
Astronomy
&Astrophysics

A&A 672, A144 (2023)
https://doi.org/10.1051/0004-6361/202244067
© The Authors 2023

Discovering planets with PLATO: Comparison of algorithms for
stellar activity filtering⋆

G. Canocchi1,2 , L. Malavolta2,3 , I. Pagano4, O. Barragán5, G. Piotto2,3, S. Aigrain5, S. Desidera3, S. Grziwa6,
J. Cabrera7, and H. Rauer7

1 Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
e-mail: gloria.canocchi@astro.su.se

2 Dipartimento di Fisica e Astronomia “Galileo Galilei” – Università di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy
3 INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy
4 INAF – Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy
5 Sub-department of Astrophysics, Department of Physics, University of Oxford, Oxford, OX1 3RH, UK
6 Rheinisches Institut für Umweltforschung an der Universiät zu Köln, Aachener Straße 209, 50931 Köln, Germany
7 Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, 12489 Berlin, Germany

Received 20 May 2022 / Accepted 3 February 2023

ABSTRACT

Context. To date, stellar activity is one of the main limitations in detecting small exoplanets via the transit photometry technique.
Since this activity is enhanced in young stars, traditional filtering algorithms may severely underperform in attempting to detect such
exoplanets, with shallow transits often obscured by the photometric modulation of the light curve.
Aims. This paper aims to compare the relative performances of four algorithms developed by independent research groups specifically
for the filtering of activity in the light curves of young active stars, prior to the search for planetary transit signals: Notch and LOCoR
(N&L), Young Stars Detrending (YSD), K2 Systematics Correction (K2SC), and VARLET. Our comparison also includes the two
best-performing algorithms implemented in the Wōtan package: Tukey’s biweight and Huber spline algorithms.
Methods. For this purpose, we performed a series of injection-retrieval tests of planetary transits of different types, from Jupiter down
to Earth-sized planets, moving both on circular and eccentric orbits. These experiments were carried out over a set of 100 realistically
simulated light curves of both quiet and active solar-like stars (i.e., F and G types) that will be observed by the ESA Planetary Transits
and Oscillations of stars (PLATO) space telescope, starting 2026.
Results. From the experiments for transit detections, we found that N&L is the best choice in many cases, since it misses the lowest
number of transits. However, this algorithm is shown to underperform when the planetary orbital period closely matches the stellar
rotation period, especially in the case of small planets for which the biweight and VARLET algorithms work better. Moreover, for light
curves with a large number of data-points, the combined results of two algorithms, YSD and Huber spline, yield the highest recovery
percentage. Filtering algorithms allow us to obtain a very precise estimate of the orbital period and the mid-transit time of the detected
planets, while the planet-to-star radius is underestimated most of the time, especially in cases of grazing transits or eccentric orbits. A
refined filtering that takes into account the presence of the planet is thus compulsory for proper planetary characterization analyses.
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1. Introduction

From an observational point of view, stellar activity poses a chal-
lenge to detections of planet around stars different from the Sun
and to precise measurements of their parameters, especially with
regard to the radial velocity and the transit photometry tech-
niques. In stellar light curves (LCs), the out-of-transit flux is
not typically flat but, instead, it is characterized by amplitude
variations that are due to the intrinsic stellar activity, which is
particularly enhanced in young stars (i.e., <1 Gyr). The latter
do indeed show flux variations on many different timescales,
with amplitudes up to 700% in a temporal range of 1–10 days
(Cody et al. 2017; Cody & Hillenbrand 2018). These fluctua-
tions in brightness are caused by several phenomena occurring
on the stellar surface, primarily spots and faculae, that is, colder
⋆ Simulated light curves are only available at the CDS via anonymous

ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/672/A144

or brighter regions on the stellar surface, which can remove or
add flux, depending on their location when the planet is transit-
ing, thus affecting both the transit depth and shape, as well as the
overall LC. Another source of noise for transit parameter deter-
mination are stellar oscillations, granulation, and flares, which
contribute to increase the flux variability, consequently affect-
ing planet detection. The effect of stellar activity on transit is
more remarkable the smaller the planet is. In particular, young
stars are characterized by fast rotation and complex brightness
modulation, which makes them challenging targets for exoplanet
research.

Despite these difficulties, observing young stars is important
for multiple reasons: these young exoplanets can provide hints
about the first stages of planet formation and evolution, helping
us to put some constraints on current formation models. Under-
standing the mechanisms occurring in the early evolutionary
phase of planet formation – such as migration and ionizing
radiation from the host star (Baraffe et al. 2003), as well
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dynamical interactions with the protoplanetary disk, the other
bodies in the system (e.g., the Kozai–Lidov mechanism;
Shevchenko 2017), or with nearby stars (Ida & Lin 2010) – is
fundamental in order to better interpret the final distribution
of extrasolar planet population. Indeed, all these processes
contribute to change both orbital and planetary parameters, such
as mass, eccentricity, and distance from the host star, especially
in the first phase of planet formation.

The aforementioned stellar activity in young stars can be of
roughly on the same order of magnitude as that of the transit
signal, in terms of both period and flux variation (Armstrong
et al. 2015), thus masking the true planetary signals or produc-
ing false positives (Rodenbeck et al. 2018). This is the reason
why most of the transit surveys are focused on older, photometri-
cally quieter stars, exhibiting only small variations over long time
scales (Rowe et al. 2014). Nevertheless, when looking for Earth-
sized planets around solar-like stars, even this low variability of
the stellar flux over long time scales can become problematic
for the transit detection. Therefore, many filtering algorithms
have been developed in order to correct for stellar activity in
photometric LCs.

According to Hippke et al. (2019), in planet injection-
retrieval experiments, these methods perform very well in quiet
stars, reaching a detection efficiency of nearly 100%. However,
this percentage decreases down to ∼43.8% when considering a
sample of young, extremely active stars observed with the Tran-
siting Exoplanet Survey Satellite (TESS; Ricker et al. 2014),
meaning that less than half of the injected transit signals are
recovered after detrending the highly variable LCs produced by
these young stars. In their tests, Hippke et al. (2019) considered
planets with a radius equal to half the Jupiter radius, hence, the
recovery fraction of transit signals is expected to decrease even
more when considering small planets such as mini-Neptunes
and Super-Earths. This proves how challenging is searching for
young exoplanets around young active stars.

Several algorithms have been proposed to specifically filter
activity in the LCs of young stars in order to search for plane-
tary transit signals, leading to the discovery of young exoplanets
(e.g., Mann et al. 2016; Newton et al. 2019; Benatti et al. 2019;
Nardiello et al. 2019; Thao et al. 2020). However, many more
young exoplanets are needed for building reliable statistics.

The main purpose of this work is to identify and compare
algorithms specifically developed for the filtering of stellar activ-
ity in young stellar LCs, in order to test their effectiveness prior
to the search of transit events. We performed tests on realisti-
cally simulated LCs of both quiet and active solar-like stars, as
these are the types that will be observed by the forthcoming ESA
mission Planetary Transits and Oscillations of stars (PLATO;
Rauer et al. 2014). In particular, we selected four custom-built
algorithms: Notch and LOCoR1 (N&L; Rizzuto et al. 2017),
Young Stars Detrending2 (YSD; Battley et al. 2020), K2
Systematics Correction3 (K2SC; Aigrain et al. 2016) and
VARLET and PHALET (Grziwa & Pätzold 2016).

These have been recently successfully applied by indepen-
dent groups on Kepler (Borucki et al. 2010), K2 (Howell et al.
2014) or TESS LCs, specifically for the search of planets around
young, active stars. Along with the above-mentioned algorithms,
we also included in the comparison two of the algorithms
selected as the best performing ones for less active stars accord-
ing to Hippke et al. (2019), namely, “Tukey’s biweight” and

1 https://github.com/arizzuto/Notch_and_LOCoR
2 https://github.com/mbattley/YSD
3 https://github.com/OxES/k2sc

“Huber spline,” as implemented in the Wōtan4 Python package.
This paper is organized as follows. In Sect. 2, the PLATO mis-
sion is introduced, along with the description of the samples
of PLATO simulated LCs and the criteria for transit detec-
tion. A brief summary of the algorithms tested by Hippke
et al. (2019; i.e., general-purpose algorithms) and the analy-
sis of their performance on a series of different transit signals
injected into PLATO LCs is presented in Sect. 3. In Sect. 4, the
custom-built algorithms mentioned above are introduced. Then,
in Sect. 5, several injection-retrieval tests are performed on both
individual quarters (Sect. 5.1) and entire LCs (Sect. 5.3). More-
over, we investigate some peculiar cases: eccentric hot Jupiters
(Sect. 5.4.1) and planets with an orbital period equal to the rota-
tion period of their host star (Sect. 5.4.2). Finally, in Sect. 6, we
discuss the main results and future perspectives.

2. PLATO simulated light curves and transit
detection

PLATO5 (Rauer et al. 2014) is the third medium-class mis-
sion in ESA’s Cosmic Vision program. Scheduled for launch
in 2026, PLATO has the main aim of detecting and character-
izing, in terms of density and age, Earth-like planets around
solar-like stars up to the habitable zone. PLATO will carry out
high-precision photometric observations on a large sample of
stars in order to characterize both the exoplanets and their host
stars, respectively, through transit detection and asteroseismol-
ogy. Since PLATO is designed to observe a broad field of view
(FoV6; Nascimbeni et al. 2022), similarly to the NASA all-sky
survey mission TESS, a multi-telescope approach was adopted.
Indeed, PLATO is equipped with 24 "normal" cameras or
N-CAM (i.e., 25 s readout cadence), organized into four groups
of six cameras, each with its own CCD-based focal plane array,
and two “fast” cameras or F-CAM (i.e., 2.5 s readout cadence)
dedicated to the observation of bright stars through the use of
two bandpass filters (one per camera) acting as fine guidance
sensors. All the cameras are refracting telescopes with an aper-
ture diameter of about 120 mm, pointing at different parts of
the sky (with some overlapping areas), covering a total FoV of
more than 2200 deg2 (Pertenais et al. 2021; Magrin et al. 2020).
Each camera is equipped with four charge-coupled devices (i.e.,
104 CCDs in total) with 4510 × 4510 pixels of size 18µm
(edge length). In preparation of the future PLATO space mis-
sion, several research groups implemented simulated LCs as
those expected to be obtained by the PLATO telescope. Accord-
ing to the current observation strategy, PLATO will point the
same portion of the sky for at least 2 yr, but slightly adjusting the
spacecraft position every 3 months (i.e., every quarter), rotat-
ing 90◦ around the line-of-sight. Hence, considering the total
time-series datasets, between one quarter and the next, a jump
in the LC is expected, due to the fact that the pixel position on
the camera where a given target is observed can change between
a quarter and another.

2.1. Simulated light curves

For our analysis, we employed two samples of 100 simulated LCs
provided by the Light curve Stitching Working Group (LSWG),

4 https://github.com/hippke/wotan
5 https://www.cosmos.esa.int/web/plato
6 PLATO should cover between 10% and 50% of the whole sky,
depending on the adopted strategy.
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which is investigating the best method to model the flux varia-
tions between quarters of PLATO LCs. Each LC encompasses
eight quarters with a duration of ∼88 days and gaps between
quarters of 1–3 days, covering 2 yr in total. The LCs were origi-
nally produced at a sampling of 25 s. Since such a high cadence
was not needed for the transit detection, in order to save compu-
tational time and keep the file size manageable, the curves were
binned to 600 s cadence.

