors.

Let t = (t1, . . . , tℓ) ∈ N
ℓ with ti = rkq(e

(i)) := rkq(e
(i)
1 | · · · | e

(i)
s ) for all

i = 1, . . . , ℓ denote the rank partition of e. Then, we obtain for each i = 1, . . . , ℓ

a decomposition of the form (e
(i)
1 | · · · | e

(i)
s ) = a(i) ·

(
B

(i)
1 | · · · | B

(i)
s

)
, where

a(i) ∈ F
ti
qm with rkq(a

(i)) = ti and B
(i)
j ∈ F

ti×ni
q with rkq

(
B

(i)
1 | · · · | B

(i)
s

)
= ti

for all j = 1, . . . , s. After reordering the components, the error vector e can thus
be decomposed as

e = a ·B (4)

with a = (a(1) | · · · | a(ℓ)) ∈ F
t
qm and

B =




B
(1)
1 B

(1)
s

. . . . . .
. . .

B
(ℓ)
1 B

(ℓ)
s


 ∈ F

t×sn
q , (5)

where for any i = 1, . . . , ℓ and any j = 1, . . . , s

a(i) ∈ F
ti
qm with rkq(a

(i)) = ti

and B
(i)
j ∈ F

ti×ni
q with rkq

(
B

(i)
1 | · · · | B(i)

s

)
= ti.

Note that the decomposition in (4) is not unique. Moreover, the uniform distri-
bution of e among all vectors of sum-rank weight t implies that, for fixed rank
partition t, both a and B are also chosen uniformly at random from the sets

{x ∈ F
t
qm : wtΣR,t(x) = t}

and {X ∈ Fqmt× sn of the form (5) : wtΣR,ñ(X) = t}, (6)

respectively.
The elements in a(i) form a basis of the column space of e(i) and are called

error values. Similarly, the rows of B
(i)
j form a basis of the row space of e

(i)
j and

are referred to as error locations. For horizontal interleaving, the error values in
a are common for all component errors.

2.3 Horizontally Interleaved Linearized Reed–Solomon (HILRS)
Codes

We first introduce LRS codes [29, Definition 31], which are one of the most
prominent families of sum-rank-metric codes.
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Definition 1 (Linearized Reed–Solomon Codes). Let ξ = (ξ1, . . . , ξℓ) ∈
F
ℓ
qm contain elements of distinct nontrivial conjugacy classes of Fqm . Further

denote by n = (n1, . . . , nℓ) ∈ N
ℓ a length partition of n, i.e., n =

∑ℓ

i=1 ni. Let

the vectors β(i) = (β
(i)
1 , . . . , β

(i)
ni ) ∈ F

ni

qm contain Fq-linearly independent Fqm-

elements for all i = 1, . . . , ℓ and write β =
(
β(1) | · · · | β(ℓ)

)
∈ F

n
qm . A linearized

Reed–Solomon (LRS) code of length n and dimension k is defined as

LRS[β, ξ;n, k] =
{(

f(β(1))ξ1 | · · · | f(β(ℓ))ξℓ

)
: f ∈ Fqm [x; θ, δ]<k

}
⊆ F

n
qm .

Every codeword c ∈ LRS[β, ξ;n, k] corresponds to a skew polynomial f ∈
Fqm [x; θ, δ]<k. We sometimes write c = c(f) to emphasize this and call f the
message polynomial of c.

The minimum distance d of an LRS code satisfies the Singleton-like bound
d ≤ n− k + 1 with equality. Thus, LRS codes are maximum sum-rank distance
(MSRD) codes.

Similar to RS and Gabidulin codes, LRS codes have a generator matrix G

of a particularly useful form. Namely, the matrix G = (G(1) | · · · | G(ℓ)) =
Mk(β)ξ ∈ F

k×n
qm with

G(i) = mk(β
(i))ξi =




β
(i)
1 . . . β

(i)
ni

Dξi(β
(i)
1 ) . . . Dξi(β

(i)
ni )

...
. . .

...

Dk−1
ξi

(β
(i)
1 ) . . . Dk−1

ξi
(β

(i)
ni )




∈ F
k×ni

qm

for all i = 1, . . . , ℓ generates the code LRS[β, ξ;n, k].

