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Abstract—Enabling real-time communication in Industrial In-
ternet of Things (IIoT) networks is crucial to support au-
tonomous, self-organized and re-configurable industrial automa-
tion for Industry 4.0 and the forthcoming Industry 5.0. In this pa-
per, we consider a SIC-assisted real-time IIoT network, in which
sensor nodes generate reports according to an event-generation
probability that is specific for the monitored phenomena. The
reports are delivered over a block-fading channel to a common
Access Point (AP) in slotted ALOHA fashion, which leverages
the imbalances in the received powers among the contending
users and applies successive interference cancellation (SIC) to
decode user packets from the collisions. We provide an extensive
analytical treatment of the setup, deriving the Age of Information
(AoI), throughput and deadline violation probability, when the
AP has access to both the perfect as well as the imperfect
channel-state information. We show that adopting SIC improves
all the performance parameters with respect to the standard
slotted ALOHA, as well as to an age-dependent access method.
The analytical results agree with the simulation based ones,
demonstrating that investing in the SIC capability at the receiver
enables this simple access method to support timely and efficient
information delivery in IIoT networks.

Index Terms—Industrial IoT, age of information, SIC

I. INTRODUCTION

The Internet of Things (IoT) technology is evolving rapidly
as a worldwide network of interconnected intelligent devices
capable of sensing, communicating, and information process-
ing to support a variety of applications [1]. As a subset of the
IoT, Industrial IoT (IIoT) has gained significant attention as
a key pillar of the era of Industry 4.0 and the forthcoming
Industry 5.0 as well [2]. IIoT applications are more depen-
dant on strict reliable and real-time requirements in order to
maintain seamless and stable functionality of the industrial
system [3]. A typical IIoT network is realized via Wireless
Sensor Network (WSN) with a set of sensors deployed to
monitor the environment and transmit the sensed information
to a central Access Point (AP) for further processing. In event-
driven IIoT networks, sensors are triggered by unpredictable
events (e.g., alarms) to transmit status updates about the
monitored physical phenomena. These updates are typically of
high importance and should be delivered within a predefined
deadline [4], which can be understood as a packet-level metric

that was in the initial focus of 5G URLLC standardization
by 3GPP [5]. On the other hand, from the process-level
perspective, the staleness of the collected updates is crucial for
WSNs deployed in process control and monitoring scenarios
as it affects the derived intelligent and autonomous decisions.

Recently, Age of Information (AoI) metric has emerged to
characterize information freshness at the receiver side, defined
as the time elapsed since the latest received update was gener-
ated [6]. AoI can be understood as a process- (i.e., application-
) level metric, which goes beyond the initial URLLC packet-
level metrics. ALOHA is an appealing solution for medium-
access control due to its simplicity and compatibility with the
distributed nature of IIoT systems. Specifically, ALOHA-based
schemes flexibly cope with the uncertainty in the user activity
patterns and the changes in the user population (i.e., users
leaving and joining the network), in contrast to scheduled
access schemes. Their main downside is the performance
sensitivity to collisions among transmitting users, which are
unavoidable in this distributed and uncoordinated protocol.
However, the performance of ALOHA-based schemes can
be significantly improved by using advanced physical layer
techniques that are able to retrieve the individual signals from
collisions. In fact, such advanced access schemes in essence
promote collisions, and are collectively referred to as non-
orthogonal multiple access (NOMA) schemes [7]. Successive
interference cancellation (SIC) [8] is a typical multi-user de-
tection technique in NOMA where concurrent received signals
are decoded in a descending order of their instantaneous
received powers.

In this paper, we investigate a setup of a real-time IIoT
in which a set of sensors perform event-driven reporting
to a common AP using a simple slotted ALOHA scheme
over a block-fading channel. The AP is capable of advanced
physical layer processing, leveraging the imbalances in the
received powers among the contending users and applying
SIC to decode user packets from the collisions. We perform
an extensive analytical treatment of the setup and derive the
AoI, throughput and deadline violation probability, which are
process-level, access-network level and packet-level metrics,
respectively, both for the cases when the AP has access to the
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perfect and the imperfect channel-state information (CSI). We
show that use of SIC improves all the performance parameters
with respect to the standard slotted ALOHA, as well as to
a recently reported age-dependent access method [9]. The
derived analytical results agree with the simulation based
ones, demonstrating that investing in the SIC capability at
the receiver enables this simple scheme to support timely and
throughput-efficient information delivery.