The LSWG produced 100 LCs simulating PLATO-like data
of bright stars (8 ≤ V ≤ 11 mag)7 with a photometric amplitude
variability in the range 0.08–1.71%, representative of PLATO-
like systematics, as obtained by the PLATO Solar-like Light
curve Simulator (PSLS) 1.28 (Samadi et al. 2019). We note that
for this particular set of simulations we did not use any realistic
pointing direction, that is, the noise values are representative of
what PLATO will observe, but there is no correlation with the
distribution of stars in the sky.

As the mission is still under development, many technical
details such as the noise levels, the duration of the runs (in this
work: 88 days), and the duration of the gaps between the quar-
ters (in this work: between 1–3 days) are based on requirements
or realistic assumptions, while real in-flight performance might
be different. The instrumental systematics and random noise for
the noise-only LCs were simulated assuming point spread func-
tion (PSF) photometry (as will be done on the ground for the
bright stars in the P1 sample). The final parameter that controls
the noise in PSLS is the stellar magnitude, which is reported in
Tables B.1 and B.2, along with the full set of input parameters
for the LCs used in this work.

For the activity signals, we required a physically motivated
model where individual parameters such as the rotation rate
and the spot coverage could be controlled by the user. This
is only partially accomplished by the stellar activity compo-
nent in PSLS, which consists of a Lorentzian in Fourier space
with no explicit periodicity (see Sect. 5.2 of Samadi et al. 2019
for more details). Hence, we switched off the variability com-
ponents of PSLS and manually inserted activity signals and
oscillations afterwards. Therefore, onto these noise-only LCs,
we superimposed the activity signals of solar-like “quiet” stars
with Prot ∼ 1–50 days extracted from LCs simulated in Aigrain
et al. (2015), which included Sun-like butterfly patterns, activity
cycles, spot evolution (i.e., emergence and decay)9, and differen-
tial rotation, on a temporal range of 1000 days and representative
of the Kepler data of solar-like stars. We refer to this dataset as
the “quiet sample.”

The “active sample” required to test the different algorithms
was based again on the same LCs produced by the LSWG, this
time with the addition of a strong quasi-periodic activity sig-
nal with a rotation period shorter than 10 days10, again extracted
from the simulations performed by Aigrain et al. (2015). Two
examples, representing the LCs of a quiet and an active star
respectively, as simulated by the LSWG are shown in Fig. 1 (top)
and (bottom), respectively.

Finally, we did not attempt to remove the instrumental long-
term systematics which are very obvious in the top panel of
Fig. 1, as the algorithms that will address those residuals in the

7 One merged LC is provided, even if the star is observed by
24 cameras.
8 https://sites.lesia.obspm.fr/psls/
9 In Aigrain et al. (2015) they explicitly simulate the effect of each spot
on the LC using a simple spot model.
10 In fact, rotational velocity generally decreases with age (i.e., rotation
period increases) as well as activity (Salabert et al. 2016), depending
also on the color index (Mamajek & Hillenbrand 2008).

Fig. 1. PLATO simulated LC #0 of the sample of quiet stars (top) and
active stars (bottom). Different colors represent different quarters. The
systematics in the simulated LCs represent a worst-case scenario, as
their correction will be addressed in the final PLATO data products.

PLATO pipeline are still under development. The LCs employed
in this analysis should not be considered as representative of
PLATO final data products, which indeed will be corrected
for instrumental systematics11 but should rather be considered
a worst-case scenario in which intermediate data products are
employed for the analysis.

2.2. Transit modeling

Transits were modeled using the batman12 Python package
(Kreidberg 2015), which is a Python implementation of the
transit model from Mandel & Agol (2002). Since we wanted
to measure the performances of the algorithms on different
populations of exoplanets, the orbital parameters and planetary
properties were varied from case to case, and they are described
along the paper accordingly. The injection was performed by
simply multiplying the stellar LC by the transit model (normal-
ized to unity outside the transit), that is, spot-crossing events and
other effects altering the shape of the transit were not included.
The model did not include other planet-related effects other

11 See Chapter 8.1 PLATO data products of the PLATO Definition
Study Report, https://sci.esa.int/s/8rPyPew
12 https://github.com/lkreidberg/batman
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than the transit, for instance, phase curve variations, secondary
eclipses, Doppler boosting, and ellipsoidal variations were not
included. After the transit injection, these LCs were detrended
with selected filtering algorithms (see Sects. 3 and 4). The tran-
sit detection on the resulting filtered flux was then performed
by the Transit Least Squares (TLS) algorithm (Hippke & Heller
2019), which has shown a higher detection efficiency compared
to other transit detection algorithms, such as Box-fitting Least
Squares (BLS; Kovács et al. 2002). The main improvement of
TLS with respect to BLS is that it employs a real planetary
transit shaped model when searching for transit signals in the
phase-folded corrected LC and not simply a less realistic box-
like shape. The TLS default template of the transit curve used
for transit detection in this work, assumes circular orbits (i.e., a
null eccentricity), with an impact parameter of 0 (i.e., an incli-
nation of 90 degrees). Unfortunately, we realized at a later stage
that the filtering algorithms may modify the transit signal to a
point that there is no real advantage in using a more accurate
shape for the transit; thus, in the future, we advise to use more
than one detection technique in order to maximize the scientific
return.

TLS computes the Signal Detection Efficiency (SDE) as
the detection statistics for finding the strongest signal in the
periodogram consistent with a planetary transit. The SDE dis-
tribution as a function of the orbital period, is obtained in the
same way as in Kovács et al. (2002):

SDE(Porb) =
SRpeak − ⟨SR(Porb)⟩
σ(SR(Porb))

, (1)

where SR(Porb) is the signal residual between the model and
the data, computed from the distribution of minimum χ(2). In
particular: ⟨SR(Porb)⟩ is the arithmetic mean, σ(SR(Porb)) is the
standard deviation, and SRpeak is the peak value, which (by def-
inition) is equal to 1. Once that the SDE distribution has been
computed, the period corresponding to the highest SDE value is
assumed as the orbital period of the transit signal. In our anal-
ysis, the planet was considered to have been recovered if the
detected period matched the injected one within 1% . Moreover,
for a more realistic transit search, a detection SDE threshold of 7
was applied, as done by Hippke & Heller (2019). This means that
all signals with SDE below this threshold were not considered as
correctly identified, even if the recovered orbital period matched
the injected one within 1%. We also made use of the SDE of
the recovered period as a metric for the comparison of different
algorithms. We are aware that the SDE threshold should depend
on the properties of the light curves and that a single value may
not be appropriate (see for example Grziwa et al. 2012), but we
believe it still represents a reasonable choice given the goals of
this work. We stress again the fact that our choice is not represen-
tative of the final implementation of the PLATO pipeline, and it
is only valid in the framework of this specific work. Finally, we
note that we did not produce any comparison sample, that is, a
set of LCs without injected planets, as the goal of this work is
to test the ability of different algorithms in recovering bona fide
planets rather than determining the PLATO’s planet yield.

In the next section, the most successful general-purpose
filtering algorithms are briefly described and applied to the
samples of PLATO simulated quiet and active stars.

3. General-purpose algorithms

Hippke et al. (2019, hereafter H19), performed planetary
injection-retrieval tests on a sample of 316 highly variable stars

observed with TESS, obtaining a global detection efficiency
lower than 50% when applying algorithms that were rather
successful in detecting small planets around quiet stars. They
injected transit signals with the following properties: a plane-
tary radius equal to half the Jupiter radius (Rp = 0.5 RJ), with
period randomly drawn from a uniform distribution in the range
1–15 days, and an impact parameter and eccentricity both fixed
to zero. We reproduced the same experiment on the samples of
both quiet and young active stars of the PLATO simulated LCs,
in order to test the performances of the general-purpose filter-
ing algorithms used by H19 (already implemented in the Wōtan
python package) on PLATO LCs. In particular, the main aim
of this analysis is to investigate how the cadence and the dura-
tion of the observations of PLATO can influence the efficiency
of the algorithms presented by H19 or if these algorithms are not
adequate for the detection of young exoplanets by design. Specif-
ically, H19 tested the following algorithms13: sliding median,
Tukey’s biweight, Huber spline and Lowess.

In the statistical literature, the sliding median (window-size
of w = 0.7 days) is classified as a “scatterplot smoother” that
uses a rectangular (i.e., symmetric and with uniform weights)
window kernel of length, w, centered on the time, t(xi), for each
data-point, xi.

The Tukey’s biweight (w = 1.0 or 0.25 days for the quiet and
active sample, respectively) is a robust location estimator similar
to the ordinary least-squares method except that the weights are
not constant but depend on the distance from the midpoint, while
the loss function14 is given by:

L(a) =
{

(−(a/c)2)2 if |a| < c,
0 otherwise,

(2)

where a are the residuals (i.e., the difference between the
observed data and the midpoint) and c is a constant called tuning
parameter, usually with a value of ∼5 (default in Wōtan).

The Huber spline (w = 0.3 days) is a generalization of the
maximum likelihood estimation, which is characterized by the
following approximated loss function:

L(a) = c2(
√

1 + (a/c)2 − 1), (3)

where c = 1.5 as the Wōtan default option.
Finally, Lowess regression (w = 1.0 day) consists in a local

polynomial regression method which works by fitting a low-
order polynomial to a subset of the data (defined by a certain
window-size) at each point along the x-axis using weighted least-
squares regression. In this way, more weight is given to the points
closer to the data point being estimated.

We will refer to these algorithms as general-purpose as they
were not specifically developed to deal with prominent stellar
activity. In order to test the efficiency of the aforementioned
general-purpose algorithms on PLATO LCs, we performed plan-
etary injection-retrieval tests that were as similar as possible to
those done by H19. For this analysis, we treated each quarter as
an independent LC, that is, the test was performed on 800 LCs
with 88 days of duration. Planetary transits with the character-
istics described above were synthesized with batman and then
injected into the single quarters of both the quiet and the active
LCs of PLATO. We injected a different planet into each quarter,

13 We excluded algorithms based on Gaussian Processes from this test
as they were first introduced in literature for the filtering of active stars.
14 The loss function is a method to evaluate how well an algorithm
models the observed data points. More details can be found in H19.
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Fig. 2. Recovery fraction of injected transit signals similar to those of
Hippke et al. (2019) injected into simulated PLATO stellar LCs of quiet
(second column) and active (third column) stars, compared with the
recovery fraction of similar signals injected into a sample of active stars
observed by TESS (first column) and analyzed by H19. The biweight
with a window of 1.0 day was not tested by H19 on TESS active LCs.

so that in total, 800 transit signals were analyzed. For the stel-
lar density, ρ⋆, and for the limb darkening coefficients, u1 and
u2, we adopted the values reported in the tables describing the
simulated LCs, provided by the LSWG (shown in Appendix B).
Afterward, the LCs with injected transits were filtered with the
Wōtan algorithms with the same window-sizes adopted by H19.
Finally, we analyzed the filtered fluxes by searching for planetary
transits with TLS.

