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Abstract

Robots are used in a wide variety of tasks ranging from search and rescue, manufacturing and pal-
letizing applications. In the last twenty years there has not only been interests in accurate robots
but also compliantly actuated robots which resembles more the human dynamical capabilities. Re-
search has shown that physical compliance is key to increase a robot’s mechanical robustness and
explosiveness, which allows to outperform the dynamics of stiff robots. Besides that, the energy stor-
ing capabilities promises more energy efficient cyclic motions. However, there exist still no general
method to generate energy efficient motions for complex scenarios such as manipulation.
Normal modes are specific patterns of motion or vibration that a system can exhibit, and they are
important for understanding the underlying dynamics of a system. Executing motions close to the
normal modes of the system can potentially results in more efficient cyclic motions. While linear
normal modes (LNMs) exactly characterize linear systems, this is not the case for nonlinear dynam-
ical systems where a different framework is necessary to obtain nonlinear normal modes (NNMs). It
is still unknown whether NNMs can be used to perform cyclic movements in a more energy efficient
way on a real-life compliantly actuated system. Another research question is, what are the effects of
various parameters on these NNMs such as change in stiffness settings and change in energy due to
damping and friction. These questions will be investigated in this work.
First, NNMs will be identified and analysed which are interesting for particular hammering motions
on the 4 DOF left arm system of the anthropomorphic compliantly actuated robot David using a
nonlinear normal modes toolbox developed at the German Aerospace Center (DLR). Further, a new
control strategy is developed named Energy Pumping (EP) Control to stabilize the modes by compen-
sating for energy losses due to frictions or to switch to modes on different energy levels. Finally, this
control algorithm is compared to Elastic Structure Preserving (ESP) Control in terms of performance
and the effect of intentional impacts on the modes has been analysed.
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Nomenclature

Groups, algebras, and sets

R The set of real numbers
M Eigenmanifold
R Generator

Roman symbols

t Global time
q joint variable
T Kinetic field
V Potential field
E Energy

Greek symbols

∆x Spring deflection
θ Motor coordinates
σ Stiffness preset

Subscripts and superscripts

˙(·) First time derivative
¨(·) Second time derivative





Chapter 1

Introduction

This chapter serves as the introduction for this report. First, background information about the non-
linear normal modes (NNMs) framework are given. Then an overview of the David arm system is
shown and the mechanism of the Variable Stiffness Joint (VSA) is briefly explained. The problem
formulation and report structure will also be provided in this chapter.

1.1 Background on nonlinear normal modes

A normal mode (or mode) is a particular pattern of motion or vibration that a system can exhibit
when it is perturbed from its equilibrium state. These patterns, or modes, are characterized by their
frequency and shape, and are determined by the system’s physical properties and constraints. Normal
modes are used to analyze and predict the dynamic behavior of a system and can be used in the
design and optimization of its performance. For linear systems the concept of (linear) normal modes
is already widely used, consider the following linear system with n degrees of freedom (DOF)

Mq̈+K(q−qeq) = 0 (1.1)

where M ∈ Rn×n is the mass matrix, K ∈ Rn×n is the stiffness matrix, q ∈ Rn is the displacement
vector and q̈ is the acceleration vector. In this case a modal transformation can be performed which
allows the decomposition of a coupled n-DOF system into n independent single-DOF systems, a su-
perposition of the linear responses reconstructs the original response (as explained in [1]). However,
this framework only holds for small oscillations for the linear approximation of a nonlinear system.
Consider the nonlinear David arm link dynamics which can be described by the multi-body dynamics
equation

M(q)q̈+C(q, q̇)q̇+
∂V
∂q

(q,σ) = τ (1.2)

where q ∈ R4 are joint coordinates, q̇ are the velocities, q̈ are the accelerations and the stiffness
adjuster is indicated by σ . The inertia matrix M(q) ∈ R4×4 of the rigid links and C(q, q̇)q̇ ∈ R4×4

combines the Coriolis and centrifugal terms. The generalized external forces that are exhibited by
the environment are represented by τ . Further, V which is the nonlinear part denotes the potential
field induced by gravity and elastic terms. The total energy E of the system (1.2) is

E(q, q̇) =
1
2

q̇T M(q)q̇+V (q). (1.3)

The nonlinear eigenmodes (neigenmodes [2]) toolbox developed at DLR uses the eigenmanifold
theory which aims for extending eigenspaces outside of small oscillations to characterize families of
large-amplitude nonlinear oscillations. An eigenmanifold M⊂ R2n is defined as a two-dimensional
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Chapter 1. Introduction

invariant submanifold of the state space. The invariance is here defined with respect to the dynamics
in Equation (1.2) and thus relevant for nonlinear oscillations. In this case, there are n = 4 distinct
eigenmanifolds associated with an equilibrium qeq, each one of them is tangent to a different linear
eigenspace. The equilibrium position qeq can be chosen by fixing the motor positions θ at a desired
equilibrium. The direct extension of the eigenvectors are called generators R which will be used as
set of initial conditions with q̇ = 0. An eigenmanifold is a continuous set of periodic orbits (also
known as eigenmodes or modes) that can be uniquely identified by their constant energy. For small
energies, these orbits will resemble the ones predicted by the linear analysis. The neigenmodes
toolbox produces the following results for a given system:

• All the generators, as a discrete set of points

• All the eigenmanifolds, as a discrete set of points

• Cycle period time of the eigenmodes.

Figure 1.1: Projection of generator on the configuration space of the system. The generator for one
specific group of modal oscillation is shown.

One example of the projection of a generator on the configuration space of the 4-DOF David arm
system can be seen in Figure 1.1, in this case Generator 2 with stiffness preset σ = 5◦ (stiffness preset
is explained in Chapter 1.2). Herein one specific group of modal oscillation is shown of the system
were the end points (with zero velocity) are forming the generator. The neigenmodes toolbox pro-
duces this generator as set of points, which are all starting points of modal oscillations (green line).
Essentially, starting from a generator, the system will perform the corresponding modal oscillation
back and forth forever if no torques are applied onto the system. The generator can be divided into
two sub-generators separated by the system’s equilibrium position, every mode is connected to both
sub-generators at the end points, e.g., Generator 2.1 and 2.2 in Figure 1.1. Basically, this subdivi-
sion is splitting the generators in half and only one half is necessary to reconstruct the periodic orbits.
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1.2. David arm system

Note that at the time of writing this report the neigenmodes toolbox has not been published yet and
no further details can be given.

1.2 David arm system

The theories in this work will be based on the anthropomorphic arm system of David which can be
written in the form of (1.2). It consists of variable stiffness actuated joints which have energy storing
capabilities. These passively compliant robots allow to outperform stiff robots in terms of robustness
against collisions and impacts without severe damage. In case of collision the decoupling of drive
and link, through to energy storage, results in lower peak torques in contrast to stiff robots which
cannot store energy (for more details on the arm design see [3]). The following properties hold:

Property 1: The mass matrix M(q) is symmetric and positive definite.

