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Abstract—Semantic segmentation and object extraction from
aerial images have made tremendous progress along with the
evolution of deep learning neural network architectures. How-
ever, collecting high quality training data is still the bottleneck for
many applications, in terms of costs and limited visibility of small
objects. Conducting the training of artificial intelligence (AI)
with accessible and adapted official data reduces the effort and
allows to integrate independent in-situ knowledge as reference.
Focusing on a prominent road element as example, this work
presents a new approach for detecting curbstones from airborne
stereo images with the assistance of official surveying data. To
adapt the curbstone maps to the oblique view images, reference
information is removed in occluded regions. The refined reference
masks are fused with airborne imagery and integrated to the
training of a Swin transformer segmentation model. In the end,
the curbstone segments are transformed into vectors using an
advanced vectorization approach. The proposed approach is
tested over the city area of Brunswick, Germany.

Index Terms—curbstone, deep learning, segmentation, data
fusion, GIS

I. INTRODUCTION

The task of curbstone detection is highly relevant for traffic
applications [1], [2]. Curbstone is a typical companion of roads
in suburban and urban regions, marking the border of roads.
Curbstones are usually the connecting element between the
drive-able road and slightly elevated pavement next to it. Due
to the related height step, curbstones can be identified with
different sensor modals in cars, e.g. optical images and radar
images [3], [4]. Hence, identified curbstone lines can be used
as a connecting element between observations from above,
providing orientation and context, and information collected
in the car, e.g. to keep vehicles on track. There are further
relevant classes along roads to consider, e.g. fences or building
corners, but we focus on curbstone as a prominent road
element in this example.

Collecting enough reference data for training a deep learn-
ing neural network is critical in order to make the network
generalize enough. The effort for manually annotating image

data is costly in terms of time and money. Furthermore, the
annotation of images is limited by human interpretation and
spatial resolution of the images, which leads to errors. For
instance, annotating curbstones from airborne imagery is a
quite critical task, as in many cases, they are hardly visible.
3D street view images are necessary for the annotation, which
leads to high expenses and required time for the annotation
task. Fig. 1 displays two curbstone examples. Fig. 1 (a) is a
regular curbstone, which appears as a separation of main road
surface and the adjacent pavement (mainly sidewalks). Fig. 1
(b) is served as a base of a guardrail / fence along the road.
Without the street view images, it is generally challenging to
recognise the existence of curbstones.

Fig. 1. Areas with required curbstone annotation (examples marked with
yellow arrows). Top: curbstone next to a pedestrian way, bottom: curbstone
next to the fence on a bridge.



On the other hand, collected in-situ reference data are
more complete and spatially accurate. Exchanging manual
annotation with official reference data, as shown in this work,
saves time and integrates knowledge that is independent from
the image data to be analyzed. Besides strong advantages of
efficiency, accuracy and independence, there are also draw-
backs.

This paper addresses advantages and challenges of fusing
optical image data and independent reference data in the
context of an artificial intelligence (AI) task, with the specific
goal of identifying curbstones as road elements in aerial
images.

Specifically, a scenario in the context of relevant traffic
applications is considered. Image analysis is focused on the
detection of curbstone as road element. Image data are ac-
quired with an airborne optical sensor, operated by the Ger-
man Aerospace Center (DLR) [5]. Independent official data,
documenting the position of curbstone based on terrestrial
surveying, is integrated as reference in the training stage (ideal
output of deep learning method). Data fusion is conducted in
the training of the deep learning based segmentation model,
where sensor images move in as input to be processed and
known curbstone positions are compared with the output for
optimizing the processing parameters of the neural network.
To avoid label noise, necessary steps for appropriate pre-
processing of the reference data are implemented and ex-
plained.

II. DATA DESCRIPTION

The test region is located in Brunswick, Germany. In this
test region, we have acquired aerial images with the DLR 3K
camera system on 26th April 2019. The aerial images from two
side-looking cameras with each size 3744 × 5616 pixel have
together a field of view of 26° along track and 80° across track.
In combination with a flight height of 650m and focal length
of 50mm the ground sampling distance results in around
7cm. From altogether 1758 images covering the city area of
Brunswick, 80 images from representative areas are selected
and georeferenced using ground control points and onboard
measured global navigation satellite system (GNSS)/inertial
data. All data are feed in to a bundle adjustment which delivers
precise image positions and attitudes with an expected point
accuracy of better than 10cm.