The rest of the paper is organized as follows. Section II
presents the related work. Section III elaborates the system
model and Section IV presents the analysis. Section V presents
the performance evaluation. Section VI concludes the paper.

II. RELATED WORK

In [10]–[12], the authors propose different centralized
scheduling protocols to minimize the AoI in IoT networks.
Although a promising solution to improve the AoI, the cen-
tralized scheduling approach is unsuitable to cope with non-
trivial network dynamics when the number of active nodes
change with time e.g., nodes joining or leaving the network
or entering sleep mode to save energy. Therefore, different
decentralized, random access protocols are explored to im-
prove the AoI performance in IoT networks [13]. In [13], the
authors propose a modification to the conventional slotted-
ALOHA by introducing minislots to mitigate collisions and
improve the network-wide AoI. Age-dependant random access
is proposed in [9], [14] where each node transmits with a
certain probability only when its age exceeds a predefined
threshold. The mentioned works adopt the classical collision-
channel model, neglecting the key effects of physical attributes
in wireless systems, such as fading, path loss, and interfer-
ence. Moreover, these works mainly adopt the generate-at-will
model for packet arrivals, which is not practically applicable
in event-driven IIoT networks. The authors in [15] investigate
the potential of NOMA in improving the AoI performance in
a two-user network setup. The work in [16] extends the simple
setup of [15] to a multi-user system by dynamically switching
between OMA and NOMA modes to minimize the AoI. The
focus of these works is mainly on the AoI performance without
considering other metric such as throughput and delay, which
are important in many event-driven IIoT applications.

III. SYSTEM MODEL

We consider an event-driven IIoT network consisting of N
nodes with infinite buffers that transmit status updates to a
single AP via a shared time-slotted channel. On detection of
an event, each node samples the underlying process, generates
a status update, and contends to access the channel and to
transmit the update with other active nodes in a slotted-
ALOHA fashion. For such setup, we model the packet arrivals
as independent Bernoulli process in which an update arrives
to the buffer of a node in each slot with probability pa.
Each node attempts to transmit the update at the Head of the

Line (HoL) with a probability p in each slot following First
In First Out (FIFO) discipline. Successful transmissions are
acknowledged via an error-free channel, and a failed update is
retransmitted until either successfully delivered or its deadline
expires; we assume that all updates have the same deadline
D. The considered setup is common to many IIoT applica-
tions, e.g., process monitoring and control in plastic extrusion
industry [17], where a set of sensor nodes are distributed to
monitor the temperature profile along the barrel of the plastic
extruder [18]. Upon detecting a predefined deviation in the
temperature profile, the nodes transmit updates to the AP,
which analyses the updates and performs a temperature control
mechanism.

The AP uses the dynamic-ordered SIC [19] to decode
signals collided in a slot – the decoding order is dynamically
established and performed in the descending order of the
instantaneous received powers of the collided transmissions.
The composite signal received at the AP is given as

y =
∑
i∈T

hi

√
Pxi + w (1)

where T is the set of active nodes in a given slot with
|T | = m ≤ N ; xi is the transmitted signal of user ni, where
E{|xi|2 = 1}, ∀ni; P is the transmission power of ni, which
is equal for all nodes; and w ∼ CN (0, σ2) is the zero-mean
additive white Gaussian noise with variance σ2. We denote
hi = ci/

√
Ldi

as the channel coefficient for the link between
ni and the AP where ci ∼ CN (0, 1) is the small-scale Raleigh
fading coefficient following complex Gaussian distribution
with zero mean and unit variance, and the large-scale fading
component Ldi

denotes the path loss for the node located
at a distance di from the AP, modelled by the free-space
path loss model [19]. We consider a block Rayleigh-fading
channel (i.e., the fading coefficient is constant during a slot)
due to the fact that the transmitted signals from different nodes
suffer from uncorrelated channel fading. By Ii = P |hi|2 we
denote the instantaneous power of the received signal, which
is exponentially distributed with parameter λi = 1/E[Ii] [19],
i.e., its probability distribution function (PDF) is given by

fIi(r) = λie
−λir. (2)