Property 2: The singular values of M(q) are bounded above and bounded below away from zero,
therefore M−1(q) exist and is bounded.

Property 3: Since C(q, q̇) is bounded in q and linear in q̇, C is bounded for bounded q̇.

Figure 1.2: DLR Arm System. Source: [3]

The first four joints of the arm will be considered which consist of the DLR FLoating Spring Joints
(FSJ) [4] (see Figure 1.3). The forearm and wrist joints are driven by Bidirectional Antagonistic
Variable Stiffness (BAVS) joints which will not be included in this work. The joint positional limits
can be seen in Table 1.1.

Lowerbound [deg] Upperbound [deg]
q1 −86 136
q2 0 171
q3 −146 81
q4 −31 141

Table 1.1: Joint limits
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Chapter 1. Introduction

Figure 1.3: Location and name of the drive principles. Source: [3]

Floating Spring Joint (FSJ)

The first four arm joints, namely the elbow and the three shoulder joints, are implemented by Floating
Spring Joints (FSJ) and will be considered during this work. The motor joints and links are connected
via a variable nonlinear elastic element (see Figure 1.4a). The joint stiffness characteristics can
be changed via the motor position σ . In Figure 1.4b is shown how different stiffness positions σ

influence the joint stiffness characteristics. In this work σ is considered as a preset parameter and
will not be changed when performing motions. The motor joint position θ (which is the reflected
motor position after the gearboxes) will be used to hold the system in a desired equilibrium position.
This parameter will also be determined prior executing any movements in the system.

(a) Floating Spring Joint (FSJ) (b) Joint stiffness characteristics for various stiff-
ness adjuster positions

Figure 1.4: FSJ drive principle and joint stiffness characteristics for various stiffness adjuster posi-
tions σ =

[
0 2.5 5 7.5 10

] ◦. Source: [5]

The maximum possible passive joint deflection ϕ = θ −q is decreasing with higher stiffness preset σ ,
this is due to saturation effects of the spring combined with the potential energy stored in the spring
through the stiffness preset (can be seen in Figure 1.4b). The joint deflection bounds are determined
by

qlowerbound = θ0 −qmax and (1.4)

qupperbound = θ0 +qmax (1.5)

with the motor equilibrium θ0 and the maximum link deflection qmax. During this work the joint
deflection bounds are indicated by a grey dotted box on the configuration space of the system.
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1.3. Problem statement

1.3 Problem statement

Often dynamical capabilities of systems are not yet sufficient for several tasks, for example in cyclic
tasks (hammering) or highly dynamic tasks (throwing) actuators often can not provide enough en-
ergy during peak loads. Physical compliance also promises more energy efficient cyclic motions
compared to stiff robots when using the system’s normal modes. Using normal mode can potentially
improves the performance of a system in these aspects. A normal mode (or mode) is a particular
pattern of motion or vibration that a system can exhibit when it is perturbed from its equilibrium
state. These patterns, or modes, are characterized by their frequency and shape, and are determined
by the system’s physical properties and constraints. Normal modes are used to analyze and predict
the dynamic behavior of a system and can be used in the design and optimization of its performance.
When initializing the system on a certain mode, the system’s natural behaviour is following the mode
and therefore the hypotheses is that when performing motions on or close to these modes it can lead
to improvement benefits in performance (e.g. energy efficiency, accuracy or robustness) compared
to non-modal control strategies on a real system. In the case of a linear system, linear normal modes
can be obtained by performing a modal transformation which allows the decomposition of a coupled
n-DOF system into n independent single-DOF systems, a superposition of the linear responses re-
constructs the original response. However, for nonlinear systems (such as the David arm system in
the form of (1.2)) these theories only apply for small oscillations for the linear approximation of a
nonlinear system. Therefore, the nonlinear normal modes of the David arm system will be analysed
by using the neigenmodes toolbox developed at DLR to numerically compute these Nonlinear Nor-
mal Modes for a given nonlinear system based upon the eigenmanifold theory.
The framework of NNMs assumes the system to be conservative. However, real systems are not
conservative, meaning there is damping and friction acting on the dynamics of the system causing
dissipation in energy. The research goal is to investigate how to generate NNMs on the David robot
arm system and how to compensate for unavoidable energy dissipation due to friction to be able to
stabilize a desired mode and asses if those friction compensated NNMs provide performance benefits
(e.g. energy efficiency, accuracy or robustness) for cyclic motions compared to non-modal control
strategies on a real setup, employing a hammering task as a prototype motion for the investigation.
The David 4-DOF arm model will therefore be extended with a hammer model. Impacts are occur-
ring when hitting the object after each hammering cycle which are also not included in the framework
of NNMs, these impacts results in external forces applied on the dynamics of the system. Therefore,
the effect of intentional impacts on NNMs are also investigated in this work.

1.4 Report structure

The previous section explained why using NNMs could be interesting to investigate for the purpose
of improving a system’s performance for cyclic motions. The remainder of this report is organized
as follows, Chapter 2 describes the robot model kinematics which is used to compute the NNMs and
an extension of this model with a hammer model is given. Interesting NNMs suitable for hammering
tasks and an experimental analysis of the effects of link-side damping on NNMs which provide
a basis for new control strategies to compensate for energy dissipation are shown in Chapter 3.
To compensate for the unavoidable energy dissipation due to friction, a new energy based control
strategy has been implemented to stabilize the NNMs, the performance of this energy based controller
has been compared to Elastic Structure Preserving (ESP) control and the effect of intentional impacts
on NNMs are analysed in Chapter 4. Conclusions and future work suggestions are presented in
Chapter 5.
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Chapter 2

Robot model

An Unified Robot Description Format (URDF), which is an XML format for representing the phys-
ical and visual properties of a robot (including e.g., its links and joints ), will be used as input by
the nonlinear eigenmodes toolbox to compute the generators and modes in Chapter 3. URDFs has
become popular with the advent of the Robot Operating System (ROS), which is an open-source
framework for building robotic applications. In Chapter 2.1, the robot model will be explained and
how multiple robot links will be combined to reduce the URDF size to speed up the computation
time of the neigenmodes toolbox. The neigenmodes toolbox computes the equations of motion using
the URDF. However, the elastic potential function cannot be defined in the URDF. Therefore, the
user must implement this potential function separately, the implementation of the elastic potential
function is explained in Chapter 2.3. Also, the inertia of a hammer will be determined analytically
and experimentally and integrated into the URDF of the arm system in Chapter 2.2, consequently
two different URDFs are available to compute the NNMs.

2.1 David arm system URDF

URDFs of the David system can be generated using the David kinematics library from DLR. This
library generates the desired URDF file for a specified set of sub-units of the David system (see
Figure 2.2). In this case an URDF with the pedestal (P), torso (T), rightarm (Ar) and the righthand
solid (Hs) has been created. Since computing the modes are computational intensive the solid hand
was chosen. Only the first four links, R1-S1, R2-S2, R3-OA and R4-EK are defined as revolute in
the URDF (see Figure 2.2), the others are fixed.