We obtain an HILRS code with interleaving order s ∈ N
∗ by combining s LRS

component codes. Namely, each codeword of the HILRS code is the horizontal
concatenation of s codewords of the chosen component codes.

Definition 2 (Horizontally Interleaved LRS Codes). Fix an interleaving
order s ∈ N

∗ and pick for each j = 1, . . . , ℓ an LRS code LRS[βj , ξ;n, k] ac-
cording to Definition 1. We define the horizontally interleaved linearized Reed–
Solomon (HILRS) code with interleaving order s, code locators β := (β1 | · · · |
βs), evaluation parameters ξ, and length partition sn := (sn1, . . . , snℓ) as

HILRS[β, ξ, s; sn, sk] =

{
(c1 | · · · | cs) :

cj ∈ LRS[βj , ξ;n, k]
for all j = 1, . . . , s

}
⊆ F

sn
qm .

The code HILRS[β, ξ, s; sn, sk] has length sn and dimension sk over Fqm . Its
minimum distance d equals the minimum distance of its component codes, i.e.,
d = n−k+1. HILRS codes are hence not MSRD. Similar to LRS codes, we write
c(f) = (c1(f1) | · · · | cs(fs)) ∈ HILRS[β, ξ, s; sn, sk] with f = (f1, . . . , fs) and
fj ∈ Fqm [x; θ, δ]<k for each j = 1, . . . , s to emphasize the relation to the message
polynomials of the component codewords c1, . . . , cs. We call f the message-
polynomial vector corresponding to c.
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Remark 1. It is straightforward to generalize Definition 2 and all concepts of
this paper to component codes with different length partitions, lengths, and
dimensions. However, we assume that the component codes only have different
code locators βj for j = 1, . . . , s for simplicity of notation. ⊓⊔

3 A Gao-like Decoder for HILRS Codes

We now derive a Gao-like decoder in the spirit of [20,45,36] for HILRS codes and
the interleaved sum-rank-channel model described in (2). Let y = c + e ∈ F

sn
qm

denote the received vector after the codeword c = c(f ) ∈ HILRS[β, ξ, s; sn, sk]
was corrupted by the error e ∈ F

sn
qm of sum-rank weight wtΣR(e) = t during

transmission. Recall that we assume a uniform error distribution, that is, that
e is chosen uniformly at random from the set of all vectors of sum-rank weight
t as given in (3).

The main ingredient of the decoder is the Gao-like key equation that exploits
the relation between certain polynomials to recover the error values as zeros of
the error-span polynomial. Then, the message-polynomial vector f that corre-
sponds to c can be retrieved.

The error span polynomial (ESP) σ ∈ Fqm [x; θ, δ] makes use of the error
decomposition shown in (4). It is the skew polynomial that vanishes at all error
values, i.e.,

σ(a(i))ξi = 0 for all i = 1, . . . , ℓ.

For horizontal interleaving, the component errors ej share the same error values
a for all j = 1, . . . , s according to (4). This implies that the ESP is common for
all component errors.

Next let Gj ∈ Fqm [x; θ, δ] for each j = 1, . . . , s be the minimal skew poly-
nomial for the code locators βj with respect to generalized operator evaluation.
Namely,

Gj(x) := mpol(βj)ξ(x) for all j = 1, . . . , s.

Remark that these polynomials only depend on code parameters and can thus
be precomputed. Further, define Rj ∈ Fqm [x; θ, δ] for each j = 1, . . . , s as the
interpolation polynomial whose evaluation at the code locators βj yields the

channel observation yj . That means that Rj(x) := intpol
yj

(βj)ξ
(x) satisfies

Rj(βj)ξ = yj for all j = 1, . . . , s.

Note that the polynomials Rj can be computed directly from the channel obser-
vation y = (y1 | · · · | ys).