The general-purpose algorithms achieved unexpectedly
excellent results on both samples of the PLATO simulated LCs,
when compared to the results presented in H19. The percent-
age of recovered transits with TLS after the filtering with these
algorithms is reported in Fig. 2, where each row represents the
results of a different algorithm, and each column refers to a dif-
ferent sample of LCs. Specifically, in the first column the results
obtained by H19 on TESS active stars are reported, whereas
in the second and third columns, the results from the PLATO
quiet and active sample are shown, respectively. In the last row,
the recovery percentage obtained combining all methods is also
shown. As can be seen from this figure, the recovery efficiency
of the tested general-purpose algorithms on both samples of
PLATO stellar LCs is extremely high, recovering 100% of the
injected signals in almost all the cases. The only exception is
the biweight algorithm with a window-size of 0.25 days, which
recovers 98.88% and 98.62% of the transit signals in the quiet
and active sample, respectively. In a reanalysis of the LCs of both
samples with the biweight algorithm and a window-size of 1 day
– a good approximation of the best value proposed by H19 (three
times the duration of the transit) for orbital periods up to 15 days
– the TLS recovers the totality of the injected transit signals.

An example of a planet missed by TLS after filtering the LC
with the biweight with w = 0.25 days is given in Fig. 3, where
the raw and the detrended flux of quarter #3 of LC #9 of the
active sample are shown. In this quarter, a planet with an orbital

period (Porb) of 12.60 days and a scaled planetary radius (Rp/R⋆)
of about 0.056 is injected. In each panel of this figure, the stel-
lar variability model obtained by means of different algorithms
is highlighted in different colors: red for the median, green for
the Huber spline, orange for the Lowess, blue for the biweight
(specifically, dark blue for a window-size of w = 0.25 day and
light blue for w = 1.0 day). It can be easily observed that the
biweight with the shortest window fails in correctly filtering the
LC, so that in the corresponding corrected flux, almost all the
transits disappear. Nevertheless, by increasing the window-size
up to 1.0 day, transit features are perfectly recognizable after the
filtering and the transit is correctly detected.

Considering the SDE of the recovered transits computed by
TLS in the active sample, in the boxplot in Fig. 4, the main
properties of the SDE distributions are summarized. It can be
immediately visualized that the SDE for most of the algorithms
ranges between ∼30 and ∼76, whereas the biweight with the
shortest window-size reaches much lower values. Similar results
are obtained from the analysis of the quiet sample of PLATO
simulated LCs.

Although we cannot exclude that the level of activity in
the PLATO LCs is lower than those observed in the TESS
dataset analyzed by H19, our analysis shows that the low effi-
ciency general-purpose algorithms for the filtering of active stars
derived by H19 are likely driven by the characteristics of the LCs,
that is, the longer time span and the noise properties. For this rea-
son, we decided to include the two15 best-performing algorithms
in our comparison and in the analysis presented in H19. Over-
all, the biweight with w = 1.0 day and the Huber spline with
w = 0.3 day appear to be the algorithms with the highest val-
ues of SDE and the lowest standard deviation, with regard to the
quiet and active sample, respectively. Therefore, these two algo-
rithms are tested also on the other injection-retrieval experiments
performed, considering also smaller planets, as explained in the
next sections.

4. Custom-built algorithms

As previously mentioned in Sect. 1, four independent research
groups have recently developed algorithms specifically for the
filtering of activity in the LCs of young stars observed by K2
and TESS. In this work, they were implemented in Python and
applied over the two samples of PLATO simulated LCs. A brief
description of the selected algorithms is given below.

N&L, developed by Rizzuto et al. (2017), is a two-step
pipeline, called Notch and LOCoR, respectively. Notch works
by fitting two models over a moving data window: a simple
quadratic polynomial and a polynomial with a box-shape tran-
sit notch, in order to identify the possible presence of a transit.
Then, the model with the lowest Bayesian Information Criterion
(BIC) is adopted. The selection of the window-size employed
for the filtering of PLATO LCs is summarized in Eq. (4) and it
depends on the stellar rotation period Prot:

window − size(days) =


2.0 if Prot > 13 days,
1.0 if 2 < Prot ≤ 13 days,
0.5 if Prot ≤ 2 days.

(4)

For Prot ≤ 2 days, Notch is unable to completely remove rota-
tional systematics, therefore the LOCoR algorithm should also
15 We have to select two algorithms due to the limited computing
resources and for the sake of readability, although they all have similar
performances.
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Fig. 3. Raw flux (left panel) and detrended flux (right panel) of the 3rd quarter of LC #9 of the sample of active stars with an injected transit signal
with Porb = 12.60 days and Rp/R⋆=0.056. Data-points are shown in black, whereas different colors represent the photometric variability model
inferred from algorithm: Median (red), biweight with a window-size of 0.25 days (dark blue) and 1.0 day (light blue), Huber spline (green) and
Lowess (orange).

Fig. 4. Boxplot of the signal detection efficiency for the general-purpose
algorithms from Wōtan tested on the active sample with injected transit
signals with Rp ∼ 0.5 RJ and Porb ∈ [1–15] days, moving on circular
orbits. Boxes cover the lower to upper quartiles; whiskers show the 10
and 90 percentiles. Dashed black lines indicate the mean SDE, whereas
red lines the median. The black circles in the biweight (1.0 day) and the
lowess (1.0 day) cases represent data that extend beyond the whiskers.

be applied. The latter is based on the LOCI algorithm of
Lafrenière et al. (2007) and it consists of modeling each indi-
vidual rotation as a linear combination of other rotations of the
same star in the dataset.

YSD, developed by Battley et al. (2020), is a Python pipeline
which employs Lowess smoothing regression to model stellar
variability, using the standard tricube as a weighting function:

w(x) = (1 − |d|3)3 (5)

where the weight w at each data point, x, is given by the distance,
d, from the point on the curve being fitted, scaled to lie in the
range [0,1].

Therefore, the detrending pipeline is carried out by cutting
the outliers16 (peaks and troughs) first, and then by estimating
the variability trend using the Lowess function implemented in
the Python module statsmodel (Seabold & Perktold 2010) with
frac = 0.012 when considering one quarter only, meaning that a
fraction of 1.2% of the data has been used to estimate each value
of the variability model. When filtering the entire PLATO LCs,

16 The other algorithms do not include an outliers removal.

the frac parameter is set to 0.0015 instead, because it results in
better performances.

The outliers are identified with the function find_peaks
in the scipy.signal (Virtanen et al. 2020) package17, using
a prominence of 0.001 and a width of 20 data points. These
parameters should be adjusted for more complex LCs. For more
information about the outlier cutting see Sect. 2.5.2 of Battley
et al. (2020).

K2SC, developed by Aigrain et al. (2016), is one of the fil-
tering algorithms that makes use of Gaussian processes (GPs:
Rasmussen & Williams 2006) to model both instrumental sys-
tematics and astrophysical variability. Overall, GPs are non-
parametric methods which describe a dataset of N data points
by evaluating correlations between them through a kernel or
covariance function. The latter describes how each point is
related to all the other points, and this relation is expressed
through a N × N matrix, called a covariance matrix. To speed
up computation time, we employed the covariance functions
from the celerite218 (Foreman-Mackey 2018) package in our
implementation of Gaussian processes for the PLATO LCs.

Activity is modeled as a mix of two stochastically driven
and damped harmonic oscillators (SHO), describing two modes
in Fourier Space at the stellar rotation period, Prot, and its
first harmonic, respectively, and implemented in the code as
the RotationTerm kernel. It was shown that this kernel is able
to reproduce a large range of stellar variability in time-series
dataset, from stellar rotation to pulsations (e.g., Haywood et al.
2014; Rajpaul et al. 2015; Uttley et al. 2005). Besides the Rota-
tionTerm (Krot), describing the time-dependent variability of the
light curve, the JitterTerm (Kwn) implemented in celerite2 is
added to model the non-periodic variability or white noise, This
second term is given by Kwn,ij = σ

2δi j, where δi j is the Kronecker
delta function. Therefore, the final covariance function, defining
each element of the covariance matrix with indices (i, j), is given

17 https://docs.scipy.org/doc/scipy/reference/signal.
html
18 https://github.com/exoplanet-dev/celerite2
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by: Kij = Krot,ij + Kwn,ij. The filtering has been done by means of
the exoplanet19 package (Foreman-Mackey et al. 2021), fitting
the data and imposing priors through the PyMC320 (Salvatier et al.
2016) statistical distributions, following Aigrain et al. (2016) as
much as possible, even if the adopted kernels were quite differ-
ent from the original pipeline of K2SC. For this reason, from
now on, we will refer to this filtering algorithm as GPs and not
K2SC. Despite the general name adopted in this work (GPs), it is
important to highlight that Gaussian processes can be tested with
many different kernels. In this work, we investigate only the spe-
cific kernel described above and a different kernel would likely
return different results.

We adopted the following priors over the hyperparameters
of the covariance function, with distributions defined in PyMC3:
(1) the primary period of variability, fixed to the rotation period
Prot given in tables describing the simulated LCs, provided by
the LSWG; (2) the standard deviation of the process σ, equiv-
alent to the amplitude of the variability, with uniform prior in
logarithmic space between 10−7 and 100 in unit of normalized
flux (i.e., flux divided by its median); (3) the quality factor of
the secondary oscillation minus one half Q0, with normal prior
with mean 0.0 and standard deviation 2.0 in logarithmic space;
(4) the difference between the quality factors of the first and sec-
ond modes dQ, with normal prior with mean 0.0 and standard
deviation 2.0 in logarithmic space; (5) the fractional amplitude
of the secondary mode compared to the primary f, with uniform
prior between 0.1 and 1.0.

VARLET, developed by Grziwa & Pätzold (2016), is a
wavelet-based filtering pipeline divided into three main steps.
Firstly, the raw flux is decomposed in wavelets at multiple levels
through the discrete wavelet transform (DWT). Then, a thresh-
olding function is applied to the details coefficients obtained
from the previous multilevel decomposition. Specifically, a soft-
thresholding procedure has been adopted (Donoho & Johnstone
1994), meaning that the corrected version (Y) of the original
detail coefficients (X) is given by: Y = sign(X) · f (|X| − thr),
where thr is the chosen threshold and f (|X| − thr) is defined by
the following equation:

f (|X| − thr) =
{
|X| − thr if |X| ≥ thr,
0 otherwise,

(6)

where the threshold is computed through the penalized crite-
rion provided by Birgé & Massart (2007). Finally, the denoized
light curve is reconstructed through the inverse discrete wavelet
transform (IDWT) using the corrected coefficients. Therefore,
the reconstructed LC, which should represent stellar variabil-
ity, is subtracted from the raw flux, thus obtaining a residual LC
containing only the transit signals and the white noise.

Originally written in MATLAB, the pipeline has been re-
implemented in Python by adopting the PyWavelets21 package
(Lee et al. 2019). In the original pipeline, the VARLET filter is
usually used with a standard BLS which does not take the transit
depth or the shape (other than boxlike) into account. In this work,
the search for transit signals in the filtered LC is instead carried
out by means of the TLS.

All these algorithms have been tested together with the
biweight and Huber spline algorithms described in Sect. 3.