To reduce the computation time of the generators, the URDF file can be reduced by merging the
fixed links R5-UA, R6-AB and R7-FL.
First, the position of the link’s center of mass relative to its corresponding link-frame are given by
R5⃗rcmR5 , R6⃗rcmR6 and R7⃗rcmR7 . The mass of each link are mR5, mR6 and mR7 which results in a total
mass of

mR5,R6,R7 = mR5 +mR6 +mR7. (2.1)

The link’s moments of inertia about its center of mass w.r.t. the link’s frame of orientation are given
by JcmR5 , JcmR6 and JcmR7 (this can be found in Appendix A).
Further, all positions of the link’s center of mass will be expressed relative to link-frame R5 by

6



2.1. David arm system URDF

Figure 2.1: David sub-units to be selected for the David kinematics library. Source: [6]

applying the following rotation matrices

RR6 = Ry(β )Rx(γ) =

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

1 0 0
0 cosγ −sinγ

0 sinγ cosγ

 , (2.2)

RR7 = Ry(β ) =

 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 (2.3)

where, β = γ =−π

2 .
The positions of the link’s center of mass relative to link R5 are now defined by (see Figure 2.3):

R5⃗rcmR6 = RR6 ·R6 r⃗cmR6 , (2.4)
R5⃗rcmR7 = RR7 ·R7 r⃗cmR7 . (2.5)

The new center of mass of the three links relative to link R5 (not indicated anymore) is defined by

r⃗cmR5,R6,R7 =
mR5 · r⃗cmR5 +mR6 · r⃗cmR6 +mR7 · r⃗cmR7

mR5 +mR6 +mR7
. (2.6)

Finally, the Huygens–Steiner theorem can be applied to combine all three inertia’s by the following
formula

JCMR5,R6,R7 =
R7

∑
i=R5

(Jcmi +mi(⃗ri · r⃗iI − r⃗i⃗rT
i ) (2.7)

where, r⃗i = r⃗cmi − r⃗cmR5,R6,R7 .
The computational results can be found in Appendix A.
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Chapter 2. Robot model

Figure 2.2: Frame Locations - Arms
Source: [6]

2.2 Hammer inertia model

The next step would be to add the inertia and mass of the hammer and calculate the new center of
mass together with link five (calculated in the previous subsection). Upon completing this part, there
are two URDF files at our disposal: one for the David arm model with a hammer model, and one for
the David arm model without a hammer model. The moment of inertia of the hammer is calculated
experimentally and analytically.

2.2.1 Experiment using period of oscillation

For the experiment the moment of inertia is computed by using the period of oscillation of the ham-
mer. The period of oscillation is the time it takes for an object to complete one cycle of motion, in
this case swinging back and forth. For the experiment the period time of the hammer is measured
around the xx and zz axis as depicted in Figure 2.4, Jyy and off-diagonal terms are not critical for
hammering motions. Around the center of rotation there is a small mass with an unknown inertia, to
reduce the effects of this mass a rope is attached between the hammer and the center of rotation. The
rope is assumed to be massless. Pictures of the real experimental setup can be found in Appendix B.
The mass moment of inertia is calculated by using the period of oscillations defined as

T = 2π

√
Jo

mgd
(2.8)

where T is the period time which will be measured, m = 0.64kg is the mass of the hammer, g =
9.81ms2 is the gravity constant, d = d1 +0.268 is the distance from the rotation axis to the center of
mass and I is the moment of inertia around Io. The moment of inertia around the center of mass is
calculated with

Jcm = Jo −md2. (2.9)

For the axis xx and zz three experiments have been performed as shown in Table 2.1, with an average
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2.2. Hammer inertia model

Figure 2.3: Position from link’s center of mass to combined center of mass

inertia around the center of mass of

Jcm,measured =

0.0042
Jyy

0.0036

 kgm2. (2.10)

Experiment 1 Experiment 2 Experiment 3
xx zz xx zz xx zz

d1 [m] 0.394 0.360 0.405 0.484 0.480 0.473
T [s] 1.655 1.604 1.651 1.747 1.742 1.735
Jo [kgm2] 0.2884 0.2570 0.2917 0.3650 0.3610 0.3547
Jcm [kgm2] 0.0079 0.0045 0.0019 0.0031 0.0029 0.0033

Table 2.1: Experimental results hammer inertia

2.2.2 SolidWorks modeling of hammer inertia

For the analytical computation the hammer is approximated by using SolidWorks with three shapes,
ellipse, rectangular parallelepiped and triangle (see Appendix C for the dimensions). The total mass
of the hammer is measured to be 0.640 kg and based on the assumption that the hammer head mass
must be 0.20 kg, 0.30 kg, 0.50 kg or 0.80 kg, the head mass is 0.50 kg and the handle must therefore
weigh 0.14 kg. Based on this information the following inertia matrix is computed around the center
of mass of the hammer

Jcm,solidworks =

 0.0038 6.64 ·10−5 0
6.64 ·10−5 0.00043 0

0 0 0.0041

 kgm2. (2.11)
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Chapter 2. Robot model

rcm

yy

rcm

xx

d1

rcm

zz

d1

0.268 m 0.315 m

o o o

Figure 2.4: Hammer experiment configuration

2.2.3 URDF with hammer

The inertia matrix of the experimental and analytical results are relatively close to each other. The
final inertia matrix used will be the average between those two

Jcmhammer =

 0.0040 6.64 ·10−5 0
6.64 ·10−5 0.00043 0

0 0 0.0039

 kgm2. (2.12)

From now on r⃗cmR5 = r⃗cmR5,R6,R7 , mR5 = mR5,R6,R7 and JcmR5 = JcmR5,R6,R7 (see Equation (2.6), (2.1) and
(2.7)).
For the new URDF, the hammer inertia will be combined with R5. The new center of mass becomes

r⃗cmR5,hammer =
mR5 · r⃗cmR5 +mhammer · r⃗cmhammer

mR5 +mhammer
(2.13)

where, r⃗cmhammer =
[
0.08 0.22 0

]T m is measured by hand on the real hardware. The vector from
the center of mass of R5 to the new center of mass of R5 and the hammer combined defined as

r⃗R5 = r⃗cmR5,hammer − r⃗cmR5 . (2.14)

Further the vector from the center of mass of the hammer to the new center of mass of R5 and the
hammer combined is

r⃗hammer = r⃗cmR5,hammer − r⃗cmhammer . (2.15)

The combined inertia around the center of mass will be (see Appendix C for the solutions)

JcmR5,hammer =Jcmhammer +mhammer (⃗rhammer · r⃗hammer I − r⃗hammer⃗rT
hammer)+ ... (2.16)

JCMR5 +mR5(⃗rR5 · r⃗R5I − r⃗R5⃗rT
R5).
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2.3. Potential function

x
z

y
rcmhammer

z
rhammer

cmhammer

cmR5,hammer

y

x
R5

cmR5,hammer

Figure 2.5: New center of mass cmR5,hammer for Link R5 and the hammer combined.

