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Abstract—Type inference methods based on deep learning
are becoming increasingly popular as they aim to compensate
for the drawbacks of static and dynamic analysis approaches,
such as high uncertainty. However, their practical application
is still debatable due to several intrinsic issues such as code
from different software domains will involve data types that are
unknown to the type inference system.

In order to overcome these problems and gain high-confidence
predictions, we thus present TIPICAL, a method that combines
deep similarity learning with novelty detection. We show that
our method can better predict data types in high confidence
by successfully filtering out unknown and inaccurate predicted
data types and achieving higher F1 scores to the state-of-the-art
type inference method Type4Py. Additionally, we investigate how
different software domains and data type frequencies may affect
the results of our method.

Index Terms—type inference, novelty detection, machine learn-
ing, cross-domain

I. INTRODUCTION

Dynamic programming languages can be enriched by op-
tional type annotations to enable more precise program anal-
ysis and early detection of type-related run-time errors [1],
[2]. Our objective is to develop a workable technique for
Python programmers to use on a daily basis that will enhance
their routine workflow through the annotation of optional
data types, a process known as type inference. Giving type
recommendations to the user in real-time as well as auto-
matically after writing the code will accomplish this. Due to
its automation, the first case, however, necessitates a method
that only annotates with high certainty of correctness, as the
harm that inaccurate type hints can do may be greater than
the benefit of the positive one.

Static and dynamic type inference techniques suffer from
low precision due to applied abstraction or missing cover-
age [3]. Recent deep learning-based methods aim to overcome
these issues and provide promising results [4]–[7]. However,
these systems struggle with problems occurring in practical
applications for example data types unknown to the system or
source code from other software domains [8].

First, the problem of unknown classes, or the inability to
accurately predict unseen data types, is a prevalent issue in the
field of machine learning. This is due to the lack of representa-
tion of such data types in the training set, rendering prediction

of these data types ineffective. To mitigate this issue, we
propose a method to filter out unknown data types based on
their characteristic features. This approach not only enables
the identification of unknown data types but also improves
the overall reliability and quality of data type annotations by
eliminating inaccurate predictions.

In practical usage, type inference systems are often utilized
in a variety of software domains. However, this can exacerbate
the problem of unknown data types and lead to decreased ac-
curacy of predictions due to dataset shifts [9], [10]. Therefore,
in our research, we investigate the effect of different software
domains on the performance of our type inference method.

We thus present TIPICAL - Type Inference for Python
In Critical Accuracy Level, an extension of the Type4Py
method [6] for obtaining accurate results that address both the
unknown data types problem and the domain shift in order to
maximize the practical application of deep learning-based type
inference. In our experiments, we show that our method can
successfully filter out unknown and inaccurate predicted data
types and improve the results compared to the state-of-the-art
type inference method Type4Py.

Furthermore, we investigate the impact of the data type
frequencies and different software domains. For the evaluation,
we use the recent datasets CrossDomainTypes4Py [8] and
ManyTypes4Py [11]. In order to ensure the reproducibility of
our experiments, we make our experimental pipeline publicly
available1.

II. RELATED WORK

Several studies use deep learning techniques for type infer-
ence. In this work, we focus on methods that are designed for
Python projects. DLType [12], TypeWriter [13], and PyInfer
[14] are the first deep learning-based methods in that field.
They suffer from the problem that they can only predict a
limited number of data types due to their architecture. These
methods are limited to the 500 or 1000 most frequent data
types that occur in the training dataset.

Typilus [4], and Type4Py [6] address this problem and
can predict all data types which are present in the training
dataset. There are potential approaches where new types can be

1https://gitlab.com/dlr-dw/type-inference
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Fig. 1. Deciding the threshold using the validation set

recognized through additional static analysis, as demonstrated
in HiTyper [15]. However, there is still the issue that data
types that are rarely or not in the training dataset cannot be
predicted [8].

Nevertheless, Novelty detection has not been actively pur-
sued as a solution to the problem. Therefore we develop
TIPICAL to mitigate these problems. As a basis for our
method, we use Type4Py, because according to the evaluation
of Mir et al. [6], it is state-of-the-art and the source code is
publicly available.

III. METHODOLOGY

In this section, we briefly explain the type inference method
Type4Py, which is the basis for our method. Afterward, the
structure and the functioning of TIPICAL are presented.