Theorem 1 (Gao-like Key Equation for HILRS Codes). Let c = c(f ) ∈
HILRS[β, ξ, s; sn, sk] be a codeword corresponding to the message-polynomial
vector f = (f1, . . . , fs) with fj ∈ Fqm [x; θ, δ]<k for all j = 1, . . . , s. Let further
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y = c + e ∈ F
sn
qm denote a channel observation according to (2). For the ESP

σ ∈ Fqm [x; θ, δ] and the polynomials

Gj(x) = mpol(βj)ξ
(x) and Rj(x) = intpol

yj

(βj)ξ
(x) for each j = 1, . . . , s,

it holds
σ · Rj ≡ σ · fj modr Gj for all j = 1, . . . , s. (7)

Proof. Consider a fixed j = 1, . . . , s and let us show the equivalent formulation

σ · (Rj − fj) ≡ 0 modr Gj

of the key equation. By definition, we know that the evaluation of Rj − fj at βj

is (Rj − fj)(βj)ξ = yj − cj = ej . Thus,

(σ · (Rj − fj))(βj)ξ
(△)
= σ((Rj − fj)(βj)ξ)ξ = σ(ej)ξ = 0

applies, where (△) follows from the product rule for generalized operator eval-
uation and the other equalities hold by definition. Together with the fact that
Gj is the minimal polynomial of the code locators, we conclude that Gj divides
σ · (Rj − fj) on the right. Since this argument is true for every j = 1, . . . , s, the
statement follows. ⊓⊔

As can be seen from the proof of Theorem 1, the Gao-like key equation (7)
is in fact equivalent to

(σ · (Rj − fj))(βj)ξ = 0 for all j = 1, . . . , s.

By rewriting it in terms of a system of Fqm -linear equations, we obtain



(Mt+k(β1)ξ)

⊤ − (Mt+1(y1)ξ)
⊤

. . .
...

(Mt+k(βs)ξ)
⊤ − (Mt+1(ys)ξ)

⊤




︸ ︷︷ ︸
=:M⊤

·




σf1
...

σf s

σ


 = 0. (8)

Here, the vectors σ and σf j for j = 1, . . . , s contain the coefficients of the
respective polynomials, i.e.,

(σf j)
⊤ := ((σ · fj)1, . . . , (σ · fj)t+k) ∈ F

t+k
qm for all j = 1, . . . , s

and σ⊤ := (σ1, . . . , σt+1) ∈ F
t+1
qm .

Equation (8) displays a homogeneous system of sn equations in s(t+k)+ t+1 =
(s + 1)t + sk + 1 unknowns. It can be solved by Gaussian elimination with a
complexity of O(max(sn, (s+ 1)t+ sk + 1)ω) operations in Fqm [44, Proposi-
tion 2.15.].
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As soon as the Gao-like key equation is solved, we have access to a candi-
date σ̃ for the ESP σ ∈ Fqm [x; θ, δ] as well as to candidates pj for the products
σ · fj ∈ Fqm [x; θ, δ]<t+k for all j = 1, . . . , s. Thus, for any j = 1, . . . , s, left

division of pj by σ̃ recovers a candidate f̃j for the j-th message polynomial fj .
If the remainder rj of the left division of pj by σ̃ is nonzero for any j = 1, . . . , s

or if any of the f̃1, . . . , f̃s has degree at least k, we declare a decoding failure.
Otherwise, the decoding was correct and f̃j = fj applies for all j = 1, . . . , s.
Algorithm 1 summarizes all steps of the Gao-like decoder.

Algorithm 1: Gao-like Decoder for HILRS Codes

Input : received vector y ∈ F
sn
qm with y = c(f) + e according to (2) and

with c(f) ∈ HILRS[β, ξ, s; sn, sk]
precomputed G1, . . . , Gs with Gj := mpol(βj)ξ

(x) for all j = 1, . . . , s

Output : f = (f1, . . . , fs) or "decoding failure"

1 Rj := intpol
yj

(βj)ξ
(x) ∈ Fqm [x; θ, δ] for all j = 1, . . . , s

/* use σ ·Rj ≡ σ · fj modr Gj to find pj , σ · fj and σ̃ , σ */

2 (p1, . . . , ps, σ̃) := solveKeyEquation(R1, . . . , Rs, G1, . . . , Gs, n, k, s)
3 forall j = 1, . . . , s do

4 (f̃j , rj) := leftDivide(pj , σ̃)

5 if rj 6= 0 or deg(f̃j) ≥ k then

6 return "decoding failure"

7 return f := (f̃1, . . . , f̃s)

Let us now further investigate the structure of M⊤, which gives rise to the
decoding-failure probability Prfail. Remark that the system (8) has a nontrivial
solution by definition, which implies rkqm(M) ≤ (s + 1)t + sk. Moreover, a
decoding failure can only occur if the solution space of (8) has dimension greater
than one. In other words, rkqm(M⊤) = rkqm(M ) < (s + 1)t + sk must apply
and we obtain the inequality

Prfail ≤ Pr (rkqm(M ) < (s+ 1)t+ sk)) .