The curbstone vector data are provided by the national sur-
veying agency in vector format as 2D polygons with attributes.
One important attribute in this context is the information about
the relative height of the curbstone separated in low and high.
Additionally, the absolute height information for each point is
derived from a digital terrain model, which is also provided
from the national surveying agency. We assume further that
low curbstones have the same height like the terrain whereas
high curbstone have a relative height of 10− 20cm .

Besides the time differences, as shown in Fig. 2, the curb-
stones are partly hidden by building rooftops, tree branches
or parked vehicle. The reference data in these regions will be
handled as outliers.

Fig. 2. Reference data for curbstone (yellow) mapped on aerial image.

III. METHODOLOGY

The methodology for curbstone identification consists of
three steps. The first part is the reference data preparation
by using height information and a ray-tracing approach. After
further dilation, the curbstone mask is employed as reference
for training single class object segmentation which allows
to extract curbstone pixels from the images. The third part
is concerned with the vectorization of curbstone segments,
resulting in curbstone polylines as vector data.

A. Curbstone Map Refinement

As illustrated in Section I, the curbstone masks are partly
occluded by high-level objects such as trees in the aerial im-
ages. In addition, due to distortions in the original oblique view
aerial images, curbstone reference data are often positioned
at the top of building roofs. Therefore, to decide whether a
curbstone pixel is visible in the aerial images, as shown in
Fig. 3, we separate curbstone pixels along the height axis into
high- and low-level objects. Afterward, we identify occluded
parts from the oblique view airborne images.

1) High- and low-level object detection: We firstly gen-
erate the digital surface model (DSM) from the 3K stereo
dataset. Image pre-orientation is performed by using open
source Shuttle Radar Topography Mission (SRTM) data. GPS
positions of the image projection centers are measured, precise
image orientation then accomplished by bundle adjustment
using automatically extracted Scale-Invariant Feature Trans-
form (SIFT) tie points [5]. Afterward, a 3D point cloud is
calculated using semi-global matching [6]–[8]. In the end, the
delta surface fill algorithm [9] is performed to close areas
without points with SRTM heights and generate the final DSM.

To obtain the absolute height of the landcover objects,
we generate the normalized DSM (nDSM), representing only
elevated objects in the scene, and digital terrain model (DTM)
using morphological top-hat reconstruction as mentioned in
[10]. With the height information from the nDSM, we category
pixels in the curbstone masks into high- and low-level objects.
The high-level curbstones are invisible in the images due to
occlusion at trees. They are therefore treated as outliers and
removed.



Fig. 3. Workflow of the curbstone vector data refinement.

Curbstone =

{
Objectshigh, if(nDSM >= 2m)

Objectslow, if(nDSM < 2m)

2) Occluded region detection: Visibility analysis is an
challenging topic in computer vision, many accelerated ray
tracing approaches are proposed [11]. Fig. 4 analyzes the
visibility of the objects around high buildings. As it shows,
the roof of the blue building will be at the location of the bold
yellow line in the oblique view image. The green line marks
the occluded region where reference data are not visible from
the sensor’s perspective. To avoid wrong labels with impact on
the training of the neural network, we generate the orthophoto
(orthographic perspective from above with geometry corre-
sponding to the reference data) of each single image in which
occluded regions are be presented as no-value pixels. Fig. 5
shows an example of curbstone polygons overlaid on an ortho
photo (occlusions result in white color). The red and yellow
color represent the low- and high- curbstones as explained in
Section II, respectively.

Fig. 4. Visibility analysis; occlusion happening due to building shape and
sensor perspective.

