13TH EASN CONFERENCE 2023

Estimating the scheduled maintenance implications for a hydrogen-powered aircraft

R. Meissner[®], P. Sieb[®], J. Kensbock, K. Wicke[®], G. Wende[®]

- Introduction (Why you should bother)
- Fundamentals on Aircraft Maintenance (What the broader context is)
- Our Approach (What we have done specifically)
- Results & Insights (What we found out)
- Way Forward (What comes next)

Regulatory Initiatives

Governmental restrictions (e.g., European Green New Deal) aim at climate-neutral aviation by 2050.

Technological Improvements

Incremental efficiency gains of conventional kerosenebased combustion systems outperformed by increased air traffic.

New Aircraft Concepts

Development of alternative energy carrier concepts with new system layouts and different, unknown maintenance needs.

(Early Design) Maintenance Considerations

Aircraft (System) Design

Conceptual design studies of new aircraft configurations

Implications on ground operations (e.g., refueling)

(Sustainable) Fuel production

Aircraft (System) Design

Conceptual design studies of new aircraft configurations

Implications on ground operations (e.g., refueling)

(Sustainable) Fuel production

(Early Design) Maintenance Considerations

10% - 20% of operating costs associated with maintenance

Aircraft (System) Design

Conceptual design studies of new aircraft configurations

Implications on ground operations (e.g., refueling)

(Sustainable) Fuel production

(Early Design) Maintenance Considerations

Compliance with regulatory requirements and standards (Title 49 C.F.R, CS25 – Apdx. H, ISO 11623)

10% - 20% of operating costs associated with maintenance

How can the necessary maintenance effort be expected to change when substituting a kerosene-powered Auxiliary Power Unit (APU) by an hydrogen-powered equivalent?

Fundamentals – Aircraft Maintenance

Our Approach

Scheduled Maintenance Task Definition

	Steps	Resources
	System Design Definition	ISO Norms, Expert Knowledge ¹
MSG-3	Functional Failure Analysis Maintenance Task Identification	Engineering Judgement Engineering Judgement
	Maintenance Interval Estimation	ISO Norms and National Standards, Industry Practices
	Task Effort Estimation	Legacy Maintenance Planning Document

7

Our Approach

Average Flight Leg Time

21029-2)

GH₂ Exhaust Exemplary (Airborne) System Design Heat Pump Exchanger Pressure GH₂ Storage Temperature Cryogenic Cryogenic Heater Flow Cryogenic Safety Valve Tank (Type III) (ISO 15547-1) Filter Regulator Transmitter Automatic Check Meter (ISO 21013) Safety Valve Valve Valve (ISO 19880-3) (ISO 11119-3) (ISO 4126-1) (ISO 21011) (ISO 21011) Deionization Coolant Reservoir Filter TT Cooling ۯÞ GH_2 ⊲=≻⊄ Anode TT Pressure Water - (_{РТ})-РТ Cathode Exhaust Transmitter Trap Hygrometer Air Compressor Check Valve Air Filter (ISO 19880-3) (ISO 11155-1/ 11155-2) Pressure Automatic Cryogenic Pipe Bulk Valve LH₂ (ISO 21012) (ISO 19880-3) FWD AFT GH₂ Refueling LH₂ Refueling Interface Interface LH₂ Tank Ambient Air H₂0 Drainage (ISO 21029-1/ Intake

Substituting an APU by a Fuel Cell may also result in additional design changes, e.g., for bleed air generation.

4	
V	DLR

Gained Insights											
	ATA	Type	Maintenance Man Hours (MMH) / 1,000 FHs								
		-51	AVG	LUR	HUR	SFS	\mathbf{LFS}				
	28 - Fuel	conventional hydrogen-based	8.3 10.4	13.3 16.2	6.0 7.9	8.3 10.9	8.3 10.2				
	49 - APU	change	+ 26%	+ 22%	+ 30%	+ 32%	+ 23%				
		conventional hydrogen-based	0.9 1.7	1.1 2.1	0.8 1.5	0.9 2.7	1.0 1.3				
		change	+ 96%	+ 92%	+ 98%	+ 213%	+ 30%				
	Total	conventional hydrogen-powered	$9.2 \\ 12.1$	$14.4 \\18.3$	$\begin{array}{c} 6.8\\ 9.4\end{array}$	$9.2 \\ 13.6$	$9.3 \\ 11.5$				
		change	+ 32%	+27%	+ 38%	+ 48%	+ 24%				

AVG ... Average annual utilization, LUR ... Low utilization rate,

HUR ... High utilization rate, SFS ... Short flight segments, LFS ... Long flight segments

Operating an aircraft with kerosene (propulsion) and hydrogen (APU) simultaneously, will increase the maintenance effort by 1/5 to 1/3.

