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Abstract—MITRE in the US and European stakeholders under the 
leadership of DLR have independently developed ontologies for 
representing the meaning of controller-pilot ATC (air traffic con-
trol) radio communications. With the intent of benefiting from 
each other’s work, and possibly harmonizing the two ontologies in 
the future, DLR and MITRE performed a structured comparison 
of the two ontologies. To explore how local differences in vocabu-
lary and ATC procedures influence ontology design, both parties 
exchanged the transcripts of 100 ATC radio transmissions from 
their terminal airspaces. This paper summarizes similarities and 
differences of the ontologies from MITRE and Europe. Overall, 
despite a 12% difference in word level representation, 80% of the 
instructions from both data sets have common semantic represen-
tation in both ontologies. 

Keywords—automatic speech recognition; natural language 
understanding; semantic interpretation; air traffic control; radio 
communications; intent representation; semantic ontology 

I.  INTRODUCTION 
Over the last few years, there have been striking advances in 

the use of automatic speech recognition (ASR) within the Air 
Traffic Management (ATM) domain. In Europe, as part of the 
Single European Sky ATM Research (SESAR) joint undertak-
ing, the German Aerospace Center (DLR) brought together sci-
entists, engineers, and air traffic control operators from civil, ac-
ademic, and commercial institutions. In the United States, in 
support of the Federal Aviation Administration (FAA), the 
MITRE Corporation Center for Advanced Aviation System De-
velopment (MITRE CAASD) has repeatedly demonstrated the 
value of large-scale post-operations analysis of radio communi-
cations to improve aviation safety and efficiency. The developed 
prototypes from DLR and MITRE demonstrated the efficacy of 
using automatic speech recognition and understanding to im-
prove controller efficiency, enhance controller automation inter-
actions, and reduce controller workload during real-time opera-
tions. One prototypic example application that MITRE [1] and 
DLR [2] developed independently was readback error detection, 
demonstrated on controller-pilot radio transmissions recorded in 
the control room. 

Both DLR and MITRE recognize that ASR is just the first 
step in utilizing the information in ATC speech. ASR is the pro-
cess of translating the audio signal containing speech to the clos-
est phonetic sequence of written text. There is still a sizable jump 

between automatically transcribing speech and understanding its 
meaning. For example, a perfect ASR system could accurately 
transcribe all the words in an Air Traffic Controller (ATCo) ra-
dio transmission, “speed bird twenty two sixty one one eight zero 
knots until five to tower eighteen nine bye”, but an assistant sys-
tem might still not be able to understand the meaning, or seman-
tics, of this transmission. Therefore, we shift to using the term 
Automatic Speech Recognition and Understanding (ASRU) 
henceforth to indicate both the automatic speech-to-text conver-
sion as well as the text-to-meaning interpretation. Robust text-
to-meaning interpretation is especially important if some of the 
spoken words are wrongly recognized, or if the speech contains 
disfluencies, local colloquialisms, or is dependent on external 
context. 

European ATM stakeholders led by DLR [3] and MITRE [4] 
have independently developed ATC language ontologies to sup-
port specific applications of ASRU. DLR and MITRE jointly 
analyzed similarities and differences in their ontological repre-
sentations of ATC radio communications to identify areas for 
improvement and harmonization towards a common ontology. 

A common ontology could enable better sharing and reuse 
of data, models, algorithms, and software between the US and 
Europe. Its implementation may be captured through a variety 
of techniques, e.g., rule-based parsing, machine learning mod-
els, human interpretation. A common ontology could enable 
more effective collaboration on the research and development of 
these techniques, foster discovery and sharing of best practices, 
and enable ATC application researchers to more effectively take 
advantage of Natural Language Processing (NLP) capabilities 
developed by other ATC researchers or those in other fields. Fur-
thermore, a common ontology could pave the way to a more 
global standard that would be needed when operational ASRU 
systems achieve widespread adoption at controller positions and 
in aircraft cockpits in the future. 