A. Type4Py Inference System

The Type4Py framework serves as the foundation for our
research, as detailed in the original paper [6]. The Type4Py
system utilizes code tokens, identifier names, and available
data types (visible type hints) as input. These code tokens
and identifier names are embedded by Word2Vec [16] and
processed separately through recurrent neural networks. Then
the resulting representations are concatenated with the visible
type hints and further processed through a fully connected
layer to generate a feature vector. This feature vector is then
used for a k-nearest neighbor search in the type cluster to
predict all data types using the training dataset. However, it
should be noted that this method may not accurately predict
unknown data types that are not represented in the training
dataset, as well as those that are inaccurately predicted due
to limitations of using the nearest neighbor as a classification
method

B. TIPICAL

As a result, we sought to develop TIPICAL, a comprehen-
sive system that would enhance the usage of type inference by
utilizing novelty detection to filter out inaccurate predictions
and unpredictable data types. Using the workflow presented
in Figure 1, we find a threshold for filtering, We then use
the same cluster centers threshold on the test set to filter out
predictions.

1) Determining the Threshold: First, we determine the
cluster centers of each known data type using the training
dataset, defined as follows:

¯⃗x =

∑n
i=1 x⃗i

n
, (1)

where x⃗ is the feature vector, n is the total number of vectors
and ¯⃗x is the cluster center vector. Next, we determine the top
two nearest cluster centers for each vector in the validation
set, and their distances d1 and d2.

∆d = d2 − d1 (2)

Then ∆d is calculated, as seen in Equation 2. It can be
interpreted as cost-effective active learning or the proxy of
the entropy of the distribution of the distances between all of
the cluster centers.

After which, using these facts, we develop a threshold-based
method to determine whether or not the closest cluster center
can accurately predict the data type. The reasoning behind this
is that if two cluster centers are roughly the same distance from
the vector, it may be difficult to distinguish which datatype
is the correct one or even they could be an unknown data
type that is just not represented in the training set, whereas if
the closest cluster center is significantly closer to the vector
than the second one, it will almost certainly make the correct
prediction. The outliers are labeled as non-predicted for further
research directions as can be seen later in the conclusion.
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2) Making the Predictions: Afterward, for the prediction
itself, we use the nearest cluster center as the predicted data
type. In order to make accurate predictions, we maximize the
F1 score on the validation set by determining until which
value of ∆d we are going to filter out the vectors. Finally,
as can be seen in the second part of Figure 1, we apply the
same approach to the test set using our previous findings. We
calculate d1, d2, and ∆d for all the test set vectors. Further, we
apply the threshold that we determined from the training set
and filter out lower ∆d from our final predictions, producing
only high-certainty predictions that will provide our end-user
with the most accurate predictions, as will be demonstrated in
the following section.

IV. EXPERIMENTS AND EVALUATION

Following the pipeline of TIPICAL described in Section
III-B, we present our experiments on the ManyTypes4Py and
the CrossDomainTypes4Py datasets. Moreover, we expanded
the scope of the experiments of the original papers [6], [8]
to further study the effects of different software domains, and
the unknown data types issues.

In addition to creating a comprehensive method for real-life
machine learning-based type inference with high certainty, we
conducted the experiments to answer the following research
questions:

1) How do different software domains affect the predictable
and unknown data type distribution according to the
entropy proxy - ∆d?

2) How does the nearest cluster center-based method accu-
racy of the data types predictions correspond to ∆d?

3) Can TIPICAL create higher certainty predictions than
the predictions of the Type4Py system?

4) How does the frequency of data types affect its pre-
dictability in TIPICAL?

A. Datasets and Domains

We use the CrossDomainTypes4Py [8] and ManyTypes4Py
[11] datasets for our experiments. As described by Gruner et
al. [8], these contain a total of at least three different software
domains. CrossDomainTypes4Py consists of the scientific cal-
culation (cal) domain with 4,783 repositories and the web
development (web) domain with 3,129. ManyTypes4Py, on
the other hand, contains 5,382 repositories, which are from
various domains and are therefore considered general (mtp).

B. Experiment Setup

We adapt the existing cross-domain Type4Py implementa-
tion from Gruner et al. [8] in order to conduct the research.
We employ PyTorch, a deep learning framework, using Python
3.6. We use the same hyperparameters as Mir et al [6].

For our experiments, we created the following four cross-
domain setups:

1) Setup Cal2Mtp - Scientific Calculation to General
2) Setup Mtp2Cal - General to Scientific Calculation
3) Setup Cal2Web - Scientific Calculation to Web Devel-

opment
4) Setup Web2Cal - Web Development to Scientific Calcu-

lation

C. Research Questions and Results

RQ1: How do different software domains affect the
predictable and unknown data types distribution according
to the entropy proxy - ∆d?
Each setup consists of two experiments, which are conducted
three times to calculate the average of the results. In the
first experiment, the system is trained on the first mentioned
domain and evaluated on the second domain (example refer-
ence: Cal2Mtp.1). The second experiment is for comparison
and performs the training and the evaluation on the second