2.3 Potential function

Besides the URDF, the neigenmodes toolbox also requires the potential function since this cannot be
obtained from the URDF. The spring energy is described by [4]

Estore(φ) =
1
2

R(∆x2(φ)− x2
0), (2.17)

with spring constant R, spring deflection ∆x and pretension x0.
The spring force results in

Fspring(ϕ) =
√

2R(Estore +E(x0)). (2.18)

The derivative of the cam disk in dependency of ϕ is defined as

∂x
∂ϕ

=
τcam(ϕ)

Fspring(ϕ)
, (2.19)

with the torque characteristics of the cam disk τcam and the passive joint deflection ϕ . For more
details about the spring potential see section E of [4].
The differential equation can be numerically integrated along ϕ to derive the cam profile. In the
simulation and on the hardware a lookup table is used for the cam profile since no analytic solution
could be found. However, the toolbox requires an analytic convex expression for the potential func-
tion. Therefore, the cam profile lookup table is approximated by the eight order polynomial with the
following structure

f (x) = p1x8 + p2x7 + p3x6 + p4x5 + p5x4 + p6x3 + p7x2 + p8x+ p9, (2.20)

with p1 = −52.41, p2 = −180.9, p3 = −188.1, p4 = 0.2258, p5 = 128.2, p6 = 91.97, p7 = 27.31,
p8 = 3.577 and p9 = 1.194.
The variance of the polynomial fit is 0.99996 m2 and Root Mean Square Error of 0.015083 m. The
passive joint deflection vs the torque characteristic curve can be found in Appendix D for both the
lookup table and the fitted polynomial function.
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Chapter 3

Nonlinear Normal Modes on David

In Chapter 3.1, motor positions will be suggested which give rise to interesting NNMs with as goal
to perform hammering motions. These motions are performed by assuming no energy dissipation
or external forces acting on the system. In Chapter 3.2, the NNMs computed by the neigenmodes
toolbox are verified with the David arm simulation. In Chapter 3.3, the effects of link-side damping
will also be investigated which causes energy dissipation. Note that the URDF model which has been
used does not include the hammer model.

3.1 Hammering modes

Based on the discussed work in Chapter 2, namely the creation of the URDF model of the David
arm system and the implementation of the elastic potential function, the NNMs and generators can
be computed for the David arm system using the neigenmodes toolbox. To compute the NNMs,
two different preset parameters need to be chosen in the elastic potential function namely, the joint
stiffness preset σ and the motor equilibrium position θ . The output of the toolbox results in four
eigenmanifolds and four generators, the generators is used as a set of initial conditions for the sys-
tem with q̇ = 0 and the eigenmanifold is used to have an interpretation of the corresponding motion.
There does not exist a systematic method to determine the equilibrium position and stiffness preset
for a desired modal trajectory yet. Therefore, the desired generators will be found based on trial and
error using visualisations of the David arm system and the projection of the eigenmanifold on the
joint space of the system. In first instance, the ideal motion for a hammering task would be a perfect
vertical movement of the hand palm from a frontal perspective with a frequency of around 2 Hz, the
problem with higher frequent modes is that it will probably be harder to excite on the real system
compared to lower frequent modes. However, when such a mode cannot be found the primary focus
of analysing the motion is the hand palm motion at the bottom position when the joints are close to
zero velocity to be vertical or close to vertical, as this is relevant to the hammering task of striking a
nail. Two interesting hammering modal candidates are shown in this section.

Candidate 1: elbow driven hammering motion

To have an idea how a hammering motion looks like in joint space, joint data on the hardware is
collected of a desired hammering motion trajectory, which is indicated by the green line in Figure 3.1.
The first step is to choose a desired motor equilibrium position θ , this is determined by computing
the joint coordinates during maximum velocity of the measured hammering data trajectory. The
reason for that is that the modes are at maximum velocity around the equilibrium position (in this
specific case), which coincides with the midpoint of the motion of one modal trajectory. The joint
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3.1. Hammering modes

equilibrium positions are
qeq =

[
−26 9 7.5 79

] ◦.
Next, the stiffness preset σ needs to be chosen, all four joints are set to the same stiffness values. The
mode shapes of the second generator with stiffness preset σ = 5◦ were the most corresponding to
the measured hammering data, see Figure 3.1. Visualisation snapshots of the simulation (purple line)
can be seen in Figure E.1 located in Appendix E. Unfortunately, modes at higher energy levels which
are located outside of the maximum deflection bounds are closer to the green line but cannot be used
on the real setup. The modal frequency is around f = 5 Hz for low energy levels (inside the grey
box). Changing the stiffness preset has effects on the period time, see Figure 3.2b. Generally, lower
stiffness setting σ results in a lower frequency, also modes corresponding to lower energy levels
yields lower frequent modes (see Figure 3.2b). Experiments on the hardware shows that releasing the
system from initial conditions close to this generator results in a different movement then expected.
Observed is that the elbow joint damps out almost immediately and only a sideways motion driven
by the shoulder is visible consisting of a lower frequency of around f = 2 Hz. The theoretical mode
is mainly driven by movements of the fourth joint corresponding to the elbow joint causing probably
high frequent modes. Observed is that the shoulder takes over the motion, which consists of a lower
natural frequency. This showed that probably lower frequent modes which are mainly driven by q1
(first shoulder joint) are easier to excite then higher frequent modes which are mainly driven by q4
(elbow joint) on the real setup. Therefore, the second modal candidate is shown which consists of a
motion mainly driven by the first shoulder joint (with a frequency of around f = 2 Hz) since the end
goal is to perform these modes on the real setup.

Figure 3.1: Generator 2 for equilibrium position of qeq =
[
−26 9 7.5 79

] ◦ with measured ham-
mering data (green curve).
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(a) Generator 2

(b) Cycle periods of modes

Figure 3.2: Effect of various stiffness settings applied to all joints ranging for σ =[
1 2.5 5 7.5

] ◦, Generator 2 is shown for various stiffness settings in Figure 3.2a and the modal
period time can be seen for various energy levels in Figure 3.2b.

Candidate 2: shoulder driven hammering motion

The second modal candidate uses less elbow motion but more movements from the first shoulder
joint q1. In this case the corresponding frequency is around f = 2 Hz which was desired. The
found generator can be seen in Figure 3.3. Visualisation snapshots of the simulation (purple line)
can be seen in Figure E.2 located in Appendix E. The mechanical design of the first shoulder joint is
slightly inwards rotated (direction to the body) around the x axis (Figure 2.2), the hammering motion
is therefore also rotated inwards and is not a vertical path anymore from a frontal perspective. The
hammering data is not shown in this figure since this motion is not located close to the new manifold.
The equilibrium corresponding to this new candidate results in

qeq =
[
−30 10 −10 100

] ◦.
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Figure 3.3: Generator 3 for equilibrium position of qeq =
[
−30 10 −10 100

] ◦.

