
RISC-V Timing-Instructions for Open
Time-Triggered Architectures

Nithin Ravani Nanjundaswamy
German Aerospace Center

Oldenburg, Germany

nithin.ravaninanjundaswamy@dlr.de

0009-0008-4739-2378

Gregor Nitsche
German Aerospace Center

Oldenburg, Germany

gregor.nitsche@dlr.de

0000-0002-5232-0976

Frank Poppen
German Aerospace Center*

Oldenburg, Germany

frank.poppen@nxp.com
*now: NXP Semiconductors Germany GmbH, Hamburg

Kim Grüttner
German Aerospace Center

Oldenburg, Germany

kim.gruettner@dlr.de

0000-0002-4988-3858

Abstract—Time-triggered architectures (TTAs) were a key
enabler for time-predictable software execution and, thus, for
cyber-physical and embedded systems with real-time requirements.
Controlling software-execution by the means of timer-controlled
interrupts and a predetermined schedule, TTAs are a common
standard to ensure timing in safety-critical systems. Now, with
the emerge of the openly available RISC-V architectures and
the use of its instruction-set extension allows to easily provide
softcore-processors with an application-specific instruction-set
configuration. To support the realtime-capability of such RISC-V
based, application-specific instruction-set processors (ASIPs), the
presented approach provides timing-instructions as a RISC-V
instruction-set extension to measure and control the software
execution-time at the hardware-level.

Index Terms—Time-triggered Architecture, RISC-V ISAX,
Temporal Behavior, Run-Time Monitoring

I. INTRODUCTION

The complexity of CPS is rising continuously to provide

the necessary functionalities and thus requires high processing

efficiency along with real-time computing capabilities. Yet,

these systems should be cheaper for commercial viability. RISC-

V is a free and open-source instruction set architecture (ISA)

which is highly configurable with its extensible ISA. The fact

that the RISC-V is open source combined with its enormous

flexibility makes it highly suitable to build efficient application

specific processors for CPS [6]. A time-triggered architecture

(TTA) provides a computer architecture for distributed real-

time systems in safety-critical applications. TTA in CPS aims

to ensure predictable and deterministic behavior of the system

based on global time reference. This global time base of known

precision at each computation-node, provides a computing

infrastructure for the design and implementation of reliable

distributed real-time systems, allowing to assure synchronized

temporal behavior of their software. Having a computation-

node to be a centralized, RISC-V based CPS, the extendability

of the RISC-V instruction set architecture (ISA) can be utilized

to ensure highly precise timing-measurement and -control with

minimal overhead. Enabling time-accurate, low-cost, RISC-V-

based TTA systems with extendable instruction set, the timing-

extensions are further investigated in this work.

This work was partially supported by the German Federal Ministry of
Education and Research (BMBF) in the projects Scale4Edge under Grant
16ME0130 and VE-VIDES under Grant 16ME0247.

For CPS and RTS(real-time systems), the correctness of

the system not only depends on the logical correctness of the

results but also on time at which these results are produced.

For instance, in an adaptive cruise control system (ACC), if a

vehicle is detected ahead on the road, ACC should adjust the

speed accordingly within stipulated amount of time. Failing

to respond within the given deadline will lead to catastrophic

outcome. Thus, the temporal behavior of a software is as

important as its logical behavior. Verifying correct temporal

behavior and ensuring it at run-time becomes challenging as

the complexity of the system increases. A prime reason for this

is precise run-time measurement and -control of software exe-

cution time spans all abstraction layers in computing, including

appropriate modeling- and programming-languages, memory

hierarchy, pipelining techniques, bus architectures, memory

management and task scheduling. The majority of software

solutions to temporal requirements rely on programmable timers

and interrupt service routines (ISRs) and thus require CPU

time and other resources. This leads to additional overhead to

the overall system which is difficult to predict and a drawback

in resource-constrained systems.

The open-source and extendable ISA of RISC-V has enabled

a new era of innovation in processor customization, perfor-

mance and power optimization. It gives the flexibility to develop

a tailor-made processor as per the application requirements.

In this work (Section II), the RISC-V ISA is extended by

adding new instructions to obtain high-precision cycle-accurate

temporal behavior of real-time systems with low overhead.

