®

Check for
updates

Using Network Architecture Search
for Optimizing Tensor Compression

Arunachalam Thirunavukkarasu®@® and Domenik Helms

Deutsches Zentrum fiir Luft- und Raumfahrt, Linder Hohe, 51147 K&ln, Germany
{arunachalam.thirunavukkarasu,domenik.helms}@dlr.de

Abstract. In this work we propose to use Network Architecture Search
(NAS) for controlling the per layer parameters of a Tensor Compression
(TC) algorithm using Tucker decomposition in order to optimize a given
convolutional neural network for its parameter count and thus inference
performance on embedded systems. TC enables a quick generation of the
next instance in the NAS process, avoiding the need for a time consuming
full training after each step. We show that this approach is more efficient
than conventional NAS and can outperform all TC heuristics reported
so far. Nevertheless it is still a very time consuming process, finding a
good solution in the vast search space of layer-wise TC. We show that,
it is possible to reduce the parameter size upto 85% for the cost of 0.1—
1% of Top-1 accuracy on our vision processing benchmarks. Further, it
is shown that the compressed model occupies just 20% of the original
memory size which is required for storing the entire uncompressed model,
with an increase in the inference speed of upto 2.5 times without much
loss in the performance indicating potential gains for embedded systems.

Keywords: Tensor Compression -+ Embedded systems + Network
Architecture Search - Tucker Decomposition - Convolutional Neural
Network

1 Introduction

Image recognition is one of the key algorithms for advanced driver assistance
systems, e.g., for autonomous vehicles which are composed of large neural net-
works. In order to classify a single image, the original AlexNet requires around
240 MB of memory just to store the weight parameters which are obtained after
training the model. Similarly, VGG model requires around 528 MB for storing
its weights with 99% of MAC operations coming from convolutional layers [1].
With increasing network size, storage space required to store their parameters
also increases. This leads to a larger inference time when such Al models are
employed on embedded devices. For cost, energy and reliability reasons, auto-
motive embedded systems offer only reduced computation resources. In order to

This publication was created as part of the research project “KI Delta Learning”
(project number: 19A19013K) funded by the Federal Ministry for Economic Affairs
and Energy (BMWi) on the basis of a decision by the German Bundestag.

© IFIP International Federation for Information Processing 2023
Published by Springer Nature Switzerland AG 2023

S. Henkler et al. (Eds.): IESS 2022, IFIP AICT 669, pp. 139-150, 2023.
https://doi.org/10.1007/978-3-031-34214-1_12

140 A. Thirunavukkarasu and D. Helms

bridge the gap between the high demand of these Al application and the limited
resources of automotive systems, various compression techniques like pruning,
quantization, teacher-student reduction [2], and a promising, but rarely used
Tensor Compression (TC) techniques are employed.

According to [3], pruning resulted in a nine times parameter reduction for
AlexNet and sixteen times parameter reduction for VGG-16 model. Quantization
technique reduces the number of bits (corresponding to filter weights) to read
from the memory in a convolutional neural network. Recent methods for quanti-
zation offer quantization down to 4-5 bit accuracy for most layers (if supported
by the hardware) by using different quantization for inputs and activations [4]
or per layer [5] or even per kernel [6] with sacrificing less than half a percent
in accuracy [7]. The work carried out by [8] shows that another compression
technique ‘Knowledge distillation’ has relatively higher advantages and perform
well on network trained on MNIST.

On the other hand, Tensor Compression splits one of the most used build-
ing blocks of image recognition networks, the (2 dimensional) convolution into
a linear part (tensor multiplication) and a nonlinear post-processing (activation
function and optionally pooling). For the linear part, mathematical methods
are used to approximate the tensor by a series of much smaller tensors. The
most prominent realization for this is the Tucker decomposition [9] - the tensor
equivalent to Singular Value Decomposition (SVD). While the Tucker decompo-
sition itself is straight-forward and easily available in mathematical libraries (in
python), it needs to be controlled by two parameters (third and fourth rank of
the target tensor) for which not many obvious algorithms exist.