TABLE I
METHOD SCORES COMPARISON

Methods/Setups Cal2Mtp.1 Cal2Mtp.2 Mtp2Cal.1 Mtp2Cal.2 Cal2Web.1 Cal2Web.2 Web2Cal.1 Web2Cal.2
TIPICAL [F1] 67.09% 88.05% 87.41% 64.26% 88.65% 77.45% 76.77% 86.17%
Type4Py [F1] 43.96% 44.69% 45.27% 58.74% 47.41% 49.33% 47.20% 55.35%
Type4Py only predictables [F1] 65.26% 64.55% 63.27% 73.71% 67.18% 67.17% 65.09% 71.47%
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Fig. 3. Histogram of precitable vs. unknown data types distribution according
to ∆d for setup Cal2Mtp.1
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Fig. 4. Histogram of precitables VS unknown data types distribution accord-
ing to ∆d for Setup Cal2Mtp.2

mentioned domain (example reference: Cal2Mtp.2). In total
we get eight results from our four setups.

Figures 3 & 4 show that using examples from various soft-
ware domains has no discernible impact on the target domains.
The amount of unpredictable types, which sharply increases
due to the size of the source dataset as a whole rather than a
change in the use case itself, is another intriguing development
that follows from this. Nevertheless, those findings are in favor
of our approach since, by removing the lower scores of the
∆d, we will also remove most of the unknown data types
since they are closer to at least two cluster centers within a
comparable distance. Hence we provide a novelty detection
method for practical use.

RQ2: How does a nearest cluster center-based method
accuracy of the data types predictions corresponds to ∆d?

Figures 5 & 6 illustrate that various domains do not affect
the accuracy of the target domains of the closest cluster
center’s prediction. However, the closest cluster center for
the right predictions examples causes the distribution of ∆d
to be shifted to a greater distinction. As a result, we can
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Fig. 5. Histogram of accurate and inaccurate predictions distribution accord-
ing to ∆d for Setup Web2Cal.1
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ing to ∆dfor Setup Web2Cal.2

conclude that a domain change use case might be predicted
with a better degree of certainty using our method. In addition,
those results support our method because by filtering the lower
scores of ∆d. We will also eliminate the majority of incorrect
predictions since they are located nearer to at least two cluster
centers than the accurate ones.

RQ3: Can TIPICAL create higher certainty predictions
than the predictions of the Type4Py system?

Table 1 presents a comparison of the final results of our
proposed method, TIPICAL, with the benchmark method. It
is evident from this table that TIPICAL produces significantly
better high-certainty type annotations for the end user, even
across different software domains. On the other hand, the
benchmark method exhibits a significant amount of noise,
resulting from numerous inaccurate predictions of both pre-
dictable and unpredictable data types. To obtain the final F1
scores, our method employs a filtering approach, as described
earlier, by utilizing a threshold determined from the validation
group of the training dataset, effectively reducing the majority
of the noise. Finally, TIPICAL reach better results in all of
the experiments, with an average of 79.48% F1 score, which



TABLE II
EXAMPLE CATEGORIES DISTRIBUTION

Samples/Setups Cal2Mtp.1 Cal2Mtp.2 Mtp2Cal.1 Mtp2Cal.2 Cal2Web.1 Cal2Web.2 Web2Cal.1 Web2Cal.2
Predicted Samples 38.31% 30.62% 32.48% 41.83% 30.09% 37.10% 35.10% 27.50%
Samples Predicted Accurate 24.62% 26.96% 28.77% 27.67% 25.93% 28.73% 26.96% 24.67%
Predictable Samples Predicted Inaccurate 11.55% 2.62% 2.18% 11.60% 3.39% 5.39% 5.84% 2.16%
Unknown Samples Predicted 2.14% 1.04% 1.53% 2.56% 0.77% 2.98% 2.30% 0.66%
Non-Predicted Examples 61.69% 69.38% 67.52% 58.17% 69.91% 62.90% 64.90% 72.50%
Samples Non-Predicted Accurate 2.96% 3.12% 2.82% 2.95% 3.67% 5.08% 4.26% 3.39%
Predictable Samples Non-Predicted Inaccurate 46.52% 36.26% 35.19% 43.42% 47.04% 31.29% 33.43% 49.80%
Unknown Samples Non-Predicted 12.22% 30.00% 29.52% 11.80% 19.20% 26.53% 27.21% 19.31%
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Fig. 7. Histogram of common and rare types distributed across the subtraction
of the 2 Nearest cluster centers for Setup 3.1

is 30.49% improvement from the average of the Type4Py
method.