B. Segmentation
To preserve the original textures in RGB images, we use the

original images for curbstone detection. Therefore, the refined

Fig. 5. Example of the curbstone polygons overlaid on generated ortho image.
Occlusions due to sensor perspective lead to pixels with white color. Reference
data in that area are to be excluded from the training procedure.

curbstone masks are reprojected to each single image by using
the projection parameters derived from the bundle adjustment.
We dilate the polylines to a width of five pixels in order to
mitigate the impact of co-registration errors between the aerial
images and the curbstone reference masks.

As representative for state-of-the-art AI-based segmentation
methods, the Swin transformer [12] is used with self-attention
mechanisms as one of its key elements. As a new vision trans-
former, Swin Transformer serves as a general-purpose back-
bone for computer vision. It can produce a hierarchical feature
representation and has linear computational complexity with
respect to input image size. Furthermore, Swin Transformer
achieves the state-of-the-art performance on many semantic
segmentation datasets, significantly surpassing previous best
methods [13].

C. Vectorization

The vectorization step takes segmentation result as input and
converts pixel segments (raster data) of identified curbstones
into polygons (vector data). The conversion process is divided
into three stages:



1) A skeleton is extracted from the raster representation of
curbstones, resulting in a chain of pixels.

2) As not all pixels are necessary to define representative
polygons, key points (nodes) and edges are detected
from the pixel chain to represent the shape of curbstones.

3) A graph is built to connect the detected nodes and edges.

IV. EXPERIMENT

A. Experiment setup

Our experiments are conducted with the PyTorch deep
learning framework. We adopt Swin transformer from the mm-
segmentation framework [14] as our codebase and follow the
default augmentation. As a highly unbalanced segmentation,
we take the Dice loss [15] function to train the segmentation
model, and set the weight between curbstone and background
to (20:1). In our experiment, we use 70 images for training
and 10 images for testing. To this end, the refined curbstone
reference data is reprojected to the image geometry and
resampled to the same spatial resolution.

B. Results

Comparing the original curbstone reference data with the
aerial images, many polylines locate on building roof and tree
crowns. These lines are detected as outliers and removed for
refinement. Fig.6 shows one example of the original curbstone
maps for a scene in Brunswick, and the refined curbstone
masks which are used to train the Swin transformer.

Fig. 6. Comparison of the Curbstone masks before (a) and after (b) the
refinement step.

Fig. 7 presents the predicted curbstone probabilities for
two test images from the Brunswick data set. In Fig. 7 (a)
and (c), the probability maps are highlighted with yellow
color and overlaid on the original images. To visually analyze
the quality of the prediction result, the corrected reference
maps for curbstones of the same regions are displayed in
Fig 7 (b) and (d). We show two categories of curbstones
with yellow and read colors in the reference data, which
present high- and low-curbstones as described Section II. This

visual comparison shows that the segmentation results and
reference data correspond to each other in terms of position
and direction.

Moving one step further towards mapping of curbstone areas
with vector data, the red polylines in Fig. 8 (a) represent the
automatic vectorization result along a main road of Brunswick.
For evaluation, we compare it to the reference curbstone map
(blue color in Fig. 8 (b)). It can be seen that most of the
detected polylines correspond to the reference in terms of
position, whereas some curbstone vectors show deviations in
terms of direction.

V. DISCUSSION AND CONCLUSION

Neural networks dominate segmentation and object extrac-
tion tasks in many applications and research fields [16]–[18].
However, the performance largely depends on the quality
and the amount of training data, which is expensive and
challenging to generate [13]. Therefore, integration of openly
available official data (with known origin and quality) into au-
tomatic image analysis is one solution to reduce the effort and
benefit from independent observations. Representative for this
direction, we explore the possibility of the fusion of airborne
stereo imagery and official surveying data for the automatic
segmentation of curbstones along roads. Experimental results
show that the proposed workflow is able to solve the objective
and can be useful for mapping of large regions.

Integrating existing even open-source datasets saves time
and reduces costs. However it also requires pre-processing
to reduce label noise and fit the geometry of the data to be
analyzed, as was exemplified in this paper.

The curbstone segmentation and vectorization can be further
improved in various ways. Better performance can be expected
with advanced loss functions which are more sensitive to de-
tecting edges. In addition, contextual information can be more
considered to improve the direction of identified curbstone
polylines.
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