The presented work supports controlling the execution time

of a software, unlike the RISC-V trace spec [8], which is

primarily focused on software-based monitoring and offline-

analysis of execution-times. The work proposes a programming

model supported by new custom instructions that measure and

control the execution time of real-time software. The work

builds on the concepts proposed by Libbla [2] which is a C++

based software, originally developed for ARM core. Libbla

provides timing annotations, Estimated Execution Time (EET)

and Forced Execution Time (FET), to measure and control

temporal behavior of RTS. In Section III, the proposed custom

instruction-based timing extensions, which are developed from

Libbla timing extensions, are then evaluated against Libbla as

well as against a purified Libbla software solution utilizing a

211

2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)

2325-6664/23/$31.00 ©2023 European Union
DOI 10.1109/DSN-W58399.2023.00058

traditional timer-interrupt. Focusing on the resulting instruction

density and the hardware area overhead, the timing instructions

are compared against the two software solutions. Finally,

Section IV concludes and gives an outlook to future work.

II. RISC-V TEMPORAL ISA EXTENSIONS

The functionality of a software is implemented using an

ISA provided by the processor. But, neither the software nor

the ISA usually have a timing-control or timing-measure role

to deliver the result in a reliable amount of time. In fact, if

the timing properties are to be guaranteed, with a fixed and

predictable delay in computations, designers must reach beneath

the abstraction layers which makes the system complex and

over-designed [1]. Typically processors implement hardware

structures for time measurement (cycle counter, instruction

counter) and in a certain sense also for influencing execution

times (interrupts for timer/counter, watchdog). The software

solutions including Libbla [2] helps to measure and monitor the

timing behavior of software-blocks. However, in this approach,

the software solution itself becomes a part of the software to be

monitored. Thus, these solutions will have it’s own influence

onto the temporal behavior of the software to be monitored.

The RISC-V ISA standard offers the possibility to extend its

instruction set with user-specified instructions. For this work,

we have considered a Scala-based project -Murax Soc with a

VexRiscV core [3]. The VexRiscV core is built upon the 32-bit

ISA of RISC-V and is described using the SpinalHDL library

which is also written in Scala. With its plugin-architecture,

VexRiscV provides an easy to use and possibility to extend

RISC-V core with custom instructions. The project is set-up on

an ARTY A7–100 development-board, equipped with Artix-7

FPGA (Field Programmable Gate Array).

Fig. 1. Implementation flow for Murax SoC and embedded software

Using the plugin-architecture of VexRiscV, the timing instruc-

tions are implemented as plugins. The overall implementation-

flow of Murax SoC and its embedded software with custom

instructions is shown in Fig. 1. The instructions are imple-

mented in Scala and then connected to the Murax SoC through

ports. Compilation of Scala project with custom instructions

yield RTL files (either VHDL or Verilog), based on which

the design is synthesized and the bit stream is generated to

program the FPGA.

TABLE I
TIMING INSTRUCTIONS ENCODING

Instruction funct7 rs2 rs1 funct3 rd opcode
Measure 0000000 00000 00000 000 00000 0001011
Smonit 0000000 00000 00001 010 00000 0001011
Emonit 0000000 00011 00001 011 00000 0001011

The rightmost part of Fig. 1 represents the flow to compile

and execute an embedded firmware which uses the custom

instructions that are added to Murax SoC. To this firmware the

custom instructions are added as inline assembly. This way, the

compiler need not to be modified to detect and compile custom

instructions. The GCC compiler compiles the firmware having

custom instructions and generates the binary file which is then

loaded to the program memory of the Murax through OpenOCD.

The results of the firmware can be observed through UART

or through LEDs present on the ARTY board. By using this

implementation flow, three new instructions – Measure, Smonit

and Emonit – are added to VexRiscV to measure and control

the temporal behavior of a software. All three instructions are

32-bit, register-type instructions. The binary encoding of these

three instructions is given in the Table I. Further details of

these instructions are discussed in the following subsections.

A. Timing measure instruction

The measure instruction allows for profiling the temporal

software behavior by measuring the execution time of different

code-blocks during the design and prototyping phase of

software development. It is implemented by using a hardware

counter (cycle counter) register which counts the clock cycles

of the core. The cycle counter is a 64-bit register and thus

can count up-to 264 clock cycles. To measure the execution

time of a block of code, the measure instruction has to be

executed twice. When the first measure instruction is executed,

the current cycle counter value is retained in a register. When

the second measure instruction is executed, the difference

between the current cycle counter value and the previously

retained value is calculated to obtain the exact execution time.