Often a machine learning engineer is needed to design the architecture and
structure of the artificial neural networks based on the problem description. Neu-
ral Architecture Search (NAS) is a better way of automating this process and
Microsoft Neural Network Intelligence [10] has produced toolkits for NAS. This
paper analyses, how TC can be applied on neural networks and the potential of
NAS to determine the compression parameters. It speaks about the importance
of Tucker decomposition, and the effect of different rank values on the com-
pressed models. Further, how to best use the NAS functionality for controlling
compression parameters (3rd and 4th ranks) and the importance of fine-tuning
are investigated. Finally, performance analysis of compression rates vs. accu-
racy loss, size requirements and inference time are carried out to evaluate the
results of TC by comparing against conventional NAS (performing search of
filter-count per layer). The entire implementation is done in Keras and Tensor-

flow in Python and all the experiments are carried out on a high-performance
AT server (NVIDIA DGX-1).

2 Related Works

This section speaks about Tensor Compression and its current state-of-the-art,
followed by the deployment of NAS in finding a smaller network architecture
based on per-layer filter search.

Using Network Architecture Search for Optimizing Tensor Compression 141

2.1 Tensor Compression

TC involves decomposing the original tensors into multiple factors and perform-
ing mathematical operations on them, especially mode-n multiplications. TC is
rarely researched and no work has fully exploited it’s potential. Some of the
available decomposition algorithms are Singular Value Decomposition, Canoni-
cal Parafac, Tensor Train and finally Tucker Decomposition.

Singular Value Decomposition (SVD) is valid only for 2D tensors aka
matrices. SVD means decomposing (factorization) the original matrix into three
different matrices, thereby reducing original number of factors in real matrix.
SVD simplifies matrix calculations and improves the algorithm results with less
complexity [13].

Anxm — Unxn SnXm' Vrz;Xm (1)

Equation 1 gives the mathematical expression of SVD where, the matrix U
represents the left singular values along its column and V7 represents the right
singular values along its row respectively. The middle matrix S contains the
singular values with U and V being orthogonal to each other.

2.2 Tucker Decomposition

This particular type of decomposition was introduced by Ledyard R Tucker in
the year 1966 [9], which is similar to SVD but applied on tensors. Hence, is also
called as Higher Order Singular Value Decomposition. TD splits the original
‘n’ mode (dimension) tensor into ‘n’ different factor matrices and a compressed
version of the original tensor, called core tensor as shown in Fig. 1. TD does not
follow the regular matrix multiplications instead, it works on mode multiplication
method. A 3-dimensional tensor has 3 modes namely ‘x’, ‘y’, ‘z’ and applying
TD to this tensor will yield 3 factor matrices (one factor per mode) followed by a
core tensor of 3 dimension. The equation which represents TD for n dimensional
tensor is given in Eq. 2.

X~Gx UY xqU® xg...xy UM (2)

X - Original tensor,

G - Core tensor,

UM u@, . UWN) - Factor matrices,

X, - denotes the n-mode tensor product

Figure 1 shows a schematic representation of TD of a tensor. The original
tensor ‘T’ of dimensions R1 x R2 x R3 are decomposed into a core tensor ‘D’
of dimensions ‘a x b x ¢’ followed by three factor matrices along each direction
with the mentioned dimensions. Size of the core can be decided by the users but
care must be taken that minimum values of ‘a’, ‘b’, and ‘c’ should be at least
1. Till date, there is no standard way of selecting the optimized ranks which
determine the size of the core tensor. Only trial and error methods has been
adopted for appropriate rank selection along with some other search heuristics

142 A. Thirunavukkarasu and D. Helms

Ry ‘ a R

R, T R,
R

Fig. 1. Tucker Decomposition

which exist in theoretical approaches. Tensors of a CNN are 4 dimensional, so
applying TD on them needs to be controlled by 4 rank factors namely [a, b, c,
d] for [R1, R2, R3, R4].