Manually generating semantic meaning labels on ATC tran-
scripts requires an understanding of ATC operations, airspace, 
and phraseology, and can be even more costly and complicated 
than just transcribing ATC audio recordings alone because of the 
required subject matter expertise. Although advances in NLP 
have reduced the amount of data required to train effective mod-
els, a sizable corpus of labeled data is still required to capture 
the breadth and complexity of ATC semantics. A common on-
tology could enable researchers to share and consolidate their 



respective labeled corpora to build more robust, advanced NLP 
models. Furthermore, ontologies play an instrumental role in 
disambiguating language for semantic analysis, i.e., language 
understanding [5]. As such they will be critical to the adoption 
of artificial intelligence technologies that require advanced lan-
guage understanding and linguistic capabilities. 

This paper summarizes related work in section II, then de-
fines our understanding of an ontology for ATC transmissions 
in section III. Section IV describes the effect of different rules 
for word level transcript. Section V presents our analysis of the 
similarities and differences between US and European ATC 
communications and language understanding representations, 
focusing on terminal airspace. We use representative transcripts 
of radio communications from the US and Europe to exemplify 
the concepts and structure that can be captured in a common on-
tology. In section VI, we discuss rationale for differences we 
discovered and how they affect future harmonization of a com-
mon ontology. Section VII describes opportunities for harmo-
nizing the European and MITRE ontologies. Section VIII pre-
sents our conclusions. 

II. RELATED WORK 
Voice communications are an essential part of ATC, because 

they are the primary means of communicating intention, situa-
tion awareness, and environmental context. Over the last decade, 
researchers have invested tremendous effort into advancing the 
accuracy and sophistication of in-domain ASR and Natural Lan-
guage Understanding (NLU) capabilities to enable human-ma-
chine teaming that improves aviation safety and efficiency. 

Early applications of ASR and NLU focused on simulation 
pilots for high-fidelity controller training simulators, because 
these applications presented controlled environments with well-
defined phraseology and a limited set of speakers [6], [7]. Later 
applications in lab settings expanded to simulation pilots for hu-
man-in-the-loop simulations in ATM research measuring work-
load [8]. With the adoption of electronic flight strips in ATC fa-
cilities, reference [9] applied ASRU to demonstrate the effec-
tiveness of speech assistants in reducing controller workload and 
improving efficiency. Prototypes demonstrating the use of 
ASRU to enhance safety in live operations also emerged. ASRU 
can support the detection of anomalous trajectories [10]. It can 
also support the detection of closed runway operations and 
wrong surface operations in the tower domain [11]. The efficacy 
of using ASRU to automatically detect readback discrepancies 
was analyzed in the US [1], and in Europe [2], [12]. A safety 
monitoring framework that applied ASR and deep learning to 
flight conformance monitoring and conflict detection has been 
proposed by [13]. The growing prevalence of unmanned aerial 
vehicles has also led to use cases in autonomous piloting. Text-
to-speech and NLP can enable communications between human 
controllers and autonomous artificial intelligence pilots as advo-
cated by [14]. Finally, the accuracy and robustness achieved by 
mature in-domain ASR has enabled mining of large-scale ATC 
communication recordings for post-operational analyses. Refer-
ence [4] measured approach procedure usage across the U.S. Na-
tional Airspace System using automatically transcribed radio 
communications in post analyses. Similarly, reference [15] as-
sessed the quantity of pilot weather reports delivered over the 

radio against the quantity of pilot reports manually filed during 
the same time frame. 

A common theme across all these applications is the use of a 
language understanding layer that distills and disambiguates se-
mantic meaning from the text transcripts generated by ASR. Alt-
hough there is variability in the semantic structures and concepts 
relevant to each use case, almost all extracted semantics relate 
to the representation of controller and pilot intent or situation 
awareness. Currently, research groups in US and Europe create 
and maintain their own semantic taxonomies or ontologies to de-
fine the elements and relationships that represent intentions or 
situational context relevant to their specific use cases. These el-
ements usually cover ATC concepts like aircraft callsigns, com-
mand types, command values in structured human-readable and 
machine-readable formats. 