Although a fuel cell system will require substantially more maintenance than a kerosene-powered APU, the overall maintenance effort is still significantly less than for the storage and distribution system.

To minimize the addition of maintenance effort, a hydrogen-powered auxiliary power generation is ideally operated on longer flights with high FH-to-FC ratios.

The Bigger Picture

Scheduled maintenance expenditures for the fuel system and APU can be expected to rise between roughly 25% up to almost 50%.

However, scheduled maintenance for these systems only contributes between 4% to 6% to the total scheduled maintenance expenditures.

This translates to ...

	ATA	Mainten	ance Mar	n Hours (MMH) /	1,000 FHs
No.	Description	AVG	LUR	HUR	SFS	LFS
53	Fuselage	33.5 (18.0%)	46.8 (18.2%)	27.5 (17.6%)	44.9 (19.8%)	30.7 (17.1%)
57	Wings	26.6 (14.3%)	30.8 (12.0%)	24.6 (15.7%)	43.9 (19.3%)	$24.9 \\ (13.9\%)$
20	Standard Practices - Airframe Systems	20.4 (10.9%)	33.9 (13.2%)	14.4 (9.2%)	20.4 (9.0%)	20.4 (11.4%)
32	Landing Gear	20.2 (10.8%)	28.9 (11.2%)	17.4 (11.1%)	26.8 (11.8%)	$19.0 \\ (10.6\%)$
25	Equipment / Furnishings	14.6 (7.8%)	22.2 (8.6%)	11.3 (7.2%)	14.9 (6.6%)	14.5 (8.1%)
27	Flight Controls	9.0 (4.8%)	$13.5 \\ (5.3\%)$	7.1 (4.6%)	9.1 (4.0%)	9.0 (5.0%)
28	Fuel	8.3 (4.4%)	$13.3 \\ (5.2\%)$	6.0 (3.9%)	8.3 (3.6%)	$8.3 \\ (4.6\%)$
÷	÷	÷	÷	÷	÷	÷
49	Auxiliary Power Unit	$0.9 \\ (0.5\%)$	$1.1 \\ (0.4\%)$	$0.8 \\ (0.5\%)$	$0.9 \\ (0.4\%)$	$1.0 \\ (0.6\%)$
:	÷	:	:	:	÷	÷
Tota	l Maintenance Effort	186.6	257.2	156.4	226.9	179.4

AVG ... Average annual utilization, LUR ... Low utilization rate,

HUR ... High utilization rate, SFS ... Short flight segments, LFS ... Long flight segments

The Bigger Picture

_

Description	Туре	Maintenance Man Hours (MMH) / 1,000 FHs						
	-51	AVG	LUR	HUR	SFS	LFS		
Total Maintenance Effort	conventional hydrogen-powered	$186.6 \\ 189.5$	$257.2 \\ 261.1$	$\begin{array}{c} 156.4 \\ 159.0 \end{array}$	$226.9 \\ 231.4$	$\begin{array}{c} 179.4\\ 181.6\end{array}$		
	change	+ 2%	+ 2%	+ 2%	+ 2%	+ 1%		

AVG ... Average annual utilization, LUR ... Low utilization rate,

HUR ... High utilization rate, SFS ... Short flight segments, LFS ... Long flight segments

... an increase of the total maintenance effort by 1% to 2%.

So, all good?

Broadening the Scope

\overline{T}
DLR

System Philosophy	Tank	Auxiliary Power Unit (APU) / Fuel Cell (FC)						
	System	APS 3200	APS 3200 131-9(A)		Avg. APU			
conventional hydrogen-powered	$0\% \\ 48\%$	$22\% \\ 58\%$	$13\% \\ 58\%$	$0\% \\ 58\%$	$9\% \\ 58\%$			
difference	+ 48%	+ 36%	+45%	+ 58%	+ 49%			

... and will require more frequent off-aircraft maintenance with the subsequent logistics implications.