The following lemma gives a characterization of when the solution space of (8)
is one-dimensional. Recall that this case implies correct decoding.

Lemma 1. Consider a vector y = c + e ∈ F
sn
qm that was received after trans-

mitting c ∈ HILRS[β, ξ, s; sn, sk] over the channel (2). Assume that the error
has weight wtΣR(e) = t ≤ n − k and can be decomposed into e = a · B ac-
cording to (4). Further, define M as in (8) and let H = diag(H1, . . . ,Hs) ∈

F
s(n−k−t)×sn
qm be a parity-check matrix of the code HILRS[β, ξ, s; sn, s(k + t)].

Then,

rkqm(M) = (s+ 1)t+ sk if and only if rkqm(BH⊤) = t.
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Proof. First note that the upper part of M is a generator matrix of the code
HILRS[β, ξ, s; sn, s(k+ t)]. In other words, the j-th block on its diagonal gener-
ates LRS[βj , ξ;n, k+t] for all j = 1, . . . , s. For any j = 1, . . . , s, the additivity of
the generalized operator evaluation yields Mt+1(yj)ξ = Mt+1(cj)ξ+Mt+1(ej)ξ.
Further, cj ∈ LRS[βj , ξ;n, k] = 〈Mk(βj)ξ〉qm implies Dι

ξ(cj) ∈ 〈Mk+ι(βj)ξ〉qm
for all ι = 1, . . . , t. We can hence consider the matrix

M̃ =




Mt+k(β1)ξ
. . .

Mt+k(βs)ξ
Mt+1(e1)ξ . . . Mt+1(es)ξ


 =:

(
U

L

)

which has the same Fqm -linear row space, and thus the same Fqm -rank, as M .
In the following, we denote the upper s(t + k) rows of M by U and the lower
part by L for convenience. The error decomposition and the Fq-linearity of the
generalized operator evaluation let us write L = Mt+1(a)ξ ·B. Therefore,

M̃ =

(
Is(t+k) 0

0 Mt+1(a)ξ

)
·

(
U

B

)

applies, where Is(t+k) denotes the identity matrix of size s(t+k)×s(t+k). Since
the left matrix has full column rank over Fqm , [31, Theorem 2] yields

rkqm(M̃) = rkqm

(
U

B

)
.

Define H := diag(H1, . . . ,Hs) ∈ F
s(n−k−t)×sn
qm with Hj being a parity-check

matrix of the code LRS[βj , ξ;n, k + t] for all j = 1, . . . , s. Then, H is a parity-
check matrix of HILRS[β, ξ, s; sn, s(k + t)] and satisfies UH⊤ = 0. Since

rkqm(M ) = rkqm(U) + rkqm(B)− dimqm(〈U〉qm ∩ 〈B〉qm)

≤ (s+ 1)t+ sk − dimqm(〈U〉qm ∩ 〈B〉qm)

holds, the equality rkqm(M ) = (s+1)t+sk is equivalent to 〈U〉qm∩〈B〉qm = {0}

and thus to 〈H〉⊥qm ∩〈B〉qm = {0}. This is equivalent to rkqm(BH⊤) = t, which
proves the lemma. ⊓⊔

This equivalent reformulation gives a condition on the error weight t and
thus determines the decoding radius. In fact, the matrix BH⊤ has t rows and
s(n − k − t) columns and can achieve rkqm(BH⊤) = t only if t ≤ s(n − k − t)
applies. Since we obtain a decoding failure in all other cases, we obtain the
necessary condition

t ≤ tmax :=
s

s+ 1
(n− k)

for successful decoding.
We now focus on the zero-derivation case and derive an upper bound on the

probability that rkqm(BH⊤) < t which will also bound the decoding-failure
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probability according to Lemma 1. Recall that we can choose H such that
H1, . . . ,Hs are generalized Moore matrices, as the dual of an LRS code is again
an LRS code in the zero-derivation setting [30, Theorem 4]. For such a choice
of H , the product BH⊤ = (B1H

⊤
1 | · · · | BsH

⊤
s ) is the transpose of vertically

stacked generalized Moore matrices because B = (B1 | · · · | Bs) contains only
Fq-elements and Dξ(·) is Fq-linear for a fixed ξ ∈ Fqm . Namely,

HB⊤ =



Mt+k(h1B

⊤
1 )ξ

. . .