Considering that there are 1 ≤ m ≤ N simultaneously
transmitting nodes within the same slot, we define the outage
probability Γi|m as the probability that the received signal
power of node ni is lower than the threshold required for the
target transmission rate R̂ (bits/s/Hz). Assuming that only a
single node, say ni, is transmitting in a given slot (i.e., m = 1),
and defining γ = 2R̂ − 1, the outage probability Γi|1 is

Γi|1 = Pr{Ii < γσ2} =

∫ γσ2

0

λie
−λiIidIi = 1− e−λiγσ

2

.

(3)



Fig. 1: AoI evolution of arbitrary node ni.

IV. ANALYSIS OF THE PERFORMANCE METRICS

A. Average AoI

Without loss of generality, we analyze the average AoI for
an arbitrary node ni. Fig. 1 shows an example of the evolution
of the AoI of ni, where gk is the slot index of the generated
kth update and dk is the slot index at which it was successfully
received by the AP. The instantaneous AoI ∆i(t) is recorded
at the end of each slot t = 1, 2, 3, . . . Assuming that the kth
update is the one recently received, then the evolution of the
instantaneous AoI can be expressed by

∆i(t+ 1) =

{
∆i(t) + 1 failed transmission
(t− gk) + 1 successful transmission.

(4)

Denoting the system time and the interarrival time of the kth
update as Tk = dk − gk and Yk = gk − gk−1, respectively, the
average AoI ∆i of ni is given by

∆i = λ

(
E[Y T ] +

E[Y 2]

2
+

E[Y ]

2

)
=

1

pa
+

1− pa
qs − pa

+
pa
qs

− pa
q2s

(5)

where qs is the successful update probability, i.e., the prob-
ability that ni successfully delivers the HoL update to the
AP, derived in Section IV-B. The detailed derivations of (5)
are omitted due to the limited space, and follow the same
procedures as in [20]. Henceforth, we drop the subscript i in
∆i, as its value is the same for all nodes, as shown by (5).

B. Successful Update Probability

With the dynamic-ordered SIC scheme [19], the AP tries
to decode collided signals individually following a decoding
order π(m) = {π1, π2, .....πm} which represents an ordered
set of the indices of m contending nodes in a given timeslot
with Iπ1

> Iπ2
, ..... > Iπm

. The AP first tries to decode
the signal with the strongest instantaneous power I1 while
treating other signals as interference. If π1 is successfully
decoded, the AP then removes the reconstructed signal from
the composite received signal and tries to decode π2, etc.
The process continues until all the m nodes are decoded

successfully or an outage event is declared. Upon finding the
signal πi in outage, the AP subsequently fails to decode the
remaining m− i signals, and the backlogged nodes attempt to
retransmit in the next timeslot with probability p.

Based on (2), the probability of the decoding order π(m)
with Iπ1 > Iπ2 , ..... > Iπm is given as

Pr{π(m)} = Pr{I1 > I2, ..... > Im}

=

∫ ∞

0

λπm
e−λπmIπm dIπm

.....

∫ ∞

Iπ3

λπ2
e−λπ2Iπ2 dIπ2

×
∫ ∞

Iπ2

λπ1e
−λπ1

Iπ1 dIπ1 =

∏m
i=2 λπm∏m

i=2

(∑i
j=1 λπj

) . (6)

Under the decoding order π(m), the achievable rate Ri of
node ni when contending with m nodes in the given slot is

Ri = log

(
1 +

Ii
σ2 +

∑m
j=i+1 Ij

)
. (7)

To successfully decode the status update from ni, it must be
Ri ≥ R̂. In addition, the AP must have decoded all the prior
(i−1) nodes. Hence, the event Sm

i|π , representing the successful
delivery of the update of ni under π(m), is expressed by