The European ontology was defined by fourteen European 
partners from the ATM industry as well as by air navigation ser-
vice providers (ANSPs) funded by SESAR 2020 [16]. The on-
tology was refined through use by different projects, such as 
STARFiSH [17], “HMI Interaction Modes for Airport Tower” 
[18] [19] in the tower environment, “HMI Interaction modes for 
approach control” [20], and HAAWAII [21], which expanded 
the ontology to support pilot utterances [12].  

The MITRE ontology was developed and matured over sev-
eral years, with many contributing projects. Our earliest ontol-
ogy was created for the simulation pilot component of an en-
route ATCo trainer [6]. It was later expanded to incorporate 
tower domain phraseology for projects like the Closed Runway 
Operations Prevention Device [11]. More recently, to support 
the varied use cases required of our large-scale, post-processing 
capability [4], the ontology was expanded to cover most of the 
phraseology for standard operations documented in [22]. With 
each iteration we made it more robust and flexible to cover re-
gional phraseology variations across the operational domains, 
i.e., tower, terminal, and enroute airspace.  

III. WHAT WE MEAN BY ONTOLOGY 
Communications can be considered in terms of four levels of 

a computer interaction model consisting of lexical, syntactical, 
semantic, and conceptual levels [23]. 

The lexical level (or word level in this case) deals with words 
and distinguishes between synonyms – words with the same 
meaning that are spoken differently, such as nine vs. niner, and 
speed bird vs. speedbird. These words are the building blocks 
for ATC radio transmissions. This level of an ontology specifies 
the universe of words (i.e., the vocabulary) that may appear in a 
transmission and can have a large impact on ASR accuracy as 
well as on complexity of extracting meaning from text tran-
scripts. The vocabulary consists of general-purpose words such 
as climb, descend, cleared and contact, as well as names, such 
as those for airline callsigns, location identifiers, navigational 
aids, and procedure names. Ideally, these terms are static and can 
be defined as part of an official vocabulary list or dictionary in 
the ontology. However, there are situations with ad hoc intro-
duced words such as for special callsigns or waypoint names, 
e.g. “gndlf”, “yebuy”, “isace”. 



The syntactical level deals with grammar and distinguishes 
between similar meaning phrases that are worded differently. 
For example, the phrases runway two seven left cleared to land, 
and cleared to land two seven left are syntactically different be-
cause they have different word ordering, however they have the 
same meaning, which is to convey clearance to land on runway 
two seven left. 

The semantic representation deals with meaning despite dif-
ferences in vocabulary or grammar that do not affect the mean-
ing of the communication. For the ontology, we deal with the 
meaning associated with individual transmissions and allow the 
understanding of a transmission to include information not ex-
plicitly spoken but implied in the transmission. Both phrases 
from the syntactical level example may be mapped to an agreed 
form such as CTL RWY 27L or RW27L CLEARED_TO_LAND. 
Later in this paper, we discuss how these semantics are repre-
sented in the European and MITRE ontologies. 

The conceptual level deals with a higher level of under-
standing that goes beyond the semantic level. It captures the big-
ger picture, the gestalt, which can be bigger than the sum of the 
individual transmissions. An example of an event at the concep-
tual level is the concept of an aircraft being in the arrival phase 
of flight. For some applications, this is more important than 
knowing the particular set of altitude and speed reductions an 
ATCo issued. Another example is the speech associated with a 
go-around, which might involve a back-and-forth discussion be-
tween an ATCo and pilot followed by a series of ATCo instruc-
tions. The scope of this paper does not include this level of 
knowledge in the ontology. 

In this paper, we define ontology as the set of meaning enti-
ties, attributes, and relations required to represent the semantic 
interpretation of ATC communications. This means that the on-
tologies we discuss primarily address the lexical and semantic 
level described above. 

Sometimes a detail that seems to be relevant only at the lex-
ical or syntactic level is important for understanding the mean-
ing of the transmission. For example, ATCos delivering a trans-
fer of control (i.e., contact instruction) often terminate the trans-
mission with a farewell expression in the language of the airline 
that is transferring away, such as bon voyage to an Air France 
pilot or servus to an Austrian Airlines pilot. While these expres-
sions are not critical to the meaning of the transmission, they can 
help associate the transmission with the correct aircraft or help 
identify it as a transfer of control instruction when that infor-
mation cannot otherwise be extracted from the transcribed trans-
mission. For this reason, ontologies should cover any infor-
mation that could be relevant for the application, even as each 
step through the levels of representation from lexical to syntac-
tical to semantic to conceptual introduces abstractions that re-
move irrelevant information. 