Identification of Sustainability Comparative Estimation of Non-Assessment Analysis with All-Routine Task Possible Off-Wing Maintenance Electric System Intervals Concept Workscopes

THANK YOU FOR YOUR ATTENTION

01)

(02)

KEY TAKEAWAYS

Maintenance aspects have to be considered in early stage design phases already to ensure regulatory compliance!

Due to the technical complexity of an airborne liquid hydrogen system, maintenance will demand more skilled labor and will require a more sophisticated maintenance network for off-aircraft maintenance!

Although just slightly, scheduled maintenance effort can be expected to increase if hydrogen-powered systems will remain add-ons to kerosene-powered systems!

Additional Information – Scheduled Maintenance Program

Task no.	Task description	Task code	Interval	No. of units in- stalled	MMH (each unit)	MMH (total)	Interval References
01	Borescope inspection of inner hydrogen tank	SDI	$120 { m MO} { m or} \\ 10,000 { m FC}$	1	1.0	1.0	ISO 21029-1 [81] p. 32] ISO 21029-2 [82] p. 18]
02	General visual inspection of hydrogen tank's structural integrity	GVI	$10,000\mathrm{FC}$	1	0.58	0.58	ISO 21029-1 [81] p. 32]
03	Detailed inspection of refuel/defuel connectors	DET	$72\mathrm{MO}\;\mathrm{or}\;5{,}000\mathrm{FC}$	3	0.1	0.3	Legacy MPD 75
04	Special detailed inspection of the tank fixtures	SDI	$10,000 {\rm FC} {\rm or} \\ 20,000 {\rm FH}$	4	0.4	1.6	Legacy MPD [75]
05	Detailed inspection of cryogenic piping system	DET	$5,500\mathrm{FC}$	1	1.0	1.0	SAE <u>63</u>
06	Detailed inspection of GH_2 piping system	DET	$5,500\mathrm{FC}$	1	1.0	1.0	SAE <u>63</u>
07	Operational check of cryogenic check valve	OPC	$60\mathrm{MO}$	2	0.2	0.4	ISO 21029-2 [82] p. 18] Lu et al. [137]
08	Removal of cryogenic check valve for in-shop restoration	RST	$15,000\mathrm{FC}$	2	1.49	2.98	ISO 13985 [113]
09	Operational check of cryogenic automatic valves	OPC	$60\mathrm{MO}$	2	0.2	0.4	ISO 21029-2 [82] p. 18] Lu et al. [137]
10	Removal of cryogenic automatic valve for in- shop restoration	RST	$15,000\mathrm{FC}$	2	1.49	2.98	ISO 13985 [113]
11	Functional check of the safety valve unit (Cat. B)	FNC	$27\mathrm{MO}$	2	0.83	1.66	Own calculation acc. Eq. 2
12	Removal of safety valve unit for in-shop restora- tion (Cat. B)	RST	60 MO	2	0.65	1.3	ISO 21029-2 [82] p. 18] Miller [123] Keogh et al. [124]
13	Functional check of the safety valve unit (Cat. A)	FNC	$60\mathrm{MO}$	3	0.83	2.49	ISO 21029-2 [82] p. 17]
14	Removal of safety valve unit for in-shop restora- tion (Cat. A)	RST	120 MO	3	0.65	1.95	ISO 21029-2 [82] p. 18]
15	Removal of pressure regulator for in-shop restoration	RST	$180\mathrm{MO}$ or $8{,}000\mathrm{FH}$	1	2.0	2.0	Legacy MPD [75]
16	Operational check of GH ₂ automatic valve	OPC	72 MO	2	0.2	0.4	Legacy MPD 75