Pr{Sm
i|π} = Pr{Ri ≥ R̂|π(m)}. (8)

The outage probability of ni given π(m) is

Γ
π(m)
i|m = 1− Pr{Sm

1|π ∩ Sm
2|π ∩ ... ∩ Sm

i|π} = 1−
i∏

l=1

Pr{Sm
l|π}

(9)
where the events Sm

x|π and Sm
y|π (x ̸= y) are mutually

independent. In the dynamic-ordered SIC, the decoding order
dynamically varies due to the channel conditions, hence the
outage probability of ni can be obtained by averaging over all
possible decoding orders Om as follows

Γi|m = EOm

[
Γ
π(m)
i|m

]
=

∑
π(m)∈Om,i=πi

Pr{π(m)}Γπ(m)
i|m .

(10)
Based on (10), the successful update probability qs becomes

qs =

N∑
m=1

(
N − 1

m− 1

)
pm(1− p)n−m(1− Γi|m) (11)

where Γi|m is given in (12). To further simplify this expres-
sion, we consider that λπi

= λ, ∀i (i.e., all nodes have equal
average SNR). Then, from (6), we have Pr{π(m)} = 1

m! and

Pr{Sm
i|π} =

(
m

i

)
e−iλγσ2

(γi+ 1)(m−i)
. (13)



Γi|m =
1(

N−1
m−1

) ∑
π∈Om
i=πi

Γi|m

=
1(

N−1
m−1

) ∑
π∈Om
i=πi

∑
π(m)∈Om

i=πi

∏m
i=2 λπi∏m

i=2

(∑i
k=1 λπk

) (1− m∏
l=1

Pr

{
log

(
1 +

Ii
σ2 +

∑m
j=i+1 Ij

)
≥ R̂|π(m)

}) (12)

The successful decoding probability Γi|m in (10) can be now
denoted as Γm and is given by

Γm =
∑

π(m)∈Om,i=πi

Pr{π(m)}Γπ(m)
i|m

= Pr{π(m)}(m− 1)!

m∑
i=1

Γ
π(m)
i|m

= 1− 1

m

m∑
i=1

 i∏
j=1

(
m

j

)
e−jλγσ2

(γj + 1)(m−j)

 .

(14)

Accordingly, qs becomes

qs =

N∑
m=1

(
N − 1

m− 1

)
pm(1− p)N−m(1− Γm). (15)

C. Throughput

We define the throughput Sth as the mean number of
successfully decoded packets per slot. With the dynamic-
ordered SIC, having the ith signal decoded successfully means
that the previous (i − 1) signals have been already decoded.
Hence, from (13), Pr{Sm

i|π} implies that there are at least i
successfully decoded signals in a given slot. Then, we express
Pm
i,SIC, which is the probability of decoding at least 1 ≤ i ≤ N

signals while there are m out of N signals transmitting, by

Pm
i,SIC =

i∏
j=1

 N∑
m=j

(
N

m

)
pm(1− p)(N−m)X(j)

 (16)

where X(j) =
(
m
j

)
e−jλγσ2

(γj+1)(m−j) . The probability of decoding
exactly i signals, 1 ≤ i ≤ N − 1, can be calculated as

Pi,SIC =

{
Pm
i,SIC − Pm

i+1,SIC 1 ≤ i ≤ N

Pm
N,SIC i = N

(17)

Finally, the throughput Sth is given as

Sth = E[i] =
N∑
i=1

i Pi,SIC . (18)

D. Deadline Violation Probability

In IIoT networks, the AP utilizes the collected updates for
further processing and control actions. A received update is
regarded as valid if its delivered within a predefined deadline
since its generation, otherwise it becomes useless to the

Fig. 2: DTMC model of the queue size of node ni.