The compression work by [11] conducted on various models such as AlexNet,
VGG-S, VGG-16 etc. were evaluated on a smartphone and Titan X platforms led
to a conclusion that the average runtime was enhanced by 2.72 times for AlexNet,
by 3.68 times for VGG-S and 3.34 times for VGG-16 networks respectively. It also
reported a factor of 1.4 to 3.7 reduction on inference time on embedded hardware
for the cost of 0.2-1.7% accuracy. The GitHub implementation [15] which gives
an overall idea of how to implement a Canonical & Parafac decomposition along
with Tucker decomposition is used a reference for this paper work. Best to our
knowledge, the most sophisiticated TC heuristic is discussed in [14], reducing
the number of operations on a neural network by a factor of 2—4 for below 0.2%
accuracy loss. This is done by a hierarchical rank search on layer clusters.

2.3 Model Optimization Using NAS

Microsoft’s NNI - a tool to handle automated machine learning (AutoML) prob-
lems by choosing hyper-parameters (number of filters and layers, learning rate,
activation functions, etc). NNI has a set of inbuilt tuning algorithms which
searches for the most efficient architecture [10]. Based on the user defined search
criteria it performs a number of trainings (trials) with different parameter values
and comes up with the most optimal solution. NNI supports a number of ML
frameworks and libraries such as Tensorflow, Keras, Pytorch, Scikit-learn etc.

NAS, a toolkit of NNI can be employed to find appropriate hyper-parameters
(filter counts, etc.) in each layer of the neural network within the specific range
of choice (search space). NAS will try to come up with an optimized architecture
based on the defined tuning algorithm. NAS has a set of different in-built tuning
algorithms like Gaussian, Random, annealing, etc. User can choose the most
suitable tuning algorithm based on their needs. This filter search is a powerful
network optimization method employed using NAS. The only disadvantage of
filter-NAS is that, every time a new filter value is chosen from the search space,
the entire model has to be trained from scratch requiring huge computational
time. This in turn makes the system even more expensive.

Using Network Architecture Search for Optimizing Tensor Compression 143

3 Tensor Compression Implementation

We implemented and tested a methodology for applying TC on convolutional
layers of neural networks. For that, we started by reading in the Keras graph,
describing the neural network and constructed a second similar instance layer
by layer. At user constrained levels, we do not copy over the layer and all its
trained weights to the new model, but instead split the activation function,
extract the weight tensor, apply a Tucker decomposition with user constrained
ranks ‘c’ and ‘d’ for the channel (R3) and filter (R4) dimensions respectively.
R1 and R2 are the kernel ‘a’ and ‘b’ sizes respectively and will not be altered
by TC. From the resulting three tensors coming out of the TD we set up three
sub 2D convolutional layers without an activation function and used the three
tensor’s values as weights for those three layers. Finally, the original activation
function is added to the last of the three layers. The different steps used in the
implementation of TC are as follows:

1. The first sub layer will perform a pointwise convolution on the 3rd factor
matrix to reduce the number of channels to ‘¢’ dimension.

2. The output of the previous pointwise convolution will be the input to this
second layer where a normal convolution is performed on the core tensor with
‘¢’ input channels and ‘d’ output channels. This becomes the input for the
next sub-layer.

3. Final pointwise convolution with ‘¢’ input channels and the original output
channel (number of output filters w.r.t layer without compression). Biases
and activation functions are also added as this is the last sub-layer.

While applying Tucker algorithm for each convolutional layer, the user has
to specify the rank values. In our work, this process is taken care by the NAS as
explained in the coming sections. Once the rank values are obtained, the above 3
steps are repeated for all convolutional layer that are subjected to compression.
After applying this algorithm for the convolution layers, the new model with
compressed layers is fine tuned to compensate for compression losses.

4 NAS Setup

As explained in the previous section, Tucker algorithm is applied on convolu-
tional layers, decomposing it into a sequential 3 sub layers. The dimensions of
the 3 sub-layers are determined by the 3rd and 4th rank factors. NAS is assigned
the task of finding out the best possible rank values from the user defined search
space. The different steps involved in implementing TC using NAS are as follows:

The first step is to define a search space which contains the key parameters
(rank values) that are to be tuned using the NNI. The range of values/choices are
written in JSON format from which specific rank values for each trials are chosen.
Second step is to modify the existing Python codes by including NNI commands
in them. The final step in implementing a trial run is to write a ‘configuration’ file
in YAML format containing the experiment details (duration, tuners, assessors,

144 A. Thirunavukkarasu and D. Helms

etc). Some of the available tuning algorithms which NAS provides are: TPE,
Random Tuner, GP Tuner, etc. In our experiments, only Gaussian Process (GP)
tuner is considered which is based on the Bayesian optimization techniques.