An ideal ontology is independent of its software implemen-
tation and will support a wide range of downstream and end-user 
applications. 

IV. COMPARISON OF WORD LEVEL REPRESENTATION 
Both MITRE and DLR have designed and implemented 

ATC ontologies on the lexical and semantic levels to distill and 

convey meaning for speech-dependent applications and data 
analyses. In this section, we briefly discuss representation at the 
lexical level, i.e., at word, level. 

Consider this simple, artificial ATCo transmission: “eurow-
ings 1 3 9 alpha cleared I L S approach oh 8 right auf wieder-
sehen”. Suppose also that there is a sound suggesting speaker 
hesitation after the word “eurowings” and a cough after the word 
“approach”. Note that the words “auf wiedersehen” (meaning 
“good bye”) are in German, unlike the rest of the transmission, 
which is in English. The design of the lexical ontology can result 
in very different textual representations of this transmission’s 
content. 

The European ontology [24] for lexical representation tran-
scribes this transmission as: “euro wings [hes] one three nine 
alfa cleared ILS approach [spk] O eight right [NE German] auf 
wiedersehen [/NE]”. While MITRE’s word level ontology rep-
resents this transmission as: “eurowings uh one three niner alfa 
cleared i l s approach oh eight right auf wiedersehen“. There are 
obvious differences between the two representations in terms of 
both spoken words and non-speech sounds. 

Two obvious and important differences are how the two on-
tologies represent hyphenated words (e.g., eurowings versus 
euro wings) and initialisms (e.g., ILS versus i l s). For most trans-
missions a transformation from one interpretation to the other is 
possible without loss of information. However, sometimes, in-
formation can be lost (e.g., the European approach maps both 
“nine” and “niner” to “nine”) and it depends on the application 
whether this loss is harmful to understanding. 

Some representations make semantic interpretation easier. 
For example, suppose “speed bird one two alfa” was spoken in 
a transmission and a speech-to-text engine transcribed it as 
“speed one two zero alfa”, incorrectly deleting the word “bird” 
and injecting the word “zero”. Furthermore, suppose we know 
that aircraft with callsigns “BAW12A” and “AFR10A” are in 
the airspace at the time of the transmission. Then how these sym-
bolic callsigns are expanded into spoken form, i.e.,  

 “speed bird one two alfa”, “air france one zero alfa” or 

 “speedbird one two alfa”, “airfrance one zero alfa”,  

could affect the Levenshtein [25] word distance between the 
automatically recognized text and the expected correct tran-
script. In the latter expansion form, both contextual callsigns 
would have a word distance of two to the automatically tran-
scribed callsign. In contrast, the first expansion form distin-
guishes the callsign BAW12A as the more plausible spoken 
callsign, because it has a word distance of two from the automat-
ically transcribed callsign, which is smaller than the word dis-
tance of three between the callsign AFR10A and the automati-
cally transcribed callsign. 

Note that it is impossible to entirely separate the word-level 
ontology from the ASR software implementation. While more 
traditional ASR techniques depend on pronunciation dictionar-
ies that map pronunciations onto words, emerging end-to-end 
ASR technologies do not have explicit pronunciation dictionar-
ies. The primary motivation for using this new technology would 
be for better ASR accuracy, but it would also have the impact, 
good or bad, of transcribing words not in the ontology. 



V. COMPARISON OF SEMANTIC INTERPRETATION  
This section presents a comparison of the two ontologies at 

the semantic level (SL), using examples derived from typical 
ATCo and pilot transmissions. The following tables show radio 
communication transcripts in European word level format in the 
first gray table row. The rows SLUS and SLEU. present the se-
mantic interpretations in the MITRE ontology and European on-
tology, respectively. 