19 https://github.com/exoplanet-dev/exoplanet
20 https://docs.pymc.io/
21 https://github.com/PyWavelets/pywt

5. Injection-retrieval tests

In order to test the transit detection efficiency of the filtering
algorithms described above, a series of planetary transit signals
were synthesized and injected into the PLATO simulated LCs
before filtering.

Transits representing planets with different scaled planetary
radii (Rp/R⋆) in the range 0.01–0.1, orbiting their host star in
circular orbits (i.e., zero eccentricity), with an orbital period
(Porb) between 0.75 and 40 days and an impact parameter (b)
drawn from a uniform distribution in the range [0–1], have been
synthesized with the batman package and then injected into sin-
gle quarters of both the quiet and active sample. We sampled
the scaled planetary radius Rp/R⋆ from uniform distributions
in the following ranges (U(a, b)): 1) Jupiter-size: Rp/R⋆ from
U(0.05, 0.1); 2) Neptune-size: Rp/R⋆ from U(0.03, 0.05);
3) Earth-size: Rp/R⋆ fromU(0.01, 0.03).

Each planetary type (Jupiter-, Neptune-, and Earth-size) was
analyzed independently from the other, that is: each LC was
injected and analyzed three times (once per each planetary type),
without mixing the results. Examples of the first quarter of LC #0
of both the quiet and active samples of PLATO simulated LCs,
with injected transits for a Jupiter-, Neptune-, and Earth-like
signal, are shown in Figs. 5–7, respectively.

As previously done, we retrieved the limb darkening coef-
ficients and the stellar density (ρ⋆), which is in the range
0.8–3.0 g cm−3, taken from tables provided by the LSWG. The
scaled semi-major axis (a/R⋆) were derived from the orbital
period and the stellar density through Kepler’s third law.

5.1. Individual quarters

We performed the first transit injection-retrieval test considering
each quarter of a simulated LC independently from the others,
for a total of 800 tests for each planetary type (Jupiter-, Neptune-,
and Earth-size type) as each of the 100 LCs comprises eight
quarters. Although the eight quarters from the same LC are
sharing the same stellar parameters, the different instrumental
systematics and the quasi-periodic and non-stationary nature of
stellar activity characterize each quarter in a different way, thus
justifying our choice in the framework of testing the efficiency
of algorithms. A given transit model is then injected in both the
quiet and active samples, while keeping the samples separated.
It follows that each efficiency rate is computed over 800 tests.

Each LC is then filtered using the algorithms described in
Sect. 4 and the two general-purpose algorithms (i.e., the biweight
and the Huber spline). The percentage of recovered transits with
TLS after the filtering with these algorithms is reported in Figs. 8
and 9, for the quiet and active sample, respectively. Each row rep-
resents the results of a different algorithm, whereas each column
refers to a different planetary type, as in the legend.

First of all, it can be noticed that in the quiet sample all
the algorithms perform quite well for Jupiter- and Neptune-
sized planets, as all filtering algorithms lead to transit recovery
rates with TLS higher than 99.0%, except for VARLET which
achieves 97.6 % for the Neptune class. For Earth-sized planets
(i.e., Rp/R⋆ ≤ 0.03), all algorithms achieve retrieval rates higher
than 90% except for VARLET (86%) and GPs (72.8%).

With regard to the active sample, a slightly decrease in the
number of recovered transits has been observed, as expected, due
to the much higher photometric variability of these LCs. Nev-
ertheless, among the custom-built algorithms, N&L results to
be the best-performing algorithm for all planetary types in both
samples, recovering 96.87% and 90% of small planets in quiet
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Fig. 5: First quarter of the PLATO simulated LC #0 ofthe quiet (left) and active (right) sample, with an injected Jupiter-
size planet.Fig. 5. First quarter of the PLATO simulated LC #0 of the quiet (left) and active (right) sample, with an injected Jupiter-size planet. In black, we

show the normalized flux without transits and in red, the transit model generated with batman.

Fig. 6. First quarter of the PLATO simulated LC #0 of the quiet (left) and active (right) sample, with an injected Neptune-size planet. In black, we
show the normalized flux without transits and in blue, the transit model generated with batman.

Fig. 7. First quarter of the PLATO simulated LC #0 of the quiet (left) and active (right) sample, with an injected Earth-size planet. In black,
we show the normalized flux without transits and in green, the transit model generated with batman. In the active case, the transits are hard to
distinguish, therefore a zoom-in on the first transit is shown. The second transit occurs at about 70 days.
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Fig. 8. Recovery fraction of injected transit signals in simulated PLATO
stellar LCs of the sample of quiet stars.

Fig. 9. Recovery fraction of injected transit signals in simulated PLATO
stellar LCs of a sample of active stars.

and active stars, respectively. Among the general-purpose algo-
rithms, the biweight and the Huber spline have performances
extremely close to those of N&L in the quiet sample and the
active sample respectively. Among the algorithms with a lower
detection efficiency, we find the VARLET code for what regards
the larger planets, that is, Jupiters and Neptunes, while the GPs
slightly underperform with respect to the other methods for what
regards the shallow transits generated by small planets.

H19 observed that GPs tend to absorb the transit signal by
modeling it as part of the photometric variability of the light
curve, thus reducing the transit depth as well as the sensitiv-
ity in the subsequent transit search in the filtered flux. This
behavior was noticed also in the tests on PLATO LCs, not only
with the GPs, but also with VARLET. An example is given
in Fig. 10, where the Earth-like transit points in LC #22 are
shown, with overplotted variability models inferred from differ-
ent algorithms. It can be easily noticed that the filtering models
determined by either the GPs (third top panel on the right, fuch-
sia line) or the VARLET model (last top panel on the right, violet
line) exhibit a dip in correspondence of the transit, which is
then shallower in the detrended flux (bottom panels), thus reduc-
ing the sensitivity and the SDE in the subsequent transit search.

In the case of VARLET, this behavior is observed also for giant
planets with large transit depths.

In general, we expect higher values of the SDE in the detec-
tion of planets with larger size (i.e., deeper transits) or shorter
orbital periods (i.e., with a higher number of transits). This
behavior was observed for all the filtering algorithms – except
for VARLET, which generates a SDE distribution with similar
low values regardless of the planetary size, as a consequence of
systematically reducing the transit depths of all transits.

In particular, VARLET performs weakly in terms of SDE,
achieving a maximum value of ∼54, whereas all the other algo-
rithms show similar performances, with SDE values up to 90
for the large planets. Similar results are obtained from the fil-
tering done by the biweight and the Huber spline. Figures 11
and 12 show a performance summary of the analyzed methods
on the quiet and active sample, respectively. With regard to the
SDE of the general-purpose algorithms, it can be noticed that
the biweight performs slightly better than the Huber spline in
the case of quiet stars, whereas the situation is reversed in the
case of active stars.

Finally, we note that the SDE of the detected transits on the
filtered LCs of the active stars are similar to those of the quiet
sample. This is an encouraging result, since it suggests that the
activity filtering algorithms perform equally well for the two
datasets, even for stars that are very different from the photo-
metric point of view. This in turn suggests that PLATO will be
able to detect a large number of planets with very different prop-
erties both in terms of size and periods, also around young or
photometrically active stars.

5.2. Caveats in transit detection

An in-depth analysis of the parameter space of the recovered
planets shows that Jupiter and Neptune-size planets are mostly
recovered regardless of their orbital period. On the other hand,
Earths and super-Earths are harder to identify, especially at long
orbital periods, since the number of transit signals decreases
with increasing Porb. This is to be expected since Earth-like plan-
ets produce shallow transit signals in the LCs, which can be
overcome by the variability amplitude. An example of this trend
is shown in Fig. 13, where the scaled planetary radius of injected
planets is plotted as a function of the injected orbital period. Blue
dots represent planets recovered by the TLS in the LCs of the
active sample filtered by N&L (top) or Huber spline (bottom).

Furthermore, considering the orbital and planetary param-
eters of the recovered planets measured by TLS, it is found
that filtering algorithms allow to correctly detect the mid-transit
time and to measure a very precise estimate of the planetary
orbital period with small uncertainties. However, this is not valid
anymore when considering the scaled planetary radius Rp/R⋆,
which is often underestimated, especially for large planets (i.e.,
Rp/R⋆ ≥ 0.05). As an example, in Fig. 14, the orbital period and
scaled planetary radius recovered with TLS after the filtering
of the LCs of the quiet sample by N&L are compared to the
corresponding injected values, with different colors representing
different planetary size.

A possible explanation could reside in the TLS default
template, which assumes circular orbits with a null impact
parameter, as mentioned in Sect. 2. Whenever the transit shape
strongly differs from the default, the recovered scaled plane-
tary radius may be underestimated with respect to the original
injected value, while also affecting all the other related param-
eters, such as the semi-major axis and the transit duration. This
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Fig. 10. Raw flux (top) and detrended flux (bottom) of the first quarter of LC #22 of the quiet sample, zoomed in on the transit points of the injected
Earth-size planet. Data points are shown in black, whereas different colors represent the photometric variability model inferred from different
algorithms: N&L (orange), YSD (red), GPs (fuchsia), and VARLET (violet).

Fig. 11. Boxplot of the SDE for the algorithms listed on the y-axis,
tested on the quiet sample with injected transit signals as described in
Sect. 5.1. Boxes cover the lower to upper quartiles; whiskers show the 10
and 90 percentiles. Dashed black lines indicate the mean SDE, whereas
red lines the median. The black circles in the VARLET case represent
data that extend beyond the whiskers.

Fig. 12. Boxplot of the SDE for the algorithms listed on the y-axis,
tested on the active sample with injected transit signals as described in
Sect. 5.1. Boxes cover the lower to upper quartiles; whiskers show the 10
and 90 percentiles. Dashed black lines indicate the mean SDE, whereas
red lines the median. The black circles in the VARLET case represent
data that extend beyond the whiskers.

occurs, for example, in the case of grazing transits (i.e., high b),
eccentric orbits, or when the filtering algorithm distorts the orig-
inal transit, as in the case of GPs or VARLET. This is a known
issue of the VARLET algorithm, which however does not repre-
sent an obstacle as the search for transit signals is carried out by
means of the BLS algorithm, which does not take the depth of
the fitted box into account.

Nevertheless, in cases where the transit shape differs from
the TLS default template, the correct parameters can be retrieved
by performing an additional analysis in order to fit the correct
transit model to the LC. For example, in the case of grazing tran-
sits or eccentric orbits, a Markov chain Monte Carlo (MCMC)
analysis on the filtered flux is sufficient to recover the orbital
parameters correctly, as shown in Appendix A. When the orbital
parameters are affected by a deformation of the transit shape, it is
still possible to recover the original transit parameters by repeat-
ing the filter process after masking out the in-transit data points,
which can be easily done after the transit has been detected.
Therefore, we stress out the fact that the filtered LC used for
the transit detection cannot be directly used for the planet char-
acterization. An in-depth analysis is necessary for the precise
measurement of the orbital and planetary parameters, either after
reprocessing the LC while making use of the knowledge of
the planet or by simultaneously fitting for stellar activity and
planetary parameters.