4.1 Evaluation Metric

Microsoft NNI allows the users to define their own target functions based on
which NAS will tune for optimal rank values. Since we are interested in smaller
model size without degradation in its performance, an evaluation metric is
designed such that it combines both, size and accuracy.

t=0-a)+(p-a) (3)

where, t - target function,
a - validation / top-1 accuracy
p - parameter count of the model
« - constant

The main optimization technique is to lower the target function as much
as possible. Parameter count of the model is denoted by ‘p’. It can be either
total parameters in a model or just the parameter count of the layers which are
subjected to compression. Based on the value of ‘p’ the constant ‘e’ is chosen.
As the parameter count reduces with a significant increase in accuracy (lowering
of loss function (1-a)), the entire target function value will be minimized. This
target function is written in the python training script and reported to the NNI
tuner after each training. Based on the previous value of target function, NAS
tuner chooses the rank values for subsequent trials from the search space. User
can choose the tuning algorithm based on which the tuners will tune for rank
values.

5 Evaluation

In order to analyze the potential of TC, different deep neural networks are chosen
and the Tucker algorithm is applied on them. Since CNN tensors are 4 dimen-
sional, applying TD on them needs to be controlled by 4 rank values. Excluding
the first two ranks which corresponds to kernel sizes, NAS is employed to choose
the third and fourth rank parameters. The behavior of NAS and compression is
studied on 3 different networks ranging from smaller generic Al up to a larger
modified GoogleNet. These experiments are run on a NVIDIA DGX station
inside different Docker containers. Since performing these experiments require
even more powerful platforms, in order to fit the experiments within the available
resources, some modifications are made on the original model architecture such
that their performance is not degraded and still they yield a good result even
after modification. To better understand the working of Tucker compression, the
results are compared against the normal filter-NAS optimization technique as
discussed in Sect. 2.3. The inference time and storage size of the best performing

Using Network Architecture Search for Optimizing Tensor Compression 145

compressed models are also analyzed and compared against the uncompressed
model demonstrating the potential of TC.

Evaluation of Generic AI on MNIST

As a first test with reasonable execution times, we set up an ad hoc network
consisting of only four convolutional layers (32 filters each) and trained it on
the MNIST digits dataset. The output layer with 10 different classes constitutes
a total parameter count of around 28000. After complete training (10 epochs)
the model produces a validation accuracy of 98.6%. Decomposition is performed
on all convolutional layers except the input layer and the third & fourth rank
factors are controlled by NAS. The search space for these rank values is limited
from [1, 32] where 32 being the highest rank value (because maximum number
of filters per layer is only 32) which denotes the full rank decomposition. NAS
chooses the rank values for each trial from this search space based on the tuner’s
suggestion after each trial. Maximum of 4000 trials are performed.

0.990
0.985 - . =
» Qi Ji* 3%
0.980 - 4 ...- e , 2.3
0.975 A . t
o
&] .
5 0.970 - L
[}
[}
©
0.965 ~ [
¥ L. e - Baseline accuracy
0.960 - TRl A p » - Compressed versions
’ o & e - Pareto fronts
0.955 - ’ ; ® - Full-rank model
| ® - Filter-NAS
0.950 y
1000 2000 3000 10000 30000 50000

parameter size

Fig. 2. Performance of TC-NAS vs. Filter-NAS for MNIST benchmark (Color figure
online)

In the Fig.2, black point represents the baseline accuracy (uncompressed
model), orange points represent the performance of the compressed models at
the end of fine-tuning for 3 epochs for different ranks and brown point represents
decomposed version for full ranks. Red ones are the pareto points showing a good
performance in the tensor compressed models with relatively lower parameter
count. Parameter count refers only to convolutional parameters. There were very
few points which reported below 95% of accuracy hence they are ignored and plot
is clipped from 0.95 to 0.99 along the y-axis. Violet points represents the results
of filter-NAS. Pareto points are drawn only for TC-NAS (orange points) and not
for filter-NAS (violet points) for this and further analysis discussed in this paper.