A. Transmissions with Callsign and Command Type 
The example in Table I shows a simple transmission contain-

ing a callsign and an approach procedure clearance. The aircraft 
callsign in the US semantic interpretation, SLUS, consists of up 
to four distinct elements: (i) airline code, (ii) tail or flight num-
ber, (iii) wake vortex category, such as heavy, and (iv) operation 
type such as commercial, general aviation (GA), military or air 
taxi aircraft. The European version SLEU condenses the callsign 
to a single string, as it would appear in a radar label of, e,g., a 
controller working position’s situation data display.  

TABLE I.  SEMANTIC INTERPRETATION OF SIMPLE TRANSMISSION 

november three mike victor cleared ILS runway two one approach 

SLUS Callsign: {N, 3MV, GA}, Cleared: {21, ILS} 
{“GACallsign”: {“TailNumber”: ”3MV”, “GAAircraftType”: “N”}, 
“Cleared”: {“Runway”: “21”, “ApproachType”: “ILS”}} 

SLEU N123MV (CLEARED ILS) 21 

{”csgn”:”N123MV”,”type”:”CLEARED”,”sndT”:”ILS”,”valu”:”21”} 

 
Beyond the difference in representation components, another 

difference between the SLEU and SLUS representations for 
callsign is the extent to which external (speech or nonspeech) 
context information is used to help interpret the callsign words 
explicitly spoken in the transmission. SLUS distinguishes text-
only interpretation and with-context interpretation to preserve 
lexical differences that could indicate misspoken callsigns or 
readback error and incorporates context information separately 
to infer the intended callsign at the semantic meaning level. SLEU 
applies context at the time of interpretation and expands the spo-
ken truncated callsign to the full callsign where applicable. It 
does not preserve lexical differences for callsigns. 

Both interpretations distinguish command type and parame-
ter values. In the European version, the type can be extended 
with a second optional type modifier (e.g., ILS for type 
CLEARED or ALTITUDE for type MAINTAIN). The US ver-
sion codes the additional type modifier information in parameter 
values. 

Table I shows the semantic interpretations in both a simpli-
fied human-readable format and a machine-readable JSON for-
mat with blue highlighted keywords for the succeeding values. 
For the remainder of the paper, we will use only the human-read-
able format for brevity. 

Table II shows an example with a wrongly spoken or misrec-
ognized callsign. As described earlier, SLUS first interprets the 
callsign as it appears in the transcript without context; then it 
generates a second callsign interpretation that corrects the lexi-
cal interpretation to an inferred interpretation with context 

information. SLEU ignores the wake vortex type and corrects the 
digit “5” in the callsign immediately to “4” based on context 
awareness that the closest matching callsign in the airspace is 
FDX482.  

TABLE II.  CALLSIGN CORRECTION AND UNIT INFERENCE 

fedex five eighty two heavy maintain four thousand three hundred 

SLUS Callsign: (FDX, 582, H, Commercial}, Maintain: {Feet, 
4300} 

SLEU FDX482 (MAINTAIN ALTITUDE) 4300 none 

 
In the altitude command representation, SLUS adds “Feet” as 

the inferred qualifying unit on the altitude based on the range of 
the number, whereas SLEU extracts unit as “none”, because the 
altitude unit is not lexically present.  

In both examples above, SLUS explicitly differentiates be-
tween derived or inferred content and lexically present content. 
Derived or inferred elements are highlighted in gray in the ex-
ample tables. GA in Table I is highlighted in gray to indicate that 
it is derived information because although the aircraft does not 
explicitly state that it is a general aviation aircraft, this infor-
mation can be inferred from the format of the callsign. Similarly, 
Feet in Table II is highlighted in gray because the altitude unit 
“Feet” is inferred.  

B. Complex ATCo Transmissions 
Table III shows a transmission with up to three different 

commands. At the semantic level. SLEU associates the callsign 
of the aircraft as an attribute to each instruction concept ex-
tracted from the transmission, whereas SLUS treats the callsign 
as a standalone concept. SLEU treats “HEADING” as the com-
mand type with an optional qualifier “RIGHT”, whereas SLUS 
encodes the command and its modifier as the command type, 
“TurnRight”, and the “Heading” as a qualifier on the parameter 
value.  