To further demonstrate the effectiveness of our proposed
method, TIPICAL, in comparison to the Types4Py technique,
Table 1 presents a comparison of the results obtained when
only predicting the predictable data types in the test dataset.
Even in this scenario where the predictable data types are
known, TIPICAL outperforms Types4Py in 7 out of 8 exper-
iments. On average, our method gets 12.27% F1 score. This
serves as evidence that TIPICAL, which does not make any
assumptions about the target dataset, is more effective than
methods that rely on prior knowledge of the predictable data
types.

RQ4: How does the frequency of data types affect its
predictability in TIPICAL?

The frequency of a data type influences how accurately
predictable it is. Figures 7 and 8 show that common types
(types that appear in the training more than 100 times [6])
are presented after the threshold at a higher rate than rare
or unknown types. Additionally, although the rare type has a
longer tail, we can see similarities between the distribution of
the unknown and rare types. Because the calculated cluster
centers of the common data types more closely resemble the
novel label features, we can also predict the common data
types more accurately than the rare types. Furthermore, the
distribution of the common type is impacted by different
software domains, whereas the distribution of the rare type is
not. This may help to explain why some cases have decreased
accuracy.

0 2 4 6 8 10 12 14

delta d

0

2,500

5,000

7,500

10,000

12,500

15,000

17,500

T
ot

a
l

A
m

ou
n
t

Common Data Types

Rare Data Types

Unpredictable Data Types

Fig. 8. Histogram of common and rare type distributions across the subtrac-
tion of the 2 Nearest cluster centers for Setup 3.2

V. LIMITATIONS

In order to perform a comparative analysis with the current
benchmark of Type4Py, we conducted a repetition of previous
experiments while disregarding the validation data type. This
enabled us to make a comparison with the methodology
employed by Type4Py.

As demonstrated in Table 2, our method predicts approxi-
mately one-third of the examples within the dataset. Although,
as indicated by the ”Samples Non-Predicted Accurate” row, a
trade-off of 3.53% of accurate predictions must be made on av-
erage to apply the threshold as TIPICAL is designed to predict
only a portion of the information. Nonetheless, by excluding,
on average, 92.63% of the unknown data types (21.97% of
the dataset) and 40.37% of potentially inaccurate predictions,
as indicated by the ”Unknown Samples Non-Predicted” and
”Predictable Samples Non-Predicted Innacurate” rows, respec-
tively, we observed an increase in the confidence of our
predictions by 30.49% (F1) in comparison to the Type4Py
method. Our findings were consistent with this conclusion,
as exemplified by setup 1.2 where TIPICAL demonstrated a
43.36% improvement in performance while only predicting
30.62% of the examples. As a result, our research confirms
that a lower prediction count results in higher scores.

VI. CONCLUSION

This study offers a thorough procedure for carrying out the
most precise deep learning-based type inference, TIPICAL.
It reaches an average 79.48% F1 score, which is 30.49%
improvement from the Types4Py method. We accomplish this
by adding steps to the Type4Py pipeline’s final stages that
address the two main issues with the current approaches:



predictability and uncertainty. TIPICAL is a novel approach
to type inference in Python, utilizing a combination of ma-
chine learning and novelty detection techniques to improve
the accuracy of predictions. The system is built upon the
Type4Py framework, which uses the closest neighbor as a
sole method for classification, which can lead to inaccuracies
and unpredictable data types. To mitigate this issue, TIPICAL
employs a threshold-based method to determine the accuracy
of predictions by comparing the distance to the closest cluster
center to the second closest. This approach results in the fil-
tering out of lower certainty predictions, thus maximizing the
overall accuracy of predictions on both the validation and test
sets. Consequently, the best current method for use in practice
that needs high certainty of data type annotation is produced.
Nevertheless, with our 8 experiments across 3 domains, we
focus on 3 subjects. Real-world software domain changes,
which mainly affect the accuracy of the predictable data types
but not the prediction percentage of the unpredictable data
types, lead to the conclusion that our technique can compete
well even then. Additionally, the fact that the main types are
common and easier to predict, further increases the validity of
our method, mainly due to the robustness of predicting well-
represented types in the training set.

Our findings suggest that applying the type inference auto-
matically using TIPICAL would be preferable because it will
cause less harm, however, it may not be as effective for real-
time suggestions when the developer may review all of the
type annotations.

Last but not least, we can suggest further developing this
method by utilizing lifelong learning techniques to improve
the general predictability of labels and enrich the predictable
types. Moreover, another easy to achieve better results is to
use only the common types from the training set to create
the cluster centers, hence, the sureness of the cluster center
will raise, and the approach will predict probably higher
F1 scores, but with fewer samples. Due to the countless
possible types, for example, by providing an example that is
below the threshold so that a domain expert can label it and
repeat the entire process indefinitely [17]. Researchers can also
use a broad method to determine the genuine entropy, then
follow the instructions in our method to increase the method’s
effectiveness and further study it.
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