Mt+k(hsB
⊤
s )ξ


 ,

where hj denotes the first row of Hj for each j = 1, . . . , s.
Further recall that, for a fixed rank partition t, the matrix B is uniformly

distributed among the set of all matrices of a particular form having fixed sum-
rank weight as described in (6). As wtΣR (hj) = n applies for every j = 1, . . . , s,
the (s × t)-matrix containing the vectors hjB

⊤
j as rows is chosen uniformly at

random from all matrices in F
s×t
qm with sum-rank weight t. This allows us to

apply parts of the proof of [13, Lemma 7].
In the zero-derivation setting, we thus obtain the upper bound

Prfail ≤ Pr
(
rkqm(BH⊤) < t

)
≤ κℓ+1

q q−m((s+1)(tmax−t)+1) (9)

on the decoding-failure probability Prfail, where tmax :=
s

s+1 (n−k) and κq < 3.5

is defined as κq :=
∏
i

1
1−q−i for any prime power q.

We implemented the proposed decoder in SageMath [43] and ran a Monte
Carlo simulation to heuristically verify the tightness of the upper bound on the
decoding-failure probability given in (9). Note that the actual failure probability
is hard to simulate for reasonable parameter sizes, as even the upper bound de-
creases exponentially. To obtain observable results, we chose Fqm = F38 , Fq = F3,
and an HILRS code of length n = 16 and dimension k = 4 with respect to the
Frobenius automorphism. We considered ℓ = 2 blocks of the same length, namely
n = (8, 8), interleaving order s = 3, and randomly chosen errors of sum-rank
weight t = tmax = 9. The failure probability that we observed for 100 Monte
Carlo errors is 1.569 · 10−4 while the bound yields 6.535 · 10−3.

We finish this section with a summary of the results we have obtained so far
and give a complexity analysis of the Gao-like decoder for HILRS codes.

Theorem 2 (Gao-like Decoding of HILRS Codes). Consider the trans-
mission of a codeword c ∈ HILRS[β, ξ, s; sn, sk] over the channel (2). Let y =
c + e ∈ F

sn
qm denote the received word and assume that the error e has bounded

sum-rank weight

wtΣR(e) = t ≤
s

s+ 1
(n− k). (10)

Then, the Gao-like decoder from Algorithm 1 can recover c with a failure prob-
ability Prfail that is bounded by

Prfail ≤ κℓ+1
q q−m((s+1)(tmax−t)+1) < 3.5ℓ+1q−m((s+1)(tmax−t)+1)
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in the zero-derivation setting. If the key equation (7) is solved via Gaussian
elimination in the formulation of (8), the overall complexity of the decoder is in
the order of Õ((sn)ω) ⊆ Õ((sn)2.373) operations in Fqm .

Proof. The decoding radius and the bound on the failure probability were derived
above. Let us thus focus on the complexity analysis.

– The computation of a minimal or an interpolation polynomial of degree at
most n can be done with complexity Õ(Mq,m(n)) according to [11, Section
II.D.], e.g. by using the recursive formula (1). Thus, the computation of
G1, . . . , Gs and R1, . . . , Rs takes Õ(sMq,m(n)) operations in Fqm .

– Finding the solution of the key equation via Gaussian elimination has com-
plexity O(max(sn, (s+ 1)t+ sk + 1)ω) as stated above. Since equation (10)
ensures sn ≥ (s+ 1)t+ sk + 1, we obtain O((sn)ω).

– The for-loop runs in Õ(sMq,m(n)) operations in Fqm because the left division

in line 4 has complexity Õ(Mq,m(n)) for each j = 1, . . . , s according to [11,
Section II.D.]. Checking the conditions for a decoding failure is essentially
for free.