TABLE III.  TRANSMISSION WITH MULTIPLE COMMANDS 

good day american seven twenty six descend three thousand feet turn 
right heading three four zero 

SLUS Courtesy, Callsign: {AAL, 726, Commercial}, Descend: {3000, 
Feet}, TurnRight: {340, Heading} 

SLEU AAL726 GREETING, AAL726 DESCEND 3000 ft, AAL726 
HEADING 340 RIGHT 

 
Table IV shows a transmission without a callsign. SLEU ex-

plicitly states “none” for certain command types when expected 
interpretation slots cannot be populated, because they are not 
lexically present in the transcript – neither “left” nor “right” was 
specified on the heading vector. Both SLUS and SLEU derive the 
command type, shaded in gray in SLUS, from the spoken digits. 
Only heading values are prefixed with a leading zero allowing 
interpretation of “zero four zero” as a heading in this example. 
If the heading value had been “three four zero”, then the number 
could have been a speed, heading, or altitude and too ambiguous 
to interpret. The different handling of ambiguity in both ontolo-
gies will be discussed further in Figure. 4.  SLEU also contains a 
parameter value of “none” for command type CLEARED ILS to 
indicate that the runway is not lexically present. SLUS represents 



only what is lexically present and does not call out parameters 
that might have been intentionally omitted by the speaker. 

TABLE IV.  TRANSMISSION WITHOUT CALLSIGN 

zero four zero cleared ILS approach 

SLUS Fly: {040, Heading}, Cleared: {ILS} 

SLEU NO_CALLSIGN HEADING 040 none, NO_CALLSIGN 
(CLEARED ILS) none 

 
Table V shows a transmission which does not contain a com-

mand. SLEU explicitly states “NO_CONCEPT” as the command 
type. In SLEU, a “NO_CONCEPT” entry is only possible if the 
transmission contains no other modeled command. SLUS has no 
required interpretation slots and thus represents the callsign pre-
sent in the transcript as the only concept. 

TABLE V.  TRANSMISSION WITHOUT COMMMAND 

lufthansa one two charlie go ahead 

SLUS Callsign: {DLH, 12C, Commercial} 

SLEU DLH12C NO_CONCEPT 

 
C. ATCo Instructions with Conditions and Advisories 

Table VI shows how each ontology represents conditions in 
instructions. The limiting condition, “until established”, on the 
approach clearance is currently not covered in the SLUS ontology 
but could be added by qualifier-parameter pairs as described in 
subsection V.E. The position-based condition is currently ig-
nored by SLUS ontology. SLEU extracts the parameter qualifying 
unit “ft” because “feet” is lexically present in the transcript. 

TABLE VI.  ALTITUDE INSTRUCTION WITH LIMITING CONDITION 

maintain four thousand feet until established  

SLUS Maintain: {Feet, 4000} 

SLEU (MAINTAIN ALTITUDE) 4000 ft (UNTIL ESTABLISHED) 

 
SLEU has a predefined Condition component in its instruction 

ontology for the purpose of capturing conditions associated with 
any command type. SLUS has selective coverage for position-
based conditions by command type.  

Table VII shows two instructions with position-based condi-
tions. SLUS does not support the position-based conditions on 
approach procedure clearances because they are rarely used in 
the US, but does support them on altitude instructions, where 
they are used more in operations. 

TABLE VII.  INSTRUCTIONS WITH POSITION-BASED CONDITIONS 

at dart two you are cleared ILS runway two one left 

SLUS Cleared: {21L, ILS} 

SLEU (CLEARED ILS) 21L (WHEN PASSING DART2) 

leaving baggins descend and maintain one four thousand feet 

SLUS Descend: {14000, Feet, leaving, BGGNS} 

SLEU DESCEND 14000 ft (WHEN PASSING BGGNS) 

Table VIII shows examples of instructions with traffic advi-
sories and standalone situation awareness advisories (for brev-
ity, we deliberately omit the callsign in these examples). SLUS 
represents traffic and wake turbulence advisories as ontology 
concepts with various parameter values. SLEU condenses these 
into either “INFORMATION TRAFFIC” if they are about traffic 
or “INFORMATION MISCELLANEOUS” if they are not. 