3.2 Comparing generators with simulation

Simulations are performed to validate the existence of the modes in the simulation environment. In
this case candidate 1 is used with an initial condition of

q⃗0 =


−0.530
0.088
0.235
1.673

 rad.

As shown in Figure 3.4, there is a small error when ending on Generator 2.2, this error occurs due to
numerical issues. After one modal trajectory the errors are still very small

q⃗error =


0.0007
0.0003
0.0009
0.0010

 rad.

This error is the difference in angular position between the simulation and the generated mode at
zero velocity. However, the error increases when simulating for longer time and the simulation
will eventually diverge from the desired mode to infinity but this will not be an issue due to the
implemented control algorithms explained later in this work. On the real system damping is involved
which will cause energy dissipation, the effects of damping will be discussed in Chapter 3.3.
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Figure 3.4: Simulated vs theoretical mode

3.3 Effects of damping on nonlinear normal modes

The generators are computed with the assumption there is no link-side damping acting on the sys-
tem. However on the real system there will be damping present. In this section the effects of link-side
damping acting on the system is experimentally investigated. On real systems positive damping does
not exist, but nevertheless it would be interesting to investigate it with regard to possible control im-
plementations. Positive damping results in energy injection (see Figure 3.5a) and negative damping
results in energy dissipation (see Figure 3.5b). Note that the simulated motions are moving along
with the generators which is an interesting property for control purposes. The energy level cannot be
influenced when initializing the system from the equilibrium since the initial velocity is and remain
zero. The link-side damping has exponential effects on the energy levels which can be seen in Ap-
pendix F.

3.4 Conclusion

This chapter showed two different groups of manifolds which could be interesting for the purpose
of hammering tasks. Candidate 1: elbow driven hammering motion, closely resembles the desired
vertical hammering motion (shown as the green line in Figure 3.1), but the modal frequency was
approximately twice as high as desired. Candidate 2: shoulder driven hammering motion, this mo-
tion uses more of a combination between the first shoulder joint and the elbow joint. This motion
was not perfectly vertical from a frontal perspective but consists of the desired frequency of around
f = 2 Hz, which is probably more realistic on the real setup. Therefore, candidate 1 will serve as
prototype motion for the development of control strategies to stabilize a desired mode by compen-
sating for energy dissipation in Chapter 4. Adjusting the stiffness preset of each joint individually
may result in more suitable modes for a hammering task. However, this increases the number of
potential configurations significantly. Manually finding a desired NNMs is time consuming not only
due to the computational time, but also because it is affected by various variables such as equilibrium
position and joint stiffness settings. Additionally, the modes of each generator must be visualized
to determine if they are suitable for the desired purpose. As the number of degrees of freedom in
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a system increases, the number of potential configurations grows exponentially. Therefore, possible
future research includes finding ways to reverse this process, such that a desired one can be given as
input and the parameters that result in NNMs close to the desired mode can be identified.

It is well-known that damping acting on a system results in energy dissipation. However, it
was not clear how damping was effecting the NNMs of a system since the NNMs are computed by
assuming conservative systems. In Chapter 3.3, an experimental investigation was conducted which
showed that link-side damping in a system not only causes the system to converge to the equilibrium
position by dissipating energy, but also preserves the modal shape as the system moves along the
generators and return to the equilibrium position. The inverse also holds, when configuring the
system with positive damping (causing energy injection), the system is moving along the generators
to higher energy levels. Even tough link-side damping cannot be controlled directly through software,
it means that modes can potentially be stabilized by regulating energy levels of the system. In Chapter
4, an energy based control algorithm is implemented based on this concept.
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(a) Simulated modes for the energy dissipation case with damping factor of 0.1. The
system is initialized at an energy level of 20J (located towards the end of the generator)
and is converging to the equilibrium position.

(b) Simulated modes for the energy injection case with damping factor of −0.1. The
system is initialized at an energy level of 0.06J close to the equilibrium position.

Figure 3.5: Effects of link-side damping in eigenspace. For higher damping factors the motion
will move faster along the generators resulting in less dense motion curves. The system also moves
faster along the generators at higher energy levels compared to lower energy levels which can also
be observed in the figures.
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Chapter 4

Stabilization of nonlinear normal modes

Based on the results in Chapter 3.3, regulating energy levels can potentially be used to stabilize and
control NNMs. In Chapter 4.1.1, a controller has been implemented based on link-side damping
control which in practice cannot be directly implemented since link-side damping is a characteristic
of the physical properties of the system. However, it would still be interesting to validate this energy
based method, as this could lead to the development of energy based control strategies that can be
implemented on the real system. Energy Pumping (EP) control, a energy based control strategy to
stabilize NNMs which is realizable on the real setup is explained in Chapter 4.1.2. In Chapter 4.2, the
performance of Energy Pumping control is compared to that of Elastic Structure Preserving (ESP)
control, which is a control strategy implemented on the David robotic arm developed at DLR. The
goal of ESP control is to maintain the link-side inertial properties and the elastic characteristics of
the original plant dynamics. Finally, intentional impacts are analysed on the NNMs in Chapter 4.3.

4.1 Energy regulating

In this section an energy regulating control strategy is explained which can be used to stabilize the
desired modes. Modal candidate 2 will be used to demonstrate the developed control algorithm since
these modes are more realistic to achieve on the real setup as explained in the previous chapter.

4.1.1 Link-Side Damping Control

As shown in Chapter 3.3 link-side damping can be used to regulate energy levels while staying on
the generators. This is useful for modal stabilisation to able to stay in a desired mode but also for
switching to other modes. Even though link side damping cannot be changed directly on the real
system since it is a characteristic of the physical property of the real system, it is still meaningful to
investigate whether energy based approaches can work to stabilize NNMs as a foundation of other
control strategies. The following function is used to determine the link-side damping factor d to
regulate energy levels (or see Figure 4.1)

d = K · tanh(2 ·Eerror) (4.1)

where scaling factor K = 0.2 and Eerror = E −Edesired .
The total energy is defined as

E = T +Vgrav +Velast −Veq

where T is the kinetic energy, Vgrav is the gravitational energy, Velast is the elastic energy and Veq is
the energy in the equilibrium.
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Figure 4.1: Energy regulating function

On the real system, the arm must begin from its equilibrium position, but there is no initial velocity
and therefore energy levels cannot be changed from this position. ESP Control [5] is used to first
increase energy levels by going from the equilibrium position to a desired position on the generator
(indicated by the star symbol in Figure 4.2). Then a switch is enabled where the motor positions are
set back to the equilibrium position by using a simple PD controller (with the same gains as on the
real system, P=8000 and D=100) and the energy regulating algorithm will be enabled to stabilize the
desired mode. This principle can be seen in Figure 4.2 and 4.3, q0 indicates the goal position of the
ESP controller and also the starting position of the energy regulating controller.