5.3. Entire light curves

One of the advantages of PLATO with respect to other space
missions, such as TESS and Kepler, is the continuous obser-
vation of bright targets for at least two consecutive years,
according to the current observation strategy. Such a long
temporal baseline should allow to detect also the shallower
transits of long-period small planets. In our previous analysis
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Fig. 13. Injection-recovery tests on the sample of active stars. Injected
scaled planetary radius as a function of the injected orbital period: blue
dots are the recovered planets, whereas red stars are the missed planets
after filtering the LCs with N&L (top) and Huber spline (bottom).

(i.e., Sects. 3, 5.1 and 5.2), we analyzed only one quarter of data
per planetary system, so it is possible that some small planets
were not detected because there were not enough transits to
allow for their detection, regardless of the filtering algorithm
employed. To test this scenario, we selected the Earth-size plan-
ets (i.e., Rp/R⋆ ≤ 0.03) left undiscovered after the N&L, Huber
spline, and YSD filtering (i.e., the three algorithms with the
highest recovery efficiency; see Fig. 9) and then injected their
transits in the remaining seven quarters of the corresponding
(active) LC. We then ran again the filtering algorithms and the
TLS onto the entire LCs22. In this way, some of the previous
missed transits are now detected whereas others are still missed,
due to the extreme variability and high background noise of the
active stars. Specifically, the percentage of recovered Earth-sized
transits for N&L increases up to 94.025%, while for YSD, it
reaches 96.55% and for Huber spline, it is 98.075%.

Surprisingly, the YSD and Huber spline algorithms seem to
achieve better results than N&L when considering a much larger

22 The analysis on the entire LC was not performed for all transit signals
because it was too computationally expensive.

Fig. 14. Results of the planetary injection-recovery tests after filtering
the LCs of the quiet sample with N&L. Upper panel: recovered orbital
period (Porb) as a function of the corresponding injected Porb. Lower
panel: recovered scaled planetary radius (Rp/R⋆) as a function of the
corresponding injected Rp/R⋆, for the three planetary signals, colored
as in the legend. Black solid line marks points where all the data should
lay if the recovered values were exactly the same as the injected ones.

dataset23, recovering even some of the small planets still missed
by N&L.

An example is given in Fig. 15, where the raw, detrended, and
phase-folded fluxes of LC #58 are shown in the upper, middle,
and lower panels, respectively. The injected transit represents a
small planet with a scaled planetary radius of Rp/R⋆ = 0.0146
and an orbital period of Porb = 32.83 days. In looking at the fil-
tered fluxes (middle panel), it is quite hard to distinguish transit
signals (marked by the vertical blue lines), especially in the case
where the YSD model has been applied, due to a lot of residual
noise left after the filtering. Nevertheless, when computing the
phase-folded flux (bottom panel), in the N&L case, the transit
feature is barely distinguishable; in addition, it is so shallow that
the TLS algorithm does not identify it as the strongest periodic
signal, thus missing the planet. On the other hand, despite some
residual variability, the transit feature is definitely recognizable
in the phase-folded plot of the YSD case, with a much larger tran-
sit depth than the previous case and indeed it is correctly detected
by TLS. This suggests that the algorithm efficiency could vary
according to the number of quarters in a way that is not straight-
forward, thus it is recommended that two algorithms be used,
instead of just one, when the dataset expands beyond one single
quarter.

Finally, considering the entire LCs and the combined results
of the three algorithms, we find that merging together the results
of YSD and Huber spline increases the final detection efficiency
close to 100% for all planetary types, and specifically in Table 1
the final recovery percentages are reported.

We also find that adding the Earth-size planets recovered by
N&L to those detected by YSD and Huber spline only slightly
improves the final percentage of recovered transits, up to 99.0%.
Given that N&L is much more computationally expensive than
the other two algorithms, we do not recommend it to filter
PLATO LCs encompassing several quarters.

23 A single quarter binned at 600 s has ∼12 486 data, whereas the entire
LC has, on average, ∼99 136 points.
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Fig. 15. Raw flux (upper panel), detrended flux (middle panel), and phase-folded flux (lower panel) of the LC #58 of the sample of active stars
with injected a transit signal with Porb = 32.83 days and Rp/R⋆ = 0.015. Data points are shown in black, whereas different colors represent the
photometric variability model inferred from algorithm: N&L (orange) and YSD (red). The transit is undetected in the former case, while it is
detected with SDE = 25 in the latter case. Blue vertical lines mark the mid-transit time.

5.4. Peculiar cases

We investigated two peculiar cases that represent a small fraction
of the existing planets but that are important from the planetary
evolution point of view. The first one are eccentric hot Jupiters
(described in Sect. 5.4.1) and the second one is represented by
those planets with an orbital period equal to the rotational period
of their host star (reported in Sect. 5.4.2). We performed this
analysis only on the LCs of the active sample and considering
individual quarters, as in Sect. 5.1.

5.4.1. Eccentric hot Jupiters

Hot Jupiters are large planets on extremely close-in orbits with
periods shorter than 10 days. The formation pathways for these
highly irradiated planets are still under investigation and among
them, there are mainly two migration mechanisms: the so-called
smooth migration and violent migration (Bailey & Batygin
2018). The latter scenario involves a series of high eccentricity
trajectories as a consequence of gravitational interactions with
the other bodies of the system, such as planet-planet scattering
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Table 1. Final recovery percentages of injected transit signals in
simulated PLATO stellar LCs of a sample of active stars.

Planetary type Recovered %

Jupiter-size 100%
Neptune-size 99.9%
Earth-size 98.875%

(Beaugé & Nesvorný 2012) or the Kozai–Lidov mechanism
(Shevchenko 2017), until the planet is tidally captured onto a
close-in circular orbit around the host star. Studying the detec-
tion efficiency of the filtering algorithms for these kind of transit
signals is particularly interesting because determining if and how
the frequency and the properties (such as the orbital eccentricity)
of hot Jupiters vary as a function of age, allows us to understand
which of the proposed evolutionary mechanisms actually occur.
Therefore, we synthesized a set of 800 transit signals with the
following properties: Rp/R⋆ = 0.1, argument of pericenter (ω)
from a uniform distribution in the interval [0–360]◦, moving on
orbits inclined to 90 degrees, with an eccentricity of 0.2, 0.4,
0.6, or 0.8 and an orbital period in the range of 1–10 days (again
sampled from a uniform distribution). Indeed, eccentricity
changes the transit shape, depending in turn on the argument
of pericenter, as shown in Fig. 16, and we wanted to verify that
also this kind of exoplanets could be detected.

We find that eccentricity does not really influence the detec-
tion efficiency; in fact, 100% of injected signals were recovered
after the filtering of all the selected algorithms. This result
was partially expected since simulated transits belonging to
this set represented all large planets, which are generally more
easily detectable. Besides the orbital periods and mid-transit
times, which are also the reference parameters for the recov-
ery of injected signals, the other recovered orbital and planetary
parameters are often not in agreement with the correspond-
ing injected values. This happens especially for planets in very
eccentric orbits, when the transit fit performed with the TLS
default template (with ecc = 0) does not perfectly match the
data-points. However, we verified that the correct orbital and
planetary parameters can be retrieved by performing a MCMC
fit. Moreover, in the VARLET case the algorithm reduces the
transit depth of large planets, as already noticed in the previous
tests. As a consequence, the SDE is decreased down to a maxi-
mum value of about 53, while the maximum SDE value of the
recovered planets is around 74 for the other algorithms.

5.4.2. Stellar rotation-planetary orbit commensurability

The second peculiar case is characterized by those planets which
orbit with a period exactly equal to their host star rotation period,
namely Porb,planet = Prot,star. Several stars are observed hosting
close exoplanets (mostly giant planets) rotating in an orbit with a
period equal to an integer multiple of the stellar rotation period
(Walker et al. 2008; Pagano et al. 2009; Szabó et al. 2012; Béky
et al. 2014). This is reflected in the photometric observations of
the host star which exhibits variations synchronous to the orbital
period of the corresponding planet. Studying exoplanetary sys-
tems with a stellar rotation-planetary orbit commensurability is
important in order to better understand how interactions between
the host star and the planet work. Nevertheless, it is challeng-
ing to find transiting exoplanets whose orbital period closely
matches the rotation period of the star or is commensurable to

Fig. 16. Illustration of transit shape variation at different orbital eccen-
tricities and for two different argument of pericenter: ω = 90o (top) and
ω = 230◦ (bottom).

it, since the transit signal feature may be indistinguishable from
the rotational variability of the host star.

This case was tested in this work only on the first quarter of
each LC of the active sample. We generated a library of 300 dif-
ferent template transits assuming a circular orbit with an impact
parameter b uniformly sampled in [0,1], and with a planet-to-
star radius randomly drawn in the range Rp/R⋆ ∈ [0.01–0.1],
dividing the set into three planetary types depending on Rp/R⋆,
as previously done (see Sect. 5): Jupiter-, Neptune-, and Earth-
size planets. Specifically, we produced 100 transit templates with
planet-to-star radius in [0.01−−0.03] (i.e., Earth-size), 100 with
Rp/R⋆ ∈ [0.03–0.05] (i.e., Neptune-size), and 100 with Rp/R⋆ ∈
[0.05–0.1] (i.e., Jupiter-size). For all these planets, we chose the
orbital period to be exactly equal to the rotation period of their
host star.

The percentage of recovered transits of different planetary
type is shown in Fig. 17. Since the simulated LCs of the active
sample have Prot ≤ 10 days, there are many injected transits
representing ultra-short-period planets, meaning a category
of exoplanets defined by having orbital period shorter than a
single day. This kind of planet is not so rare, they are about as
common as hot Jupiters. Indeed it is estimated that about one out
of 200 Sun-like stars has an ultra-short-period orbiting planet
(Winn et al. 2018).

From Fig. 17, it can be noticed that, generally, all the filtering
algorithms (except N&L) show a good performance for Jupiter-
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Fig. 17. Recovery fraction of injected transit signals of planets with
orbital period equal to the stellar rotation period in simulated PLATO
stellar LCs of a sample of active stars.

Fig. 18. Injection-recovery tests on the sample of active stars for plan-
etary transit signals with Porb,planet = Prot,star. Injected scaled planetary
radius as a function of the injected orbital period: blue dots are the
recovered planets, whereas red stars are the missed planets after filtering
the LCs with Notch & LOCoR.

and Neptune-size planets, with recovery efficiency higher than
98%, while in the case of Earth-size planet only biweight and
VARLET reach this threshold. Indeed, N&L under-performs
with respect to the other algorithms, recovering only 89.33%
of the total planets. The missed planets are those with an
orbital period shorter than 2 days, namely, those for which
also the LOCoR filtering method is used (as shown in Fig. 18),
where the scaled planetary radius as a function of the injected
orbital period is shown. This result was partially expected since
also Rizzuto et al. (2017, authors of this code) noticed that
the LOCoR algorithm, which is applied to the most rapidly
rotating stars (i.e., Prot ≤ 2 days), tends to fail in modeling the
photometric variability without affecting the in-transit points
when the planetary orbital period closely matches the stellar
rotation period.

The general-purpose algorithms perform very well for this
kind of planets, specifically, the biweight with a window-size of
1 day shows the highest detection efficiency, recovering up to
99% of injected transits of small planets. The Huber spline shows

Fig. 19. Boxplot of the SDE for the algorithms listed on the y-axis,
tested on the active sample with injected transit signals with Porb,planet =
Prot,star. Boxes cover the lower to upper quartiles; whiskers show the 10
and 90 percentiles. Dashed black lines indicate the mean SDE, whereas
red lines show the median. The black circles in the VARLET case rep-
resent data that extend beyond the whiskers.

a very high recovery efficiency as well, although it is lower than
that of VARLET.