Note that Õ(sMq,m(n)) ⊆ Õ(snmin(ω+1
2 ,1.635)) ⊆ Õ(sn1.635). Thus, solving the

Gao-like key equation determines the overall complexity of Õ((sn)ω) operations
in Fqm . ⊓⊔

4 A Fast Variant of the Gao-like Decoder for HILRS

Codes

We now present a fast variant of the decoder from Algorithm 1. As we have seen
in its complexity analysis in the proof of Theorem 2, the complexity-dominating
task is the solution of the Gao-like key equation. Thus, we focus on this problem
and obtain a performance gain by reformulating it in terms of minimal approx-
imant bases.

Note that we restrict ourselves to the zero-derivation case in this section,
even though the used concepts and algorithms generalize straightforwardly to
nonzero derivations. The reason is that the complexity analysis of algorithms
involving skew-polynomial operations with nonzero derivations is more involved
and was e.g. not conducted for the minimal-approximant-basis algorithm [11,
Algorithm 5] that we use for the speedup.

4.1 Minimal Approximant Bases

Let us give some definitions and basic properties of minimal approximant bases.
Note that we will only discuss left/row approximant bases and leave out their
right/column counterparts, as we are only concerned with these.

Let v ∈ Z
a be a shifting vector. Then, the v-shifted row degree of a vector

b ∈ Fqm [x; θ]a is
rdegv(b) := max

j=1,...,a
{deg(bj + vj)}.
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For b ∈ Fqm [x; θ]a \ {0} and v = (v1, . . . , vb) ∈ Z
a, the v-pivot index of b is the

largest index i ∈ {1, . . . , a} with deg(bi) + vi = rdegv(b).
A matrix W ∈ Fqm [x; θ]a×b with a ≤ b is in v-ordered row weak-Popov form

if the v-pivot indices of its rows are strictly increasing in the row index.
A vector b ∈ Fqm [x; θ]a is a left approximant of order d ∈ N of a matrix

W ∈ Fqm [x; θ]a×b if
bW ≡ 0 modr x

d.

A left v-ordered weak-Popov approximant basis of A of order d ∈ N is a full-
rank matrix B ∈ Fqm [x; θ]a×a in v-ordered row weak-Popov form whose rows
are a basis of all left approximants of A of order d.

4.2 Solving the Gao-like Key Equation via Minimal Approximant
Bases

The Gao-like key equation (7) can also be written as

σ · fj = χj ·Gj + σ ·Rj for all j = 1, . . . , s, (11)

where χj ∈ Fqm [x; θ] exists according to the Euclidean algorithm and has degree
at most k + t for each j = 1, . . . , s. Observe that (11) implies that the vector

(σ · f1, . . . , σ · fs, σ, χ1, . . . , χs) ∈ Fqm [x; θ]2s+1

is in the left kernel of the matrix

W =



−Is
R

G


 ∈ Fqm [x; θ](2s+1)×s (12)

where R := (R1, . . . , Rs) and G := diag(G1, . . . , Gs).
The following result based on [11, Lemma 21] is fundamental for reformulat-

ing the Gao-like key equation as a minimal-approximant-bases problem.

Lemma 2. Consider the same setting as in Theorem 2 and let W be defined as
in (12). Further write

ρ := (σ · f1, . . . , σ · fs, σ) and χ := (χ1, . . . , χs)

for simplicity. Further define the shifting vectors w := (0s, k − 1) ∈ Z
s+1 and

v := (0s, k − 1,0s) ∈ Z
2s+1, as well as the degree constraints D := tmax =

s
s+1 (n− k) and d := D + n. Then,

(ρ | χ) ·W = 0 and rdegw(ρ) < D (13)

if and only if

(ρ | χ) ·W ≡ 0 modr x
d and rdegv(ρ | χ) < D. (14)
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Proof. We start with showing that (13) implies (14). The left-hand side of (14)
clearly follows from (13) and it remains to show that deg(χj) < D holds for all
j = 1, . . . , s. With (11), we get

deg(χj) ≤ max{deg(σ · fj), deg(σ · Rj)} − deg(Gj)

≤ max{t+ k − 1, t+ n− 1} − n < t ≤ tmax = D.