There is a oscillating steady-state error present of approximately 0.15 J. That the system is converg-
ing to the desired energy level does not necessary mean that the system is converging to the desired
mode. The system could converge to other limit cycles with the same energy levels instead, therefore
it is crucial to initialize the system close enough to the desired mode in this example the required er-
ror was |qerror,ss|< 8 ·10−4 rad. An observation is that for higher energy levels there is more margin
for this initial condition error. Note that this method has also been successfully validated to switch
between modes of different energy levels. In Chapter 4.1.2, another energy based control strategy is
proposed that is designed for implementation on actual systems.
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4.1. Energy regulating

Figure 4.2: The system is initialized at the equilibrium position, using ESP control to go from the
equilibrium to the star position (indicated by ∗) on the generator, switching motor position back to
the equilibrium position (using PD control) and enabling link-side damping control. After releasing
the system from the star position, the desired mode is stabilized. Note that the simulation time is
t = 5 s and only the link positions are shown in the figure.

4.1.2 Energy Pumping (EP) Control

The energy based approach in Chapter 4.1.1 shows that using energy based approaches to control
NNMs are promising. However, the previous approach cannot be implemented on the real system
since the link side damping cannot be changed directly. Therefore a different approach to control
energy levels is discussed in this section. This approach is based on injecting energy using change in
motor positions. Consider the total energy H of a single elastic joint

H = Sθ +Sq (4.2)

where the motor side energy Sθ and link side energy Sq are defined as

Sθ =
1
2

Bθ̇
2 and (4.3)

Sq =
1
2
(Mq̇2 +K(θ −q)) (4.4)

with, q ∈ R and θ ∈ R represent the link and motor coordinates, respectively. M ∈ R is the inertia
matrix of the rigid links, B ∈ R is the diagonal matrix of the actuator inertias reflected through the
respective gearboxes. The spring energy with stiffness parameter k is chosen to be allocated on the
link side.
The equations of motion on the motor- and link-side are given by

Bθ̈ +K(θ −q) = u and (4.5)

Mq̈ = K(θ −q) (4.6)

with the control input u. The change of energy on the link side follows as

Ṡq = Mq̈q̇+K(θ −q)(θ̇ − q̇)) (4.7)

21



Chapter 4. Stabilization of nonlinear normal modes

Figure 4.3: Joint positions over time

Substituting Equation (4.6) and the torque ψ = K(θ −q) yields

Ṡq = q̇ψ +ψ(θ̇ − q̇) (4.8)

= ψθ̇ . (4.9)

Note that Ṡθ =−ψθ̇ , by using the fact that Ḣ = 0.
Equation (4.9) shows that energy will be injected to the system if both the torque ψ and the motor
velocity θ̇ have the same signs. Energy will be dissipated when they have different signs. This
principle can also be extended to the full dynamics of David, for reference see the passivity analysis
in section V of [5].
This theory will be used to inject energy during maximum link velocity by moving the motors. This
also means that the motors are not fixed at the equilibrium θ0 anymore but the new desired motor
coordinates θd are now defined as

θd = θ0 +∆θ (4.10)

where θ0 is the equilibrium position and ∆θ is the variable motor offset which will be used to inject
energy which is

∆θ = ε ·∆q · tanh(2 ·Eerror) (4.11)

with a scaling factor ε , the difference in maximum joint deflection of the mode ∆q and the energy
regulation function as variable scaling (see Figure 4.1).
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4.2 Elastic Structure Preserving (ESP) Control

In this section, a modal trajectory will be given to the ESP controller [5] which is a control strategy
implemented on the David robotic arm system and developed at DLR. The goal of ESP control is to
maintain the link-side inertial properties and the elastic characteristics of the original plant dynamics.
The desired trajectory is created by simulating the system for one period on a desired position on the
generator, in this case a mode of approximately 3 J. Higher order derivatives (until fourth order) are
computed from the measured position vector, these derivatives are required as feedforward terms for
the ESP controller. One period can be repeated to create a longer trajectory signal. Note that due
to numerical simulation errors, the end position of the periodic signal is not exactly the same as the
starting position, this will cause small cyclical jumps when extending this signal. The steady error of
the ESP trajectory control is −0.02 < qerror,ss < 0.02 rad.
The steady state trajectory of both control methods are shown in Figure 4.4. The positional error
over time could not be compared to each other since the Energy Pumping Control uses energy as
reference. Therefore, the Euclidean norm ∥qe∥ is calculated between the theoretical mode and the
simulation as

∥qe∥=

√
n

∑
i=1

(qi −qdi)2 (4.12)

where the link coordinates are indicated by qn ∈Rn×4 and the theoretical modal coordinates is qdn ∈
Rn×4, with n the length of the mode. Resulting in a Euclidean norm of

∥qe,EP∥= 0.1838 rad and (4.13)

∥qe,ESP∥= 0.0294 rad (4.14)

Figure 4.4: One modal trajectory in the steady state of ESP Control and EP Control

The variance for a random variable vector A made up of N observations is computed by

Var =
1

N −1

N

∑
i=1

|Ai −µ|2 (4.15)
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where µ is the mean of A,

µ =
1
N

N

∑
i=1

Ai. (4.16)

The variance of the x and y positions of the hand palm (TCP) at zero velocity results in

Var(x,y)EP =
[
0.9272 0.5438

]
·10−6 m2 and (4.17)

Var(x,y)ESP =
[
0.9251 0.4236

]
·10−12 m2 (4.18)

In terms of accuracy and consistency ESP Control outperforms EP Control for this specific mode as
shown above.
However, in terms of mechanical power the EP Controller shows to use less energy in the steady state
as shown below

WEP =
1
5

∫ t=10

t=5
|u · θ̇ |= 2.93 ·103 Ws and (4.19)

WESP =
1
5

∫ t=10

t=5
|u · θ̇ |= 4.75 ·103 Ws (4.20)

where u ∈ R4 is the control torque input and θ̇ ∈ R4 is the motor velocity. In this case the EP
Controller is 1.6 times more efficient in terms of mechanical power. However, this depends strongly
on the applied link- and motor-side frictions in the model. Increasing friction reduces the energy
efficiency of the EP controller compared to the ESP controller. In the following example, the energy
efficiency only improves factor 1.2 when doubling the motor-side friction D to

D =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 (4.21)

and doubling the link-side friction Kd to

Kd =


0.2 0 0 0
0 0.2 0 0
0 0 0.2 0
0 0 0 0.2

 . (4.22)