Among the custom-built algorithms, VARLET shows the
highest recovery percentage, detecting 99.33% of the total
injected transits, and, in particular, 98% of the small planets, a
surprising result when compared to those detailed in Sect. 5.1.
Although this algorithm achieves a detection efficiency of 100%
for larger planets, it strongly reduces their transit depth, as
already observed, recovering them with a low SDE of about ∼54.
For larger planets similar performances are achieved by YSD,
where planets are recovered with a higher SDE (up to 90) than
VARLET, although some are missed.

In Fig. 19, the SDE boxplot summarizing the properties of
the SDE distributions is shown. With regards to the SDE values
of YSD and biweight (yellow and orange bars, respectively) they
show very similar results, even if the biweight median SDE is
slightly larger than the median of YSD. Nevertheless, the highest
median SDE is obtained by the Huber spline algorithm, which,
however exhibits slightly worse performances than the other two
algorithms.

6. Discussions and conclusions

The idea behind this work was inspired by the PLATO Working
Package (WP) 111 000 (Coordination of Tools for Lightcurve
Filtering), a sub-group of the WP 11 that deals with PLATO’s
Exoplanet Science. In preparation for this space mission, it
was necessary to determine which is the best-performing algo-
rithm for the filtering of stellar activity in PLATO LCs, for the
subsequent detection of planetary transit signals. The results pre-
sented in this work suggest that the best strategy to adopt when
analysing PLATO LCs should be as follows:

– Using the N&L algorithm to filter activity on LCs obtained
every three months (i.e., each time that a new quarter of data
is added to the previous time series), since it turns out to be
the best-performing algorithm on partial time series for both
the quiet and active sample. Alternatively, similar results can
be achieved by combining the Huber spline and the biweight
algorithms.

– After two years, at the end of the observations, that is, once
that the LCs of the targets are completed, using both Huber
spline and YSD to filter stellar activity on the entire LC (i.e.,
all the 8 quarters). Indeed, from this analysis, it appears
that the combination of these two algorithms succeeds in
detecting small planets that are missed by N&L on long
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temporal baselines, thus achieving the highest possible
efficiency.

– For stars with a rotation period shorter than 2 days24, it is
recommended to use the biweight algorithm on the entire
LCs, since it shows the highest recovery efficiency and
the highest SDE values in detecting small exoplanets with
an orbital period that closely matches the stellar rotation
period. This kind of transit signals are often missed by
N&L. We note that in this case, VARLET is the second
best-performing algorithm despite the lower average SDE, in
opposition to the general trend observed in the other cases.

Among the tested algorithms, the GPs showed poor perfor-
mances compared to the others. However, we would like to
emphasize that we investigated Gaussian Processes using only
a specific kernel (the Celerite rotation term implemented in
celerite2) and that the results could significantly change with
a different kernel, such as a Matern 3/2 term or a squared expo-
nential. It is well known that Gaussian processes tend to absorb
the transit signal, by modeling it as part of the photometric vari-
ability, and that this problem can be alleviated by simultaneously
fitting for the planetary transit. We also note that the biweight
algorithm can achieve better performances by fine-tuning the
window width to three times the transit duration, as found by
H19, although in our case, there is no prior knowledge of the
orbital parameters of the planet. In our analysis, we investigated
the biweight method using a fixed window of 1.0 day as the
best approximation given the expected maximum transit duration
of our injected transit models; however, possible performance
gains could be achieved with a different value or by applying an
adaptive window width.

In a recent paper, Nardiello et al. (2021) investigated the stel-
lar age versus planetary radius distribution by using the results of
different works on both open clusters and young stellar associa-
tions, with well-constrained stellar ages, containing stars hosting
both confirmed and candidate exoplanets. This distribution is
shown in Fig. 7 of Nardiello et al. (2021), where it is clearly vis-
ible that small exoplanets, namely, objects with Rp ≤ 4REarth, are
all concentrated at ages older than 100–200 Myr, whereas larger
planets exhibit a broader distribution. This concentration of
small objects around older stars might be due to either planetary
formation and evolution processes or to an observational bias,
since it has been particularly difficult to detect transits of Earth
and Super-Earth-size planets in the LC of young active stars
to date. Until a systematic analysis over all ranges of planetary
radius is performed, it is difficult to draw any theoretical conclu-
sion with certainty. To date, such an analysis cannot be executed
with current astrophysical instrumentation, but it may be possi-
ble thanks to PLATO in the coming years. Indeed, according to
the results of this work, it seems that when turning from TESS
to PLATO LCs of young active stars, the efficiency of the filter-
ing algorithms for the planetary transit detection increases from
about 40% up to nearly 99%. The injection-retrieval experiments
performed on PLATO simulated LCs have shown that PLATO
will be able to detect a large variety of exoplanets with many
different characteristics, in terms of size, orbital periods, and
eccentricity. In particular, they have demonstrated that detecting
Earth-size exoplanets with PLATO will be possible with both
general-purpose and custom-built filtering algorithms, even in
stellar LCs of young active stars. Therefore, in the forthcoming
years only PLATO can tell us if the lack of small exoplanets
around young stars is really related to an observational bias.

24 The stellar rotation period will be determined by the WP 12, which
is in charge of PLATO Stellar Science, prior to the transit search.

Even if the injection-recovery tests performed in this work
included several different kinds of planets, we have not explored
yet the entire parameter space of the observed exoplanets. Con-
sidering the distribution of planets detected by the transit tech-
nique, we are far from completion. Other peculiar cases that
could be tested and simulated in future works include, for exam-
ple, transits showing timing variations (TTV; Holman & Murray
2005; Nascimbeni et al. 2011; Malavolta et al. 2017), mono-
transits (Cooke et al. 2020), multi-planetary systems, or small
planets with orbital periods longer than 40 days, that is, tem-
perate terrestrial planets such as those around the dwarf star
TRAPPIST-1 (Gillon et al. 2017). Indeed, PLATO’s top-level
science requirements are focused on habitable planets, therefore
it would be interesting to test the algorithms also on more tem-
perate Earth-like planets. Efforts to compute the expected yield
of Earth analogs by PLATO are already ongoing, for example,
by Heller et al. (2022).

Furthermore, in future works, other filtering algorithms can
be tested in order to analyze their efficiency on PLATO LCs and
to compare the results with those presented in this paper. For
example, the Kepler Science Data Processing pipeline25 (Jenkins
et al. 2010) that is now publicly available, has not been tested on
active stars yet, but it has demonstrated very good results on quiet
stars, so it would be interesting to check its performance on the
active sample of PLATO LCs.

Finally, we note that for our experiment, we employed the
TLS algorithm only, assuming that a transit-like shape could
be more efficient than a box-like shape in detecting the planet.
However, the deformation of the transit feature introduced by a
filtering algorithm may invalidate this assumption (see Fig. 10).
Future works related to the planetary yield of PLATO should
consider multiple filtering algorithms as well as multiple detec-
tion methods. It is also worth noting that the full PLATO pipeline
is now under development, as well as extended simulations
including the effects of contaminants in the LC, while a com-
plete and robust assessment of the in-flight performance will be
available only after the launch. Although we could have removed
the long-term instrumental systematics; for instance, with the use
of a Gaussian Process, we preferred to use the LC as they are pro-
duced by the PLATO Solar-like Light-curve Simulator and test
the worst-case scenario in which an intermediate data product
has to be analyzed. As our analysis is purely differential, that is,
we are not trying to determine PLATO’s yield for a specific class
of planets, our results should hold as long as the comparison is
performed in a self-consistent way and the main properties of
the simulations resemble those of the final LCs. When simulated
final PLATO data products become available, we plan to per-
form new injection-retrieval tests, including both peculiar cases
not considered in this work, such as mono-transits or long-period
planets, as well as custom-built filtering algorithms that will be
presented to the community.
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Appendix A: Orbital and planetary parameters from
TLS and MCMC fit of LC #17

An example of a grazing transit when the TLS default tem-
plate does not correctly fit the data-points (and, consequently,
it fails to retrieve most of the orbital and planetary parameters)
is given in Fig. A.2. This transit represents a large planet with
a Rp/R⋆ ∼ 0.09, whereas the TLS recovered a planetary signal
corresponding to a much smaller body of only Rp/R⋆ ∼ 0.037,
as shown in Fig. A.2 (left), where the phase-folded data and the
residuals of the transit fit performed with TLS are shown in the
upper and lower panel, respectively. In Fig. A.1 the filtering per-
formed by YSD on the raw flux is shown. Even when performing
a fit with the TLS grazing template, the inferred scaled plane-
tary radius is 0.043, slightly improving with respect to the TLS
default template fit but still underestimating the injected value.
Therefore, a Markov chain Monte Carlo (MCMC) analysis has
been run in order to fit the correct transit model to the light
curve and thus achieve a more accurate planet characterization.
For this purpose, the PyORBIT26 code (Malavolta 2016) was used
to perform a MCMC analysis with 16 walkers and 500000 steps
(the burn-in is after 20000 steps), initialized with a normal dis-
tribution around stellar radius and density. Moreover, uniform
priors for the other parameters have been applied, such as the
period and the time of transit, centered on the values obtained
with TLS, within their boundaries. We further assumed, as pri-
ors on the limb darkening coefficients u1 and u2, a Gaussian
distribution centered on the values given by tables describing
the simulated LCs, provided by LSWG. The relevant physical
parameters obtained from the posterior samples of the best-fit
results are reported in Table A.1.

Uncertainties on the orbital and planetary parameters were
inferred from their a posteriori distributions obtained from the
MCMC analysis. The transit fit and its residuals are shown in
Fig. A.2 (right). It is possible to notice that the transit fit signif-
icantly improves by performing the MCMC analysis, recovering
parameter values consistent with the injected ones. This suggests
that the scaled planetary radius obtained with TLS must be con-
sidered carefully, since the real transit shape could significantly
differ from the TLS template, thus resulting in a systematic error
which gives an under-estimate of Rp/R⋆ – consequently affect-
ing also all the other parameters related to Rp/R⋆. On the other
hand, the estimates of the orbital period and the time of transit
recovered from the TLS transit search result to be very precise
and generally reliable.

Finally, we emphasize that the TLS algorithm has not been
designed for transit characterization, but only for transit detec-
tion. Indeed, an MCMC analysis generally needs to be performed
in order to characterize real planetary transits.

26 https://github.com/LucaMalavolta/PyORBIT

Table A.1: LC #17: Orbital and planetary parameters injected
and derived from the first quarter of PLATO simulated LC #17,
performing a transit fit with TLS and PyORBIT.