-H₂ Tank System

Additional Information – Scheduled Maintenance Program

Task no.	Task description	Task code	Interval	No. of units in- stalled	MMH (each unit)	MMH (total)	Interval References
17	Removal of $\overline{\mathrm{GH}_2}$ automatic value for in-shop restoration	RST	$\begin{array}{c} 180{\rm MO}~{\rm or}\\ 40,\!000{\rm FH} \end{array}$	2	1.49	2.98	Legacy MPD [75] ISO 19880-3 [133]
18	Operational check of GH_2 check valve	OPC	72 MO	2	0.2	0.4	Legacy MPD [75]
19	Removal of $\overline{\mathrm{GH}_2}$ check value for in-shop restoration	RST	180 MO or 40,000 FH	2	1.49	2.98	Legacy MPD [75] ISO 19880-3 [133]
20	Removal of vaporizer for in-shop inspection	FNC	108 MO or 12,000 FH	1	1.3	1.3	Legacy MPD [75]
21	Inspection and cleaning of cryogenic filter	RST	$72\mathrm{MO}$ or $8{,}500\mathrm{FH}$	1	0.15	0.15	Legacy MPD [75]
22	Inspection and cleaning of $\overline{\mathrm{GH}_2}$ filter	RST	$72\mathrm{MO}$ or $8{,}500\mathrm{FH}$	2	0.15	0.3	Legacy MPD 75
23	Removal of mass flow meter unit for in-shop functional check	FNC	$180\mathrm{MO}$	1	0.92	0.92	Liao et al. [132]
24	Removal of pressure transducer unit for in-shop functional check	FNC	$72\mathrm{MO}$	1	0.92	0.92	Legacy MPD [75]
25	Removal of temperature transducer unit for in-shop functional check	FNC	$72\mathrm{MO}$	2	0.92	1.84	Legacy MPD [75]
26	Removal of $\overline{\mathrm{GH}_2}$ tank for in-shop inspection	FNC	$60\mathrm{MO}$ or 12,000 FC	1	0.2	0.2	ISO 11119-3 [IDI] DIN EN 12245 [128] Title 49 CFR §180.207
27	Removal of $\overline{\mathrm{GH}_2}$ tank for in-shop restoration	RST	180 MO	1	0.2	0.2	United Nations [129] Title 49 CFR §178.71(1)(1

Additional Information – Scheduled Maintenance Program

Task no.	Task description	Task code	Interval	No. of units in- stalled	MMH (each unit)	MMH (total)	Interval References
01	Leak-down test	FNC	1,200 APUH	1	0.7	0.7	Legacy MPD [1]
02	Transfer-leak test	FNC	3,000 APUH	1	0.7	0.7	Legacy MPD [1]
03	External-leak test	FNC	$3,000\mathrm{APUH}$	1	0.7	0.7	Legacy MPD [1]
04	Removal of shut-off solenoid vales for in-shop restoration	RST	16,000 APUC	2	0.65	1.3	ISO 19880 [2]
05	Removal of purging solenoid vales for in-shop restoration	RST	1,300 APUH	2	0.65	1.3	ISO 19880 [2]
06	Removal of mixing valve for in-shop restoration	RST	1,300 APUH	1	0.65	0.65	Legacy MPD [1]
07	Functional check of safety valve	FNC	$60\mathrm{MO}$	1	0.83	0.83	ISO 21029-2 [3]
08	Removal of safety valve for in-shop restoration	RST	$120\mathrm{MO}$	1	0.65	0.65	ISO 21029-2 [3]
09	Discard of air filter	DIS	72 MO or 8,500 APUH	1	0.15	0.15	Legacy MPD [1]
10	Cleaning of hydrogen filer	RST	72 MO or 8,500 APUH	1	0.15	0.15	Legacy MPD [1]
11	Discard of de-ionizing coolant filter	DIS	$72\mathrm{MO}$	1	0.92	0.92	Legacy MPD [1]
12	Removal of temperature transducer unit for in-shop functional check	FNC	$72\mathrm{MO}$	1	0.92	0.92	Legacy MPD [1]
13	Removal of temperature transducer unit for in-shop functional check	FNC	$72\mathrm{MO}$	2	0.92	1.84	Legacy MPD [1]
14	Removal of moisture sensing unit for in-shop functional check	FNC	72 MO	1	0.92	0.92	Legacy MPD [1]
15	Removal of air compressor for in-shop restora- tion	RST	30 MO or 18,000 APUH	1	0.42	0.42	Gardner Denver Deutschland GmbH [4]
16	Removal of coolant pump for in-shop restora- tion	RST	$36\mathrm{MO}$	1	0.42	0.42	Sumitomo Precision Products Co. Ltd. [5]
17	Detailed inspection of heat exchanger	DET	36 MO or 3,000 APUH	1	0.3	0.3	Legacy MPD [1]
18	Removal of heat exchanger for in-shop restora- tion	RST	108 MO or 12,000 APUH	1	0.42	0.42	Legacy MPD [1]
19	General visual inspection of fuel cell bearings	GVI	36 MO	2	0.55	1.1	Legacy MPD [1]