The relative performance of the EP and ESP controllers in terms of accuracy, variance and energy
efficiency depends on various factors and requires further investigation. Factors such as the energy
level of the NNM, control parameters, and the shape of the NNM can impact control performance.
Besides that, both controllers utilize the NNM framework, meaning that both could benefit from its
use. Therefore, it might be possible that both strategies perform better than control strategies that do
not incorporate the system’s NNM for similar motion patterns.
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4.3 Effects of impacts on nonlinear normal modes

In this section the effects of impacts on the modes will be analysed in simulation. In this part modal
candidate 1 will be used since this represents a more vertical hammering motion. The effects of
impacts which lead to external counter forces applied in the direction of the mode will be investigated
in this section. Only impact forces in the vertical z direction are considered as shown in Figure 4.5.
The height at the moment of impact is z∗ which is the vertical distance from the world frame to the
moment of impact. The impact is modelled as a linear spring damper system resulting in an external
force Fexternal,z and is defined by

mẍ =−k(z− z∗)−d(ż− ż∗) i f z < z∗ (4.23)

where K = 6000 is the stiffness coefficient and d = 2000 is the damping coefficient of the plateau. If
z ≥ z∗, no external forces are applied. Consequently, the four external joint torques τext ∈ R4 can be
computed by

τext = JT Fext (4.24)

where J ∈ R4x6 is the Jacobian converting the external forces on the TCP to joint torques and
Fext =

[
0 0 Fext,z 0 0 0

]T .

k d

τext,4

τext,3

z∗

z

Fext,z

Figure 4.5: Impact model on David. Note that the system consist of four external joint torques but
only two are shown in the figure.

The impact location depends on the hammering strategy. When the objective is to perform a single
massive hit it is ideal to have the impact at maximum velocity. However when the goal is to have
repetitive hammering motions it is desired to have impact locations close to the generator, otherwise
too much kinetic energy is lost during the impact which can cause the destabilization of modes. It is
crucial to find the correct trade-off, but this is subject to future work.
Without impacts the hand palm reaches a distance of around z = −0.385 m with respect to the first
joint q1. In this case the table height is chosen to be z∗ = −0.375 m. That means the hand palm
reaches the object about 1 cm before reaching its natural zero velocity point.
An observation is that the impacts do have effect on the phase of the modes and also causes an am-
plitude reduction as shown in Figure 4.6.
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Figure 4.6: Joint position with q are the position from the original simulation and q∗ are the positions
with the applied impact model. The grey bars indicate the moments where the impact model is
applied.

The shape of the motion does not change much, as shown in Figure 4.7. However, the error in energy
has been increased by factor 10, from 0.2 J prior to 2 J after implementation of the impact model.

The most important aspect for hammering applications is the variance of the hand palm at zero ve-
locity. A big variance results in inconsistency when it comes to hitting the nail. In Figure 4.9, the
effects of impacts on the variance of the palm locations is shown. In this case, the impacts results in
a increase of variance of nearly factor 15, which is from Var(x,y) =

[
0.3969 0.4793

]
·10−6 m2 to

Var(x,y) =
[
0.1261 0.1764

]
· 10−5 m2. The data points in Figure 4.9 are the x and y locations of

the hand palm at the moment of crossing the table z∗ in the falling direction. The variance can be re-
duced by implementing an iterative learning algorithm. In this method a force vector will be applied
on each data point (in Figure 4.9) in the direction to the desired hand palm location. However, this
method requires future investigation and will not be discussed in this work.

External forces caused by impacts have effects on the performed motion. As shown in Figure 4.6,
there is a shift in amplitude and phase present compared to the original executed motion without the
applied impact forces. This is observed under the condition the modes are disturbed at moments of
low kinetic energy is the system.
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Figure 4.7: Motion with simulated impacts

Figure 4.8: The external applied torque on each link resulting from the impact model
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Figure 4.9: The palm locations at zero velocity, note that this simulation has been executed for 30
seconds to collect more data points
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Conclusions and future work

5.1 Conclusions

Throughout this report, experimental research is performed regarding the analysis and control of
nonlinear normal modes applied in simulation on the David arm system. The research goal was to
investigate how to generate Nonlinear Normal Modes (NNMs) on the David robot arm system and
how to compensate for unavoidable energy dissipation due to friction to be able to stabilize a desired
NNM and asses if those friction compensated NNMs provide performance benefits (e.g. energy ef-
ficiency, accuracy or robustness) for cyclic motions compared to non-modal control strategies on a
real setup, employing a hammering task as prototype motion. Prior to this work, it was only possible
to generate NNMs for an arbitrary mechanical system using the nonlinear eigenmodes toolbox. A
objective of this study was the ability to generate NNMs for the specific 4-DOF David arm system,
which is presented in Chapter 2. Further, two different generators and their corresponding NNMs
which are useful for hammering motions are presented in Chapter 3.1. The NNMs shown in this study
are still not ideal for the purpose of hammering applications on the real setup due to the non-vertical
motion path or unwanted high modal frequency. It is possible that better NNMs for hammering tasks
could be obtained by experimenting with different stiffness settings for each link individually. Also, a
useful property is discovered during this work namely, the system stays on the generator for increas-
ing and decreasing energy levels (caused by friction for example) after initializing the system on its
generator. Energy Pumping (EP) control has been developed in this work using this property for the
purpose of modal stabilization to compensate for unavoidable energy compensation in Chapter 4.1.2,
which was another objective of this work. Subsequently, EP control has been compared in terms
of performance with the Elastic Structure Preserving (ESP) control algorithm developed at DLR.
No final statement can be drawn regarding performance in terms of energy efficiency, robustness or
accuracy when comparing the energy pumping control with ESP control since not enough differ-
ent generators are investigated and many parameters such as motor-side friction, link-side friction,
energy level of the NNM have effects on its performance and requires further investigation. Also,
tuning of the control parameters for the energy pumping control can have a significant impact on the
performance. For the specific mode and parameter settings treated in Chapter 4.2, the ESP controller
shows to be around 6 times more accurate in terms of distance to the desired mode during the steady
state. This example also showed that the energy pumping control strategy was however 1.6 times
more energy efficient in terms of mechanical power but showed that the efficiency decreases when
increasing the motor and link-side friction. Finally, the effect of impacts has been experimentally
analysed on the modes when using energy pumping control. In this case modal candidate 1 is used
to investigate the effects for a vertical motion. The results showed that the inconsistency in the hand
position at zero velocity (close to the moment of hitting the object) increases with nearly factor 15
for these specific parameter settings.
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5.2 Future work

• Finding NNMs more efficiently
Manually finding a desired NNMs is time consuming not only due to the computational time,
but also because it is affected by various variables such as equilibrium position and joint stiff-
ness settings. Additionally, the modes of each generator must be visualized to determine if
they are suitable for the desired purpose. As the number of degrees of freedom in a system
increases, the number of potential configurations grows exponentially. Therefore, possible fu-
ture research includes finding ways to reverse this process, such that a desired NNM can be
given as input and the parameters corresponding to this mode can be identified.