Parameter Injected value Recovered with Recovered with
TLS MCMC

Porb(days) 24.2286 24.222 ± 0.030 24.2284 ± 0.0002
T0 (days) 18.0648 18.0720 18.0649 ± 0.0002
b 0.975 0 (default) 0.97 +0.07

−0.02
Rp/R⋆ 0.090 0.037 0.089 +0.056

−0.012
ρ⋆(g cm−3) 2.68 - 2.68 +0.31

−0.46
u1 1.129 0.4804 (default) 1.129 ± 0.005
u2 -0.169 0.1867 (default) -0.170 ± 0.005
jitter - - (4.35 ± 0.06)·10−5

a/R⋆ 43.678 100.621 43.623 +1.65
−2.68

i (deg) 88.72 90 (default) 88.72 +0.07
−0.18

Rp(Rj) (a) - 0.4720 1.14 +0.83
−0.19

T14 (days)(b) - 0.0766 0.0864 +0.00010
−0.0009

a (AU) (a) - 0.6124 0.2665 ± 0.0004
e(c) 0 0 0

Notes:
(a) Rp(Rj) and a(AU) are computed assuming a stellar radius
of R⋆ = 1.311R⊙, derived from PARSEC (Bressan et al. 2012);
(b) T14: total transit duration, time between first and last contact;
(c) The orbit is assumed to be circular, hence the eccentricity is
fixed to 0.

Appendix B: Stellar parameters of the simulated
LCs

The simulated light curves of both the quiet and active sample
are provided as supplementary material. In Fig. B.1, B.2, B.3,
and B.4, a selection of four simulated LCs from the quiet sample,
before and after filtering is shown. A large planet (i.e., Rp/R⋆ ≥
0.05) is injected, as explained in Sect. 5. In these figures, six
panels are displayed, representing the filtering performed by the
selected algorithms. Specifically, in the left panels, we show the
raw flux with the superimposed model, whereas in the right
panels, we show the resulting filtered flux. Different colors are
adopted for the model produced by different algorithms. In par-
ticular: Yellow for N&L, red for YSD, fuchsia for GPs, violet for
VARLET, blue for biweight, and green for the Huber spline. As
a comparison, also a selection of 4 LCs from the active sample
is shown in Fig. B.5, B.6, B.7, and B.8. Moreover, the full set of
input parameters for the 100 simulated PLATO LCs of the quiet
and active sample is reported in Table B.1 and B.2, respectively.
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Fig. A.1: Filtering by YSD of the first quarter of simulated LC #17 of the quiet sample with injected a large planet. In blue, we show
the raw flux, in black the filtering model, and in red the corrected flux are shown, as in the legend.

Fig. A.2: Transit fit of the first quarter of LC #17 with a large injected planet. Top panel: Best fit of the transit light curve is represented
by the solid black line, whereas the blue points are the PLATO normalized data, as a function of the time from mid-transit. Bottom
panel: Residuals (O-C: observed data-calculated data) are shown as a function of the time from mid-transit. Left: Transit model
computed with TLS default template. Right: Transit model computed after an MCMC analysis.
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Fig. B.1: Filtering of quarter 7 of LC #2 of the quiet sample with
an injected large planet. The filtering models are overplotted in
different colors and the resulting detrended flux is shown on the
right panels.

Fig. B.2: Filtering of quarter 6 of LC #24 of the quiet sample
with an injected large planet. The filtering models are overplotted
in different colors and the resulting detrended flux is shown on
the right panels.

Fig. B.3: Filtering of quarter 5 of LC #30 of the quiet sample
with an injected large planet. The filtering models are overplotted
in different colors and the resulting detrended flux is shown on
the right panels.

Fig. B.4: Filtering of quarter 4 of LC #47 of the quiet sample with
an injected large planet. The filtering models are overplotted in
different colors and the resulting detrended flux is shown on the
right panels.
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Fig. B.5: Filtering of quarter 1 of LC #17 of the active sample
with an injected large planet. The filtering models are overplotted
in different colors and the resulting detrended flux is shown on
the right panels.

Fig. B.6: Filtering of quarter 5 of LC #29 of the active sample
with an injected large planet. The filtering models are overplotted
in different colors and the resulting detrended flux is shown on
the right panels.

Fig. B.7: Filtering of quarter 2 of LC #31 of the active sample
with an injected large planet. The filtering models are overplotted
in different colors and the resulting detrended flux is shown on
the right panels.

Fig. B.8: Filtering of quarter 1 of LC #97 of the active sample
with an injected large planet. The filtering models are overplotted
in different colors and the resulting detrended flux is shown on
the right panels.
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Table B.1: Full set of input parameters for the 100 simulated PLATO light curves of the quiet sample. As explained in Sect. 2, they
were produced with PSLS 1.2 by the LSWG, with activity signals from the LCs simulated in Aigrain et al. (2015), hereafter A15.

#LC ID in A15(a) V (mag) activity level(b) Prot (days) Teff (K) log(g) (dex) [Fe/H] ρ⋆ (g/cm3) u(c)
1 u(c)

2
0 913 9.75 0.32 31.26 5943.613 4.02 0.22 2.09 0.45 0.15
1 830 9.05 1.47 42.23 6648.757 4.32 -0.11 2.02 0.19 0.57
2 955 9.94 1.11 27.83 5512.195 4.50 0.05 2.72 1.51 -0.59
3 385 8.08 0.45 35.18 6648.757 4.32 -0.11 2.39 1.52 -0.58
4 285 9.74 0.71 50.19 5512.195 4.50 0.05 2.02 0.11 0.35
5 87 10.55 0.65 16.28 5943.613 4.02 0.22 0.83 0.03 0.54
6 720 8.39 0.59 56.31 5512.195 4.50 0.05 1.79 1.25 -0.49
7 294 8.63 0.6 46.68 6516.527 4.02 0.10 2.30 0.04 0.37
8 430 9.45 0.44 22.01 5943.613 4.02 0.22 1.45 1.85 -0.86
9 790 8.96 0.65 12.2 5512.195 4.50 0.05 1.35 0.11 0.04
10 581 8.83 0.35 1.65 6648.757 4.32 -0.11 2.76 0.34 0.27
11 377 10.71 0.69 18.83 5943.613 4.02 0.22 2.15 1.14 -0.20
12 117 9.57 1.86 10.4 5943.613 4.02 0.22 2.14 1.02 -0.25
13 132 10.28 0.48 38.53 5943.613 4.02 0.22 2.81 0.45 0.48
14 399 9.09 0.66 39.83 6580.811 3.79 -0.01 2.27 0.53 -0.22
15 479 8.98 0.51 12.44 5512.195 4.50 0.05 1.15 0.28 0.39
16 960 10.93 0.39 25.21 6648.757 4.32 -0.11 2.50 1.02 -0.49
17 731 10.52 1.48 29.05 6580.811 3.79 -0.01 2.69 1.13 -0.17
18 424 10.49 3.03 68.37 6580.811 3.79 -0.01 0.92 0.19 -0.03
19 137 10.06 0.7 24.17 6516.527 4.02 0.10 1.64 1.80 -0.87
20 49 10.58 0.79 36.6 6580.811 3.79 -0.01 2.63 0.63 0.20
21 611 8.66 2.76 27.53 6516.527 4.02 0.10 1.86 0.56 0.35
22 787 8.78 1.24 2.4 5512.195 4.50 0.05 1.87 0.20 0.01
23 170 10.97 1.29 49.17 5512.195 4.50 0.05 1.62 0.65 0.08
24 914 10.33 0.32 30.26 5943.613 4.02 0.22 1.47 0.34 0.43
25 406 8.97 0.8 17.16 5943.613 4.02 0.22 2.76 1.27 -0.33
26 954 9.36 0.36 19.8 5512.195 4.50 0.05 0.86 0.54 0.44
27 450 10.83 0.66 29.79 6580.811 3.79 -0.01 1.97 0.84 0.03
28 416 8.61 2.71 30.1 6580.811 3.79 -0.01 2.97 0.65 -0.05
29 986 9.15 1.66 36.73 5512.195 4.50 0.05 1.62 1.50 -0.67
30 442 9.58 2.48 18.56 5512.195 4.50 0.05 1.83 0.88 -0.42
31 594 8.42 0.89 13.04 6580.811 3.79 -0.01 2.09 1.54 -0.61
32 670 8.56 0.62 10.9 5943.613 4.02 0.22 2.60 0.11 0.26
33 13 9.42 2.63 46.51 5512.195 4.50 0.05 1.00 0.99 -0.23
34 112 8.77 0.39 13.57 5512.195 4.50 0.05 2.45 0.29 0.47
35 408 10.46 1.03 40.55 5943.613 4.02 0.22 2.79 0.35 0.56
36 628 10.28 1.17 1.65 6516.527 4.02 0.10 1.12 0.06 0.29
37 523 10.05 1.63 10.24 6516.527 4.02 0.10 1.63 0.20 0.11
38 554 10.03 1.32 32.32 6648.757 4.32 -0.11 2.06 1.43 -0.64
39 751 10.88 1.65 30.77 6516.527 4.02 0.10 1.76 1.22 -0.61
40 251 9.46 2.83 12.99 5943.613 4.02 0.22 1.83 0.28 -0.02
41 960 8.1 0.39 25.21 6516.527 4.02 0.10 1.26 0.08 0.83
42 277 8.7 1.0 1.37 6580.811 3.79 -0.01 1.97 1.17 -0.44
43 16 9.25 2.59 18.24 6580.811 3.79 -0.01 1.75 0.90 -0.19
44 446 9.71 0.4 19.16 6580.811 3.79 -0.01 2.12 0.36 0.53
45 191 9.63 1.0 21.54 6516.527 4.02 0.10 0.81 0.20 0.69
46 167 9.82 1.33 27.41 6580.811 3.79 -0.01 1.56 0.99 -0.02
47 784 8.24 3.06 17.49 6648.757 4.32 -0.11 2.10 1.75 -0.82
48 861 10.83 0.4 11.96 6516.527 4.02 0.10 2.84 0.66 0.28
49 384 9.32 0.95 18.85 5512.195 4.50 0.05 2.75 0.08 0.20
50 931 8.28 1.44 18.96 6580.811 3.79 -0.01 2.86 0.28 0.03
51 785 8.82 2.77 3.94 6580.811 3.79 -0.01 1.40 0.85 0.10
52 484 9.01 1.71 53.07 5512.195 4.50 0.05 3.00 0.01 0.37
53 237 9.55 2.99 43.95 6648.757 4.32 -0.11 2.76 0.38 -0.08
54 232 8.39 0.53 33.86 5943.613 4.02 0.22 1.38 0.08 0.49
55 516 9.5 0.95 19.21 5943.613 4.02 0.22 1.21 0.01 0.66
56 778 9.63 1.85 25.62 6516.527 4.02 0.10 2.84 0.97 -0.45
57 901 10.53 0.35 15.78 6648.757 4.32 -0.11 0.84 0.97 -0.10
58 202 10.9 0.68 46.41 5512.195 4.50 0.05 1.03 0.99 -0.48
59 755 8.01 2.98 3.33 6516.527 4.02 0.10 2.77 0.68 -0.03
60 644 9.77 1.08 17.12 5943.613 4.02 0.22 2.31 0.66 0.21
61 157 10.17 0.33 22.94 5943.613 4.02 0.22 1.09 1.45 -0.58
62 914 8.77 0.32 30.26 5512.195 4.50 0.05 1.78 0.42 -0.16
63 140 10.05 3.06 18.29 5512.195 4.50 0.05 2.94 0.43 0.17
64 350 10.11 0.72 16.83 5943.613 4.02 0.22 2.31 0.31 0.42
65 741 9.07 0.94 63.1 5512.195 4.50 0.05 0.97 0.25 0.04
66 960 9.77 0.39 25.21 5943.613 4.02 0.22 0.99 0.48 0.35
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#LC ID in A15(a) V (mag) activity level(b) Prot (days) Teff (K) log(g) (dex) [Fe/H] ρ⋆ (g/cm3) u(c)
1 u(c)