For the other implication, note that the right-hand side of (14) directly im-
plies the right-hand side of (13). In order to see that the left-hand side of (13)
holds, we show that all entries of the vector (ρ | χ) ·W have degree less than d.
With the help of the right-hand side of (14) and (11), we obtain:

– deg(σ · fj) < D < d,
– deg(σ · Rj) ≤ deg(σ) + deg(Rj) ≤ t+ n− 1 = D + n− 1 < d,
– deg(χj ·Gj) < t+ n = D + n = d.

⊓⊔

Hence, we can solve the Gao-like key equation (7) by computing a left v-
ordered weak-Popov approximant basis B of W . This can be accomplished

by [11, Algorithm 5] requiring Õ(M(n)) ⊆ Õ(nmin{ω+1
2 ,1.635}) ⊆ Õ(n1.635) op-

erations in Fqm .
We then obtain candidates pj for the products σ · fj for each j = 1, . . . , s

and a candidate σ̃ for the σ by choosing the row bmin of B having minimal v-
weighted degree. This choice makes sure to satisfy the degree constraint in (14)
to get a proper solution as described in Lemma 2. The subroutine for solving the
Gao-like key equation via the presented minimal-approximant-bases approach is
summarized in Algorithm 2.

Algorithm 2: Subroutine solveKEviaMAB(·) for Solving the Gao-like
Key Equation via a Minimal Approximant Basis

Input : R1, . . . , Rs, G1, . . . , Gs, n, k, s

Output : p1, . . . , ps, σ̃

1 v := (0s, k − 1, 0s)
2 D := s

s+1
(n− k) and d := D + n

3 W :=





−Is
R

G



 ∈ Fqm [x; θ](2s+1)×s with R := (R1, . . . , Rs) and

G := diag(G1, . . . , Gs)
/* left v-ordered weak Popov approximant basis of W of order d */

4 B := LeftSkewPMBasis(d,W , v) ∈ Fqm [x; θ](2s+1)×(2s+1)

5 Define bmin = (bmin,1, . . . , bmin,2s+1) as the minimal row of B with respect to
the v-weighted degree

6 return bmin,1, . . . , bmin,s, bmin,s+1
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Theorem 3. Algorithm 2 solves the Gao-like key equation (7) in Õ(sωn1.635) ⊆
Õ(s2.373n1.635) Fqm-operations.

Proof. The complexity of Algorithm 2 is dominated by finding a minimal ap-
proximant basis in line 4. This can be achieved using [11, Algorithm 5] whose
complexity is Õ(sωn1.635) ⊆ Õ(s2.373n1.635) [11, Theorem 11].

This directly implies the following complexity improvement for Theorem 2:

Corollary 1. When the Gao-like key equation (7) is solved by Algorithm 2, the
complexity of the Gao-like decoder from Algorithm 1 decreases to Õ(sωn1.635) ⊆
Õ(s2.373n1.635) operations in Fqm .

With Corollary 1, the Gao-like decoder is the fastest known decoder for
HILRS codes in the sum-rank metric as well as for horizontally interleaved
Gabidulin codes in the rank metric. Its complexity is essentially subquadratic in
the component-code length n, as the interleaving order s is usually much smaller
than the code length n. Remark in particular that the gain in the error-correcting
capacity increases fast for increasing s, as s

s+1 quickly tends to one.

5 Conclusion

We studied HILRS codes and their fast decoding which has promising potential
applications in code-based cryptography. As a starting point, we presented a
Gao-like decoder that features probabilistic unique decoding for an error of sum-
rank weight at most s

s+1 (n−k), where s is the interleaving order, and n and k are
the length and the dimension of the component codes. We gave a bound on the
failure probability and achieved a complexity of Õ((sn)2.373) operations in Fqm

by solving the Gao-like key equation conventionally via Gaussian elimination.
Techniques from the area of minimal approximant bases allowed us to speed

up the decoder significantly and obtain a complexity of Õ(s2.373n1.635) opera-
tions in Fqm . Under the reasonable assumption that the interleaving order s is
small compared to the component-code length n, this is subquadratic. Overall,
this results in the fastest known decoders for both HILRS codes in the sum-rank
metric and for horizontally interleaved Gabidulin codes in the rank metric.

Further work can include the generalization of the presented decoder to the
error-erasure case. Next to errors, this error model includes row and column
erasures, for which either the row space or the column space is known. More-
over, other techniques could give bounds on the failure probability for nonzero
derivations or yield tighter ones for the zero-derivation setting.
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