146 A. Thirunavukkarasu and D. Helms

As it can be seen from the Fig. 2, there are few models which reports top-1
accuracy of more than 98.5% with significant drop in the parameter count. The
most promising compressed model which performs even better than the baseline
model accounts for around 12.5% of the parameters being compressed with an
increase in 0.17% of accuracy. The next good performing model reports a top-1
accuracy of 98.7%, which is 0.1% more than the baseline model with nearly 83%
of the parameters being compressed. Typically, when full ranks (brown point)
are applied, it is no longer compressed. In order to compress, the rank values
have to be chosen accordingly such that the parameter counts are reduced.

The violet points show the results of 1000 trials (trained for 10 epochs each)
of NAS choosing optimal filter counts per convolutional layer. It is observed
that NAS on filter tuning seems to perform slightly better for medium to high
compression rates (30%-100%). For medium compressions (10%-30%), TC-NAS
performs slightly ahead than filter-NAS. For very low compression rates (below
10%), it is clear that NAS on filter tuning is better, hence we have some vio-
let points outside of the pareto fronts (red points). Each TC versions need far
less computational time since it is only fine-tuned and hence more results are
obtained within a short span of time. Even though Filter-NAS produces better
solutions with low parameters, they are very rare and are way further distributed
with only few points being actually useful. Filter-NAS on an average takes upto
480 s training time per trial. In contrast, TC-NAS took only around 90 s of fine-
tuning per trial on average. Hence, filter-NAS is extremely expensive implying
that for complex models it consumes significantly huge time to find optimal
solutions.

Analyzing the storage size, the uncompressed model occupied 636 KB of
memory to store its weights and its inference time evaluated on Intel UHD
Graphics 630 was observed to be 0.407 ms. Similarly, the compressed model
which had an accuracy of 98.7% with 83% parameters being compressed exhib-
ited an inference time of around 0.381 ms occupying a storage space of 558 KB.
Since this small ad hoc network has more number of dense layer parameters
than the actual convolutional parameters that are subjected to compression, the
inference time and storage size is not impacted to a larger extent.

AlexNet on CIFAR-10

AlexNet was first proposed by Alex Krizhevsky, mainly for image classification
problems [16] and is usually designed for (224 x 224 x 3) images. Considering
our limited resources and timing constraints, our model is made to train on a
relatively smaller dataset: CIFAR-10 of dimensions (32, 32, 3). AlexNet has 5
very deep convolutional layers which are subjected to compression except the
first input layer. It has a total of around 3.7 million parameters. After training
for 100 epochs a top-1 accuracy of 69.01% is achieved (baseline accuracy). Since
89% of the parameters in this model are composed of convolutional layers, we can
have a good visualization of compression. A maximum of 4000 trials are made
to run on NNI using NAS for tensor compression. Each trial is fine-tuned for
25 epochs consuming 10-12 min on average per trial. In contrast, it took 60 min
on average to train the model completely for 100 epochs. The search space is

Using Network Architecture Search for Optimizing Tensor Compression 147

set between [1, 512], depending on the filter counts in each convolutional layer.
A scatter plot is drawn between the convolutional parameters count and top-1
accuracy as shown in Fig. 3.

Just like the generic Al analysis, this study is carried out to find the potential
of TC against traditional filter-NAS in finding a good optimal solution with low
parameter counts. In the Fig. 3 violet points represents the filter-NAS results for
300 trials doing filter search on convolutional layers. Each filter-NAS trial are
made to train for 100 full epochs. Due to time constraints, only small number
of filter-NAS trials were run (each trial took around 50-60 min even on the very
powerful DGX-1 Al accelerator).