2
67 969 10.94 1.25 26.24 6648.757 4.32 -0.11 1.52 1.04 -0.26
68 532 10.52 1.35 13.63 6516.527 4.02 0.10 2.41 0.24 0.75
69 710 10.03 2.07 22.41 5512.195 4.50 0.05 1.34 0.18 0.45
70 448 9.84 0.71 45.65 5512.195 4.50 0.05 1.38 1.00 -0.22
71 996 10.37 2.22 5.72 6516.527 4.02 0.10 1.31 0.08 0.15
72 353 10.49 2.56 30.52 5512.195 4.50 0.05 1.75 0.20 0.46
73 200 9.2 1.39 11.68 6648.757 4.32 -0.11 2.47 0.10 0.54
74 300 10.83 0.52 26.01 6648.757 4.32 -0.11 1.14 0.85 0.01
75 456 9.14 0.55 30.74 6516.527 4.02 0.10 1.72 1.08 -0.39
76 403 10.95 1.15 38.55 6648.757 4.32 -0.11 2.10 0.22 0.52
77 253 10.25 2.04 39.75 5512.195 4.50 0.05 2.38 0.29 -0.04
78 516 10.71 0.95 19.21 6516.527 4.02 0.10 2.29 0.35 0.01
79 482 8.18 0.59 22.56 6580.811 3.79 -0.01 2.75 0.05 0.57
80 29 10.03 0.64 35.9 6580.811 3.79 -0.01 2.08 0.02 0.51
81 489 9.31 0.72 20.44 5943.613 4.02 0.22 2.22 0.42 0.07
82 257 8.96 0.91 36.94 6648.757 4.32 -0.11 2.24 0.66 0.06
83 321 10.17 2.43 23.2 5512.195 4.50 0.05 2.68 0.74 0.03
84 547 9.53 0.67 4.78 5512.195 4.50 0.05 2.00 0.44 0.19
85 109 10.52 0.52 37.27 5512.195 4.50 0.05 0.94 0.80 0.16
86 849 8.0 0.62 45.61 5512.195 4.50 0.05 1.17 0.26 0.71
87 989 10.85 0.6 24.41 6516.527 4.02 0.10 2.61 0.84 -0.33
88 502 9.21 0.5 44.51 6516.527 4.02 0.10 2.36 0.11 0.39
89 69 9.85 0.84 36.08 5943.613 4.02 0.22 1.27 0.10 0.89
90 668 9.29 0.52 52.15 5943.613 4.02 0.22 2.62 0.12 0.06
91 132 8.86 0.48 38.53 5512.195 4.50 0.05 2.02 0.03 0.68
92 698 10.18 1.54 16.09 5943.613 4.02 0.22 0.84 0.90 -0.05
93 248 8.65 1.89 21.07 6648.757 4.32 -0.11 1.96 0.35 0.33
94 550 8.5 0.36 52.63 6516.527 4.02 0.10 2.43 0.13 -0.03
95 716 9.37 0.93 12.26 6648.757 4.32 -0.11 2.86 0.44 0.21
96 684 8.76 2.39 31.97 6648.757 4.32 -0.11 1.06 0.55 0.14
97 213 9.36 1.73 11.22 6580.811 3.79 -0.01 1.62 0.58 -0.22
98 382 8.22 2.83 42.31 6648.757 4.32 -0.11 2.42 0.18 0.82
99 76 8.98 0.42 21.05 6580.811 3.79 -0.01 2.40 1.49 -0.68

Notes:
(a) "ID in A15" is the stellar identifier in A15.
(b) activity level is relative to the solar.
(c) u1 and u2 are the limb darkening coefficients, assuming a quadratic limb darkening law (Kopal 1950).
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Table B.2: Full set of input parameters for the 100 simulated
PLATO light curves of the active sample. The following param-
eters are assumed to be the same of the quiet sample: effective
temperature (Teff), gravity (log(g)), metallicity ([Fe/H]), density
(ρ⋆), and limb darkening parameters (u1 and u2).

# LC ID in A15 V (mag) activity level Prot (days)
0 421 9.75 2.39 6.81
1 908 9.05 0.40 6.41
2 0 9.94 0.39 1.51
3 277 8.08 1.00 1.37
4 573 9.74 1.65 2.80
5 364 10.55 1.05 5.66
6 889 8.39 0.44 7.34
7 459 8.63 1.71 2.17
8 742 9.45 1.12 9.42
9 320 8.96 0.88 4.66
10 797 8.83 0.42 8.27
11 742 10.71 1.12 9.42
12 514 9.57 0.55 7.97
13 547 10.28 0.67 4.78
14 676 9.09 0.96 2.28
15 418 8.98 0.35 3.83
16 150 10.93 1.15 1.94
17 706 10.52 2.57 3.67
18 581 10.49 0.35 1.65
19 609 10.06 2.13 2.69
20 67 10.58 0.93 1.32
21 547 8.66 0.67 4.78
22 742 8.78 1.12 9.42
23 266 10.97 2.04 4.51
24 393 10.33 0.46 9.89
25 118 8.97 1.46 2.27
26 436 9.36 0.92 7.61
27 891 10.83 0.44 8.56
28 36 8.61 0.82 2.04
29 996 9.15 2.22 5.72
30 233 9.58 0.35 4.49
31 719 8.42 2.30 2.44
32 787 8.56 1.24 2.40
33 750 9.42 0.45 5.61
34 638 8.77 0.33 8.53
35 649 10.46 0.41 7.75
36 728 10.28 0.61 7.86
37 390 10.05 2.40 3.17
38 36 10.03 0.82 2.04
39 750 10.88 0.45 5.61
40 984 9.46 0.48 2.50
41 547 8.10 0.67 4.78
42 996 8.70 2.22 5.72
43 854 9.25 1.45 1.24
44 755 9.71 2.98 3.33
45 638 9.63 0.33 8.53
46 638 9.82 0.33 8.53
47 23 8.24 0.42 3.31
48 609 10.83 2.13 2.69
49 872 9.32 0.51 6.87
50 233 8.28 0.35 4.49
51 785 8.82 2.77 3.94
52 956 9.01 0.59 7.45
53 1 9.55 0.45 1.87
54 854 8.39 1.45 1.24
55 961 9.50 0.50 8.29
56 369 9.63 0.51 9.22
57 277 10.53 1.00 1.37
58 753 10.90 0.78 1.90
59 785 8.01 2.77 3.94
60 996 9.77 2.22 5.72
61 390 10.17 2.40 3.17
62 744 8.77 2.69 3.12

# LC ID in A15 V (mag) activity level Prot (days)
63 427 10.05 1.52 2.68
64 753 10.11 0.78 1.90
65 909 9.07 0.32 1.58
66 943 9.77 0.36 6.72
67 150 10.94 1.15 1.94
68 889 10.52 0.44 7.34
69 678 10.03 0.81 4.94
70 116 9.84 1.18 9.19
71 67 10.37 0.93 1.32
72 940 10.49 2.90 6.58
73 678 9.20 0.81 4.94
74 266 10.83 2.04 4.51
75 854 9.14 1.45 1.24
76 597 10.95 2.09 5.89
77 649 10.25 0.41 7.75
78 649 10.71 0.41 7.75
79 673 8.18 0.69 2.13
80 181 10.03 0.49 2.08
81 118 9.31 1.46 2.27
82 277 8.96 1.00 1.37
83 436 10.17 0.92 7.61
84 797 9.53 0.42 8.27
85 841 10.52 2.41 8.17
86 956 8.00 0.59 7.45
87 706 10.85 2.57 3.67
88 823 9.21 0.33 3.22
89 622 9.85 0.92 8.08
90 445 9.29 0.89 6.29
91 118 8.86 1.46 2.27
92 943 10.18 0.36 6.72
93 940 8.65 2.90 6.58
94 785 8.50 2.77 3.94
95 823 9.37 0.33 3.22
96 67 8.76 0.93 1.32
97 563 9.36 2.64 1.56
98 909 8.22 0.32 1.58
99 984 8.98 0.48 2.50
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Appendix C: Comparison of running times

In Table C.1, we report the running times of the filtering algo-
rithms analyzed in this work, we computed over 20 PLATO
simulated LCs of the active sample encompassing one single
quarter (including 12486 data points). The analysis was car-
ried out on an outdated desktop machine hosting two Intel(R)
Xeon(R) E5-2620 at 2.00GHz CPUs for a total of 24 threads and
a 2TB hard drive spinning at 5400 RPM. We did not make any
attempt to optimize the (extremely heterogeneous) preexisting
implementations of the algorithms or to allow for multiprocess-
ing analysis if not already implemented, as this task was beyond
the scope of this work. For these reasons, we did not consider the
execution time a relevant factor in our comparisons.

Table C.1: Comparison of running times (in seconds) of the six
tested filtering algorithms for the first quarter of 20 PLATO light
curves of the active sample with an injected large planet.

#LC N&L YSD GPs VARLET Biweight (1.0 d) Huber spline
0 213.01 s 6.15 s 266.76 s 11.26 s 0.46 s 3.27 s
1 217.30 s 6.09 s 107.33 s 11.07 s 0.36 s 3.38 s
2 200.43 s 6.05 s 107.93 s 11.24 s 0.37 s 3.37 s
3 197.82 s 6.05 s 110.24 s 11.28 s 0.36 s 2.97 s
4 193.07 s 6.08 s 107.71 s 11.06 s 0.37 s 2.96 s
5 209.88 s 6.09 s 108.04 s 11.24 s 0.37 s 3.45 s
6 209.04 s 6.11 s 111.11 s 11.23 s 0.36 s 3.18 s
7 203.67 s 6.03 s 110.08 s 11.12 s 0.37 s 3.42 s
8 206.90 s 6.01 s 110.96 s 11.21 s 0.35 s 3.37 s
9 199.69 s 6.12 s 111.08 s 11.11 s 0.36 s 3.39 s
10 220.26 s 6.02 s 110.86 s 11.08 s 0.36 s 3.51 s
11 196.25 s 6.15 s 110.83 s 11.17 s 0.35 s 3.13 s
12 205.31 s 6.15 s 111.83 s 11.10 s 0.34 s 3.17 s
13 200.09 s 6.13 s 113.65 s 11.02 s 0.35 s 3.28 s
14 206.92 s 6.13 s 111.71 s 11.03 s 0.36 s 3.53 s
15 213.02 s 6.07 s 112.98 s 11.31 s 0.37 s 3.43 s
16 198.87 s 6.17 s 113.63 s 11.09 s 0.36 s 3.21 s
17 227.97 s 6.03 s 112.00 s 11.18 s 0.37 s 3.36 s
18 218.49 s 6.12 s 114.87 s 11.04 s 0.36 s 3.37 s
19 209.87 s 6.00 s 116.54 s 11.28 s 0.37 s 3.21 s

Mean 207.39 s 6.08 s 119.01 s 11.16 s 0.37 s 3.29 s
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