In summary, the measure instruction gives the number of clock

cycles that have passed since the previous measure instruction

was executed.

Fig. 2 shows a sample-code block using the measure-

instruction at the beginning and end of the block. To provide

the calculated clock cycles to the user, a dedicated UART is

implemented inside the measure plugin. This UART is not

accessible through software rather its completely controlled by

the hardware to reduce the overhead incurred by the measure

instruction. The execution time of the code block is determined

212

Fig. 2. Sample pseudo code block using measure instruction

using the clock cycle information and the processor’s clock

frequency.

B. Timing control instructions

The timing control-instructions ensure that the software

meets a specified timing requirement. After profiling the

software using the measure-instruction, the software developer

is aware of the time-critical code-blocks and their corresponding

execution time. The next step is to ensure that the software

always meets this execution time requirement during run-time.

The timing control-instructions monitor the software at run-

time to verify the timing behavior against its specification. In

other words, it provides the functionality of software run-time

monitoring. To accomplish this, two new instructions are added

to VexRiscV ISA which are Smonit and Emonit.

With the execution time information derived from the

measure-block in Fig. 2, the measure-block is transformed

into a run-time monitoring block using Smonit and Emonit

instructions as shown in Fig. 3. The Smonit instruction is used

at the beginning of the code block to start time-monitoring and

it requires two parameters - block id: an integer value which

uniquely identifies each code block; and deadline: the timing

specification to be satisfied by the code-block. Conversely, the

Emonit instruction is used at the end of the code-block to

indicate the end of monitoring, and requires only the block-

id parameter to identify the termination of different blocks.

When Smonit instruction is executed, the deadline specification

parameter is added to the current cycle counter value and stored

in a temporary register (referred as deadline register). When

the Emonit instruction is executed at the end of the monitoring

block, the current cycle counter value is compared with the

deadline register. If the current cycle counter value is less

than the deadline register value, then the execution pipeline is

halted until the cycle counter reaches the deadline register value.

With this approach, the control-instructions make sure that the

software code-block always takes the specified time before

returning and thus controls the software latency. Inversely, if

cycle counter has surpassed the deadline register value, this

denotes that the code-block has exceeded the deadline, violating

the timing requirements. In this case, a hardware exception is

raised and the program flow goes into an exception handler. In

the exception handler user-required action will be performed to

address the timing violation. New exception code ’24’, which

is reserved for custom use, is written to the mcause-register of

RISC-V. This exception code can be read by the software to

identify the timing violation and to react to the exception.

Fig. 3. Sample pseudo code block using Smonit & Emonit instructions

Real time embedded systems are typically time-triggered

in nature and follow a cyclic execution. This is illustrated

in 4 using an ACC system. In such systems, in addition to

the overall system’s deadline, each subsystem will also have a

deadline to meet such that the overall system deadline is greater

or equal to the sum of the individual subsystem deadlines.

Fig. 4. Time triggered ACC system with cyclic execution

The control instructions must support such systems to

monitor the system as a whole and also its subsystems. For

this reason, the timing-control instructions provide the feature

of blocks nesting as illustrated in Fig. 5 (left). The outermost

block is the parent block which monitors the system as a whole,

and the inner blocks, also referred as child-blocks, provide the

monitoring of the subsystems. Thus, with the help of control

instructions nesting, it is possible to guarantee the requirements

of both systems and their subsystems.

Fig. 5. Illustration of nesting timing control instructions for the ACC system

III. EVALUATION AND RESULTS

Predominantly, to measure and control timing requirements

of a software, timer/interrupt based software solutions are used.

In this section, to evaluate the newly implemented RISC-V ISA

213

timing extensions, two software based solutions, relying on

programmable timer/interrupts, are considered and compared

in terms of assembler code overhead and temporal overhead.

The first related software solution is Libbla [2], which

is a C++ library for measuring and controlling software

execution time, using code-block annotations EET (Estimated

Execution Time) and FET (Forced Execution Time) to support

time-measurement in the profiling-phase, and thus, to specify

the timing-behavior at run-time. EET-blocks provide similar

functionality as that of the presented measure-instruction, i.e.,

to measure the execution time of the code block. FET-blocks

provide similar functionality as that of the presented control-

instructions, i.e., enforcing the specified timing-behavior of the

code-block. The usage of EET and FET block annotations is

illustrated in Fig. 6. Originally developed for ARM cores it

has been migrated to RISC-V as a part of this work.