070 7 = ® '1,
. : 28 .
° b "il
0.68 , = -
: ° 55’ °
. o _:7;:
0.66 A - e
> L]
g 0.641 v
0
2 0.62 A .
® - Baseline accuracy
0.60 A . ,
- Compressed versions
® ® - Pareto fronts
0.58 1 ® - Full rank model
® - Filter NAS
0.56 A
10° 2x10° 4x10° 7x10°> 10° 2x10° 4x108

parameter size

Fig. 3. TC-NAS vs. filter-NAS on AlexNet

This analysis can be concluded with the following learnings: for a compression
rate of below 10%, clearly NAS on TC is the best choice as it produces good
number of pareto points in that range. Also, the filter search approach seems
not to produce much versions below 10% of the compression rate. For a range of
compression between 10%—-25%, again TC-NAS seems to outperform the filter-
NAS. It can be seen from the plot as there is a cloud of points in this region
produced by compressed versions, leading to more pareto fronts. On the other
hand, filter-NAS produces very few points in this region.

The two blue clouds in plot Fig.3 is due to the NAS trying to learn the
optimal rank values. Exploring a particular region of search space, before the
tuner moves to other values results in such clouds of points. These clouds will
disappear with larger number of trials with significantly high number of per-
formance points. For compression rates from 25% to 50%, filter-NAS seems to
dominate slightly producing many optimal solutions and for compression rates
of more than 50%, undoubtedly filter-NAS dominates the region. It seems to
produce more solutions for greater than 50% of target compression rates.

148 A. Thirunavukkarasu and D. Helms

The uncompressed model occupied a storage space of 16.6 MB with an infer-
ence time of 0.847 ms on Intel UHD graphics 630. In order to study the impact
of TC on inference time and memory space requirements, one of the best per-
forming tensor compressed models produced by NAS is picked up. The chosen
model exhibits a negligible accuracy loss of 0.01% with almost 85% of the con-
volutional parameters being compressed. The storage space of the compressed
model was found to be 3.4 MB, which is just 20% of the size required by the
uncompressed model. Its inference time was evaluated to be 0.349 ms indicating
that the compressed models are 2.5 times faster than uncompressed versions.

0.975

0.950 A

0.925 -

0.900 A i — -

T al
0.875 TC-NAS

accuracy

0.850 A

AlexNet from

0.825 - -
/,-" Literature

0.800 A -

Q.,
0.775 A .

10° 3% 10° 6x10° 10° 2x10°
parameter size

Fig. 4. TC-NAS vs. SoTA on AlexNet (Color figure online)

Figure4 shows the comparison of our work with the current State-of-The
Art (SoTA) in Tensor Compression for top-5 accuracy. Yellow circle shows the
performance of AlexNet obtained from the work [11] where they have compressed
all 5 convolutional layers using TD and VBMF algorithm for rank selection. For
a fair analysis, we have drawn a comparison considering the parameters of 2—4
convolutional layers. It can be seen clearly that the top-5 accuracy of TC-NAS
exceeds the SOTA. Even though TC-NAS is slower in finiding an optimized model
compared the to SoOTA, TC-NAS results has the power to provide a cluster of
solutions instead of a single one.

GoogLeNet on MNIST

The original GoogLeNet architecture consists of 9 Inception modules and 2 aux-
iliary networks and hence it takes significantly larger training time. In order to
fit it based on our available resources, the architecture is scaled down such that
it is designed to have only 3 inception modules and one auxiliary network and is
made to train on the MNIST dataset (tricolor images of dimensions (32, 32, 3)).
There are multiple convolutional layers in these inception blocks and almost all
of them are subjected to compression in NAS. Hence, the search space relatively

Using Network Architecture Search for Optimizing Tensor Compression 149

0.99 A
0.98 A
0.97 A

0.96 4 .

accuracy

0.95 13

0.94 - STt

0.93 A

0.92 .
5x10% 7x10% 10° 2x10° 3x10°
parameter size

Fig. 5. TC-NAS on GooglLeNet

huge taking larger duration to converge. The search space is set between [1, 512],
depending on the filter counts in each convolutional layer. After training for 20
epochs, the top-1 accuracy is around 99.4%, which is used as the baseline accu-
racy for comparison against different compressed versions. The uncompressed
version has around 319,960 parameters in total.