TABLE VIII.  INSTRUCTIONS WITH ADVISORIES 

maintain two fifty knots for traffic 

SLUS Maintain: {Knots, 250, for traffic} 

SLEU (MAINTAIN SPEED) 250 kt, (INFORMATION TRAFFIC) none 

traffic twelve o'clock two miles same direction and let's see the helicopter 

SLUS Traffic: {Distance: 2, OClock: 12, TrafficType: helicopter} 

SLEU (INFORMATION TRAFFIC) HELICOPTER 
caution wake turbulence one zero miles in trail of a heavy boeing seven 
eighty seven we'll be going into this [unk] 
SLUS Wake: () 
SLEU (INFORMATION MISCELLANEOUS) 

. 

D. Pilot Readbacks, Reports, and Requests 
Table IX shows an example of a classic pilot readback to an 

ATCo instruction. Unlike previous examples, the transmission 
example originates from a pilot speaker. SLUS represents the de-
scend readback as an instruction concept but does not represent 
the callsign because it is too vague to interpret as a callsign with-
out a tail or flight number. SLEU represents the transmission with 
the labels NO_CALLSIGN and PILOT, to convey speaker in-
formation. 

TABLE IX.  PILOT TRANSMISSION WITH REASON 

descend flight level one seven zero silver speed  

SLUS Descend: {FL, 170} 

SLEU NO_CALLSIGN PILOT DESCEND 170 FL  

 

E. Formal Definition of Semantic Ontologies 
The above examples should illustrate some of the differences 

and commonalities between the US and European semantic in-
terpretation ontologies. In this subsection, we formally define 
the ontology structures and detail their differences and similari-
ties. 

1) MITRE Ontology 
Figure. 1 illustrates the ontology of SLUS in graph format. At 

the highest level, SLUS starts with a concept called Command 
Interpretation that represents an instruction, and it has a manda-
tory attribute called Command Type. The Command Type attrib-
ute declares the type of the instruction, such as an aircraft ma-
neuver like “climb” or a clearance to fly a procedure like 
“cleared ILS two one approach”. 



 
Figure. 1. Graphical representation of SLUS ontology. 

Each Command Interpretation can have zero or more child 
concepts called Qualifiers and Parameters. Both characterize, 
modify, and/or add values to the instruction. Qualifiers disam-
biguate or characterize Parameters by representing value units 
that are lexically present in the transcript, e.g., “flight level”, 
“heading”, “knots”, etc. Qualifiers can be nested to represent 
deeper, hierarchical relationships. For example, to represent the 
condition “until the dulles VOR”, the highest-level Qualifier 
would represent the preposition “until”, its child Qualifier would 
represent the waypoint type “VOR”, and its child Parameter 
would represent the name of the waypoint “dulles”. 

Parameters represent the value payloads for instructions that 
require a value, such as a heading (in degree) for a turn instruc-
tion or an altitude (in feet or flight level) for a climb instruction. 
A Parameter may exist without a Qualifier parent if the format 
of the Parameter value or the instruction’s command type makes 
the Parameter inherently unambiguous. For example, in the in-
struction “climb three four zero”, the command type “climb” al-
lows us to infer that an altitude must be represented in the Pa-
rameter and the value format in three digits allows us to infer 
that the altitude is in flight level even though a unit is not explic-
itly stated.  

Figure. 2 illustrates the SLUS ontology as a block diagram for 
comparison to the SLEU ontology in Figure. 3. 

 
Figure. 2. Block diagram of SLUS ontology, with the highest level 

concept in green, mandatory elements in red and pink, and optional 
elements in orange 

2) European Ontology 
Figure. 3 illustrates the ontology of SLEU. At its highest level, 

SLEU starts with a concept called Instruction, i.e., a command 

and optional conditions. A Command concept always has a Type 
attribute that declares the type of instruction represented. When 
no instruction is found in a transcript, a Command concept with 
Type “NO_CONCEPT” is created. Depending on the Type, one 
or more Values can follow. If a Value is available, the optional 
attributes Unit and Qualifier can follow. The optional Condition 
component can be present for any Type and more than one may 
be associated with one Command. 