• ESP with damping control
Chapter 4.1.1 showed that link-side damping control can be used to stabilize the modes by
regulating energy levels. The problem with this method was that this parameter cannot be
influenced directly using software. However, it would be interesting to investigate whether a
hybrid between ESP control and damping control would work and how the performance will
be in comparison with the other control strategies treated in this work. The idea is to regulate
energy levels as explained in Chapter 4.1.1 by changing the damping parameter of the ESP
controller. The desired trajectory of the ESP controller should be fixed at the equilibrium
position of the system.

• Impact analysis
Impact analysis has been performed for a specific two dimensional case. Future work includes
extending the impact model to three dimensions and implementing a more accurate (nonlinear)
impact model. Also, an investigation is needed to determine the ideal impact location on the
mode by considering the trade-off between the lost of kinetic energy and the applied force on
the object and to perform tests on the real hardware.

• Iterative learning
It is recommended to implement an iterative learning algorithm to reduce the variance in terms
of position when hitting the nail, especially when impacts are present. This can be imple-
mented by applying a 2D force vector from the hitting location to the desired location (the
nail).

• Hardware implementation
Another step would be to implement the energy pumping algorithm on the real hardware and
to analyse performance benefits compared to non-modal control strategies. Possibly this algo-
rithm can also be improved by finding more efficient moments to inject energy into the system.

30





References

[1] S. Graham Kelly, “Mechanical Vibrations: Theory and Applications,” in SI. 2012, pp. 533–588.

[2] F. Bjelonic, A. Sachtler, Y. Wotte, and D. Santina, nEigenmodes! Institute of Robotics and
Mechatronics, Department of Analysis and Control of Advanced Robotic Systems, User manual
nonlinear eigenmodes toolbox, Confidential document, 2021.

[3] M. Grebenstein et al., “The DLR hand arm system,” in Proceedings - IEEE International Con-
ference on Robotics and Automation, 2011, pp. 3175–3182.

[4] S. Wolf, O. Eiberger, and G. Hirzinger, “The DLR FSJ: Energy based design of a variable
stiffness joint,” in Proceedings - IEEE International Conference on Robotics and Automation,
2011, pp. 5082–5089.

[5] M. Keppler, D. Lakatos, C. Ott, and A. Albu-Schaffer, “Elastic Structure Preserving (ESP)
Control for Compliantly Actuated Robots,” IEEE Transactions on Robotics, vol. 34, no. 2,
pp. 317–335, Apr. 2018.

[6] Wolf Sebastian, Meyer Lukas, and Keller Sebastian, “David frames, Definition of coordinate
frames and kinematic representation,” Tech. Rep., Institute of Robotics and Mechatronics, De-
partment of Analysis and Control of Advanced Robotic Systems.

32





Appendix A

Computational results of combining
URDF links

The position of the link’s center of mass relative to the link-frame R is defined by

R5⃗rcmR5 =

−0.00012808984
0.00030413187
−0.17975399

 m

R6⃗rcmR6 =

 −0.01182179
−0.0075132531
0.0079153582

 m

R7⃗rcmR7 =

 0.10073161
−0.0039917088

−5.3873306 ·10−5

 m.

The mass of each link is, mR5 = 4.744586 kg, mR6 = 0.11244899 kg and mR7 = 0.59139005 kg. The
new mass is the additions of the link’s masses mR5,R6,R7 = mR5 +mR6 +mR7 = 5.4484 kg. The link’s
moments of inertia about the link’s center of mass are given by

JcmR5 =

 0.029653953 −9.1947929 ·10−6 1.551325 ·10−5

−9.1947929 ·10−6 0.031286393 1.9468694 ·10−5

1.551325 ·10−5 1.9468694 ·10−5 0.0075527898

 kgm2

JcmR6 =

 7.3059504 ·10−5 4.2102609 ·10−7 1.9274652 ·10−5

−4.2102609 ·10−7 5.8250807 ·10−5 −2.3749 ·10−6

1.9274652 ·10−5 −2.3749 ·10−6 7.6727465 ·10−5

 kgm2

JcmR7 =

 0.00070075841 −9.8945275 ·10−5 −0.00019656949
−9.8945275 ·10−5 0.0019745327 −0.00014518088
−0.00019656949 −0.00014518088 0.0016121161

 kgm2.

The inertia matrix around the center of mass of the combined links is

CMR5,R6,R7 =

 0.0533822995885104 −7.46435603696223 ·10−5 0.000425665159600031
−7.46435603696223 ·10−5 0.0562655656155791 −0.000595565950015009

0.000425665159600031 −0.000595565950015009 0.00931217486198841

 kgm2.
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Appendix B

Hammer experiment setup

(a) Hammer experiment around xx axis.

(b) Hammer experiment around zz axis.

Figure B.1: Hammer experiment setup
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Appendix C

Hammer inertia

Figure C.1: Hammer in SolidWorks
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Mass, center of mass and inertia matrix for the hammer and the links R5-UA, R6-AB, R7-FL
combined.

m = 6.08842504 kg (C.1)

r⃗cm =
[
0.008176050263536 0.022672480514215 0.130512560415649

]T m (C.2)

Jcm =

 0.0974119951436790 −0.0101443438265826 −0.00627835869789591
−0.0101443438265826 0.0725669377639631 −0.0190140517507422
−0.00627835869789591 −0.0190140517507422 0.0447492435947301

 kgm2

(C.3)
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Appendix D

Potential function comparison

Figure D.1: Floating spring joint characteristics between lookup table and fitted polynomial function
for σ = 5.1◦

Figure D.2: The error between the lookup table and the fitted polynomial function of Figure D.2.
The function was fitted between 12◦ < ϕ < 12◦, this can clearly been observed in the figure.
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Appendix E

Nonlinear normal mode visualisation

(a) Visualisation zero velocity at Generator 2.1 (b) Visualisation zero velocity at Generator 2.2

Figure E.1: Candidate 1: elbow driven hammering motion visualisation snapshots

(a) Visualisation zero velocity at Generator 3.1 (b) Visualisation zero velocity at Generator 3.2

Figure E.2: Candidate 2: shoulder driven hammering motion visualisation snapshots
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Appendix F

Effects link-side damping

The same simulation as in Chapter 3.3 but dependent on time. As shown in Figure F.1a, the link
positions converge to the equilibrium position of qeq =

[
−0.45 0.16 0.13 1.38

]
rad. for positive

damping (decreasing energy levels). In Figure F.1b the opposite is shown where the system is initial-
ized close to the equilibrium position and the damping is negative. The corresponding energy levels
can be seen in Figure F.2a and F.2b.

(a) Simulated modes over time for the energy dissipation case

(b) Simulated modes over time for the energy injection case

Figure F.1: Effects of link-side damping on position
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(a) Energy plot for the energy dissipation case, starting at 21 J and converging to 0 J

(b) Energy plot for the energy dissipation case, starting at 0.06 J and ending at 22 J

Figure F.2: Effects of link-side damping on energy levels
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