Since this model has more than 10 large convolutional layers, despite running
around 4000 trials for weeks together, only handful results (~600 trials) could
be obtained as shown in Fig.5. Remaining trials were early stopped by the
NAS tuner which it anticipated to have poor performance. Each successfully
compressed version took around 20 min on an average for a fine-tune of 3 epochs.
Filter-NAS was not performed for this model as it requires complete training for
20 epochs from scratch demanding huge computational resources.

As it can be seen from the Fig.5, there is a big gap between the black
point (baseline) and compressed versions. This gap can be filled if sufficiently
more NAS trials are performed. The best performing compressed model had a
compression rate of upto 40% with 1% accuracy loss, occupying a memory space
of 0.8 MB. On the other hand, the size of the uncompressed model was 5.9 MB.
From the analysis, it is evident that TC is capable of producing smaller models
with a minimal trade-off for the performance.

6 Conclusion

Although, NAS is a very resource demanding optimization technique, combina-
tion with TC can speed up its performance by a factor of 4, reducing the need
for full training. Because of high computational load, it is hard to fully evaluate
the potential of TC-NAS on reasonable benchmarks - even after a month of GPU

150 A. Thirunavukkarasu and D. Helms

time on very recent 100k€ machines. Another drawback is that the number of
layers are increased when Tucker algorithm is applied, which may be an issue
for already very deep networks. Nevertheless, we could clearly show, that we
can outperform the state of the art in TC, which, to be fair executes in hours
rather than month for small benchmarks resulting in optimized models with
increased inference speed and reduced storage size. Instead of compressing both
input and output channels (R3 and R4), trying to compress only one channel
with one rank is a possible future work. This paper speaks about compression on
sequential networks only. Extending this approach to non-sequential models are
challenging due to the non-linearities and they are in the scope of future works.

References

1. Choudhary, T., Mishra, V., Goswami, A., et al.: A comprehensive survey on model
compression and acceleration. Artif. Intell. Rev. 53, 5113-5155 (2020). https://
doi.org/10.1007 /s10462-020-09816-7

2. Helms, D., Amende, K., Bukhari, S., et al.: Optimizing neural networks for embed-
ded hardware. In: SMACD/PRIME 2021; International Conference on SMACD
and 16th Conference on PRIME, pp. 1-6 (2021)

3. Han, S., Mao, H., Dally, W:J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding. Published as a
Conference Paper at ICLR (oral) (2016). https://doi.org/10.48550/ARXIV.1510.
00149

4. Zhou, S., et al.: DoReFa-Net: training low bitwidth convolutional neural networks
with low bitwidth gradients, CoRR; abs/1606.06160

5. Uhlich, S., et al.: Mixed precision DNNs: all you need is a good parametrization.
arXiv:1905.11452 (2019)

6. Yang, L., Jin, Q.: FracBits: mixed precision quantization via fractional bit-widths.

arXiv:2007.02017 (2020)

Esser, SK., et al.: Learned step size quantization, CoRR. arXiv:1902.08153 (2019)

Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network

(2015). arXiv:1503.02531

9. Tucker, LR.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31, 279-311 (1966). https://doi.org/10.1007 /bf02289464

10. Microsoft NNI (2021). https://nni.readthedocs.io/en/stable/index.html

11. Kim, Y.-D., Park, E., Yoo, S., et al.: Compression of deep convolutional neural

networks for fast and low power mobile applications (2016)

12. Cao, X., Rabusseau, G.: Tensor regression networks with various low-rank tensor

approximations (2018). arXiv:1712.09520v2

13. Alter, O., Brown, P.O., Botstein, D.: Singular value decomposition for genome-wide

expression data processing and modeling. Proc. Nat. Acad. Sci. (2000). https://
www.pnas.org/content/97/18 /10101

14. Kim, H., Khan, M.U.K., et al.: Efficient neural network compression.

arXiv:1811.12781

15. Accelerating Deep Neural Networks with Tensor Decompositions. https://jacobgil.

github.io/deeplearning/tensor-decompositions-deep-learning

16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Advances in Neural Information Pro-

cessing Systems. 2nd edn. Curran Associates, Inc. (2012). https://dl.acm.org/doi/
10.5555/2999134.2999257

© N