system. Here we derive the deadline violation probability PD,
which is the probability that the transmission delay exceeds a
predefined deadline D, i.e., PD = Pr{T > D}. In order to
calculate PD, we derive the distribution of the steady-state
delay T of an update. Each node attempts to transmit the
HoL update until its successfully delivered with probability qs.
Hence, the service time Aj of the jth update is a geometrically
distributed random variable (RV) with parameter qs. Consider
a tagged update that arrives while there are K updates already
in the buffer. The delay of this update is the random sum
T = A1 + A2 + ... + AK , where Aj , j = 1, 2, ....,K, are
independent and identically distributed geometric RVs with
parameter qs. In order to find the PDF of T , we first calculate
its probability generating function GT (z). The Discrete-Time
Markov Chain (DTMC) in Fig. 2 shows the queue evolution
of ni, where r = pa(1 − qs) and s = qs(1 − pa). Let Qj be
the steady-state probability of having j updates in the queue
of ni, then using the balance equations of the DTMC in Fig.
2, we obtain the following

Qj =

{
ρj−1Q1 j ≥ 1
qs(1−pa)

pa
Q1 j = 0

(19)

where ρ = r
s , Q1 = pa(1−ρ)

qs
. according to the convolution

property of their generating functions [21], the probability
generating function GT (z) is

GT (z) =

∞∑
j=1

(
qsz

1− (1− qs)z

)j

(1− ρ)ρ(j−1)

=
qs(1− ρ)z

1− (1− qs(1− ρ))z
.

(20)

Based on (20), the PDF of T is obtained as

fT (t) = qs(1− ρ)(1− (qs(1− ρ)))(t−1) (21)



Fig. 3: Evaluation of the average AoI against the transmission
probability p with N ∈ {5, 50}.

and the deadline violation probability PD is obtained as

PD = Pr{T > D} = 1− Pr{T ≤ D}

= 1−
D∑
i=1

fT (i) = (1− (qs(1− ρ)))D.
(22)

E. The effect of Imperfect CSI

So far, we considered that the AP maintains perfect CSI to
successfully perform SIC on the collided signals. Practically,
channel estimation errors are inevitable as channel estimation
with high accuracy imposes significant system overhead [22].
With imperfect CSI, the AP may adopt incorrect decoding
order when the estimated instantaneous received power fails
to reflect the actual one. In addition, such estimation error
introduces extra interference to the SIC process, which in turn
increases the outage probability. In the following, we focus on
the effect of extra interference where the effect of the change
in the decoding order is small and can be neglected. Let ĥi

be the estimated channel coefficient with estimation error ϵi,
then the fading coefficient hi in (1) is given as

hi = ĥi + ϵi, (23)

where ϵi ∼ CN (0, σ2
ϵ ). Hence, the estimated received power

Îi = P |ĥi|2 is exponentially-distributed with parameter λ̂i. In
this case, the interference to node ni is

∑m
j=i+1 Ij+

∑i
l=1 ϕl,

where ϕl is the difference between the received signal power
and its estimation, which is exponentially distributed with
parameter vi. With the assumption of equal SNR for all nodes,
the outage probability Γ̂m becomes

Γ̂m = 1− 1

m

m∑
i=1

 i∏
j=1

(
m

j

)
exp

(
−jλγ(σ2 + j

v )
)

(γj + 1)(m−j)

 . (24)

Compared to (14), the additional interference component j
v

due to the imperfect CSI clearly affects the outage probability.
Since the successful update probability qs depends on Γ̂m, the
imperfect CSI will in turn have effect on AoI, Sth and PD.

Fig. 4: Throughput comparison with varying offered load G.

Fig. 5: Comparison of the deadline violation probability under
varying offered load G with pa ∈ {0.2, 0.8}.

V. RESULTS AND DISCUSSION

In this section, we evaluate the system performance in
terms of the average AoI, throughput and deadline violation
probability. In addition, we validate our analysis in Section IV
via discrete-event simulations in MATLAB. The simulation
setup consists of a network of N nodes randomly distributed
in a 200m × 200m area. We set the transmission power P
for all nodes to 20 dBm and the arrival probability pa to 0.4.
The following results are averaged over 10 simulation runs,
with each run lasting 105 slots. We also compare our results,
referred to as SIC-RA, with the standard slotted ALOHA
(referred to as Standard) and the other is the age-dependant
random access in [9] (referred to as ADRA).