Fig. 6. Libbla-based EET & FET timing annotations of presudo code-blocks

Since original Libbla code is not optimized for performance,

but comes with additional features to specify time more

conveniently and to allow for further annotations, like Budget

Execution Time (BET) blocks, the original Libbla code comes

with additional software and timing overhead. Hence, to

evaluate the presented measure-instruction in comparison to

a more optimized software counterpart, a purified, C-based

solution, based on RISC-V performance counters, is considered

as the second software solution. The pseudo-code of the C-

based solution is given in Fig. 7. Timestamps are obtained at

the beginning and end of the code blocks using rdcycle and

rdcycleh [4] performance counters. The difference between the

time stamps gives the execution time for the code block. Here,

64-bit counters are used since the measure-instruction does

also use a 64-bit register as cycle counter.

Fig. 7. Pseudo code for C based solution

Table II provides the comparison which is obtained by

measuring execution time for the same software code-block

with all three approaches. Both in terms of assembler code

overhead and temporal overhead, RISC-V timing extensions

have lowest overhead, adding 7 lines of assembler code and

20ns temporal overhead to the software block being measured,

while original Libbla EET annotation has highest overhead of

1169 lines and 3.002ms. This is explainable as Libbla uses

Boost and other external libraries.

TABLE II
CODE OVERHEAD FOR TIMING INSTRUCTIONS

Measurement Block Code-Overhead Temporal Overhead
ISA Extension 7 20 ns

Libbla Annotation 1169 3.002 ms
Purified C solution 78 1.89μs

Certainly, the benefit of lower overhead comes at the expense

of additional hardware resources. Table III gives details of

hardware overhead incurred in terms of Look-Up Tables (LUTs)

and Registers for the implementation of the presented timing

instructions, to extend the RISC-V ISA.

TABLE III
HARDWARE UTILIZATION FOR TIMING INSTRUCTIONS

Instructions LUTs Registers
Measure 189 200
Control 276 225

IV. CONCLUSION AND OUTLOOK

The presented work provides hardware infrastructure in

the form RISC-V ISA extension to precisely measure and

control the temporal behavior of CPS and RTS. The hardware

implementation provides the advantage of cycle accurate timing

with lowest run-time overhead on the system unlike comparable

software solutions. That way, the control instructions efficiently

provide the fundamentals to build time triggered architectures

with RISC-V cores. Furthermore, the hardware implementation

is less vulnerable to malicious attacks than software, which

is more susceptible to them. Hence, the approach approach is

attractive to the development of safe and secure CPS and RTS.

In the future, the appoach will be extended to automatically

deduce code blocks with timing control instructions from the

software verification phase such that manual effort will be

reduced or removed. For that purpose, tools like the MULTIC-

Tooling [7] will be reviewed for integrating timing instructions.

REFERENCES

[1] I. Liu, Isaac Suyu, “Precision timed machines” University of California,
Berkeley, 2012.

[2] F. Bruns, I. Yarza, P. Ittershagen and K. Grüttner, “Time Measurement and
Control Blocks for Bare-Metal C++ Applications”ACM Trans. Embed.
Comput. Syst. 20, 4, Article 34, May 2021.

[3] C. Papon,” , ”VexRiscv git repository,” [Online]. Available:
https://github.com/SpinalHDL/VexRiscv. [Accessed 20 October 2022].

[4] ”Instruction Set Manual, Volume I: RISC-V User-Level ISA”.[Online]
https://five-embeddev.com/riscv-isa-manual/latest/counters.html.

[5] Kopetz, Hermann and Bauer, Günther, “The time-triggered architecture”
Proceedings of the IEEE 91, no. 1 (2003): 112-126.

[6] I. Liu, B. Lickly, H. D. Patel and E. A. Lee, ”Poster Abstract :
Timing Instructions - ISA Extensions for Timing Guarantees,” Real-Time
Embedded Technology and Applications Symposium (RTAS), 2009.

[7] Forschungsvereinigung Automobiltechnik e.V. “MULTIC-Tooling“
https://www.offis.de/offis/publikation/multic-tooling.html.

[8] Gajinder Panesar, Iain Robertson “Efficient Trace for RISC-
V“ https://github.com/riscv-non-isa/riscv-trace-spec/blob/main/riscv-trace-
spec.pdf.

214