Fig. 3 compares the average AoI ∆ for SIC-RA, Standard
and ADRA with varying p. Clearly, the analytical results
well match the ones obtained via simulations, validating our
analysis in Section IV. As p increases, ∆ first decreases as
the nodes tend to transmit more often, and then, after some
critical value of p is surpassed, ∆ increases due to excessive
collisions, prolonged queuing and consequential packet drops.
SIC-RA achieves the lowest ∆ due to the adopted SIC func-
tionality at the AP, which significantly increases the success
probability compared to Standard and ADRA. Further, SIC-
RA attains a wider region with favorable ∆. The improvement
gap increases when the network size grows from N = 5 to



N = 50, demonstrating the benefits of collision resolution
by the adopted SIC functionality. For instance, at p = 0.14,
or N = 5 SIC-RA improves ∆ compared to Standard and
ADRA with 25% and 38%, respectively, while for N = 50
the improvement increases to 71% and 89%, respectively. It
is interesting to observe that the average AoI of SIC-RA for
N = 50 and a range of values of p is lower than 50 slots,
which is the minimum value for a round-robin based scheme.

Fig.4 compares the throughput Sth of SIC-RA, Standard
and ADRA with varying offered load, defined as G = Np.
Evidently, SIC-RA achieves higher throughput than ADRA
and Standard as the SIC feature enables efficient utilization
of the channel via decoding and reception of multiple packets
within a single slot. We observe that ADRA maintains almost
the same throughput performance as Standard which is upper
bounded by e−1. In other words the age-dependant random
access in ADRA does not have effect on improving the number
of successful transmissions per slot. From Fig. 4, we can see
that SIC-RA increases the maximum throughput in comparison
to Standard and ADRA by almost 188%.

Fig. 5 how the deadline violation probability PD depends
on the offered load G, with a deadline of D = 5 slots and
pa ∈ {0.2, 0.8}. Clearly, SIC-RA achieves the lowest PD,
and the improvement gap gets increased as pa increases. In
ADRA, a node that has just delivered an update will refrain
from transmitting until its instantaneous AoI exceeds some
threshold. Hence, backlogged updates at the output buffer
will suffer extended queuing times, which is the dominant
component in the steady-state delay T and which degrades PD.
In SIC-RA, the steady-state delay is significantly decreased
and the backlogged updates have a higher chance to be
delivered within the deadline. Therefore, while ADRA favors
the AoI over the delay performance, SIC-RA has the potential
to improve both. For instance, SIC-RA reduces PD by 44%
and 35% compared to Standard and ADRA, respectively, with
G = 1 and pa = 0.2, while the reduction is increased to 54%
and 48%, respectively, for pa = 0.8 and the same G.

Finally, Fig. 6 shows the effect of imperfect CSI on the per-
formance parameters, assuming the variance of the estimation
error σ2

ϵ = {0, 0.05, 0.2} (σ2
ϵ = 0 corresponds to perfect CSI).

As shown by Fig. 6, ∆, Sth and PD become progressively
degraded as σ2

ϵ increases, which is due to the extra interference
that increases the outage probability, as indicated by (24).
With σ2

ϵ = 0.05, the decrease in the average AoI is almost
18% at p = 0.1, while the decreases in Sth and PD are
25% and 22%, respectively, at G = 1.5. The performance
is further compromised with the increase of σ2

ϵ , tending to the
performance of standard slotted ALOHA.

VI. CONCLUSION

In this paper, we analyzed an event-driven reporting real-
time IIoT scenario. In the considered system model, the
reporting nodes use a slotted ALOHA scheme, while the AP

(a) Average AoI with N = 40.

(b) Throughput.

(c) Deadline violation probability with pa = 0.8.

Fig. 6: Effect of imperfect CSI

exploits channel-induced power imbalances to perform SIC
based decoding of transmitted updates. The scheme shows
favorable performance in terms of the average AoI, packet
deadline violation probability and throughput, while not re-
quiring implementation of an involved channel access policy
by the users. We also characterized the impact of the imperfect
CSI on the performance parameters, showing that the AP
should have a fairly precise estimates of the CSI in order to
fulfill the scheme’s potential.
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