 
Figure. 3. Block diagram of SLEU ontology, optional elements in or-
ange. The Type is mandatory and the Value(s) may also be manda-

tory, depending on the Type. 

Type can consist of a subtype as illustrated by the command 
CLEARED ILS. The Speaker attribute can have the values 
“ATCO” or “PILOT”. If not specified, it is ATCo or can be de-
rived from additional available context information. The Reason 
attribute is only relevant for pilot transmissions. Then the values 
“REQ=REQUEST”, “REP=REPORTING” or an empty value 
are possible. The empty value, i.e., the default value, in most 
cases contains a pilot’s readback. The Reason attribute is moti-
vated by the examples in Table IX. 

VI. ANALYSIS AND DISCUSSION 

A. General Similarities and Differences 
The European and MITRE ontologies largely represent the 

same information, but in different formats. The laws of aerody-
namics and fundamental principles of air traffic control are uni-
versal, thus the similarities. However, because they were devel-
oped separately, for different applications and different speaker 
populations, there are differences in the design details. These 
differences make exchanging training data or comparing analy-
sis results and findings between Europe and MITRE more diffi-
cult than they would be with a single, common ontology. 

1) Differences at the Word Level 
The differences that we observed at the word level can be 

summed up as fitting into the following categories: 

 Identical words with different spelling (e.g., Juliett ver-
sus Juliet) 

 How initialisms are handled (e.g., ILS versus i l s) 
 Words with similar meaning and different pronuncia-

tions and spelling (e.g., nine versus niner) 
 Words absent from one ontology or the other (e.g., the 

word “altimeter” is not included in the European ontol-
ogy and the corresponding ICAO term “QNH” is absent 
from the MITRE ontology) 

 Whether speech disfluencies and coarticulation are cap-
tured at the word level (e.g., cleartalan versus cleared 
to land) 

 Words not represented in the US English language (e.g., 
the German word wiederhören for a farewell) 



These differences can have an impact on ASR speed and ac-
curacy performance, and on the end user or downstream soft-
ware application. 

2) Similarities and Differences at the Semantic Level 
Both SLUS and SLEU define highest order semantic concepts 

at the instruction level, but with small variations in the designs. 
Both have concepts that equate to commands like clearance to 
fly an approach procedure, climb or descend to an altitude, and 
turn to a heading. One noticeable difference at this semantic 
level is that SLEU attaches the callsign as an attribute to each in-
struction while SLUS represents the callsign as another highest 
order concept on par with an instruction. 

Another aspect with respect to callsign representation was al-
ready highlighted in the previous section in Table II. SLEU rep-
resents one final interpretation generated from context-aware 
parse whereas SLUS distinguishes the interpretation of the text 
alone and interpretation of the text with context as distinct and 
separate representations. Thus, SLUS models the layers of inter-
pretation, preserving whether the callsign is lexically present in 
its entirety in the transcript, partially present in the transcript, or 
corrected as part of context-aware comparison.  

In contrast, SLEU seeks to represent the ground truth intention 
of the speaker and associates a plausibility value to each inter-
preted concept and attribute, i.e., callsign, type, value, etc., that 
ranges between 0 and 1.0 to indicate the representation’s prox-
imity to the truth. Thus, the plausibility value of a corrected or 
derived callsign is always less than 1.0. This is because the target 
output of the European ontology is the ground truth intention 
expected from a perfect speech-to-text system and a perfect se-
mantic interpreter, respectively. If the final combined output 
from speech to text and semantic interpretation does not repre-
sent the speaker’s intention, then that is considered an error. For 
example, if the ATCo said “speed bird one two alfa”, then the 
ground truth intention representation should be BAW12A. If, 
however, the ATCo correctly said, “speed bird one two alfa”, 
but “speed bird one three alfa” is recognized, the target ground 
truth representation is BAW12A. Anything else is deemed an 
error, regardless of whether the error comes from the speech-to-
text or the semantic interpretation. If “speed bird one three alfa” 
is said and recognized, but only BAW12A is in the air, the output 
should still be BAW12A under the rules of SLEU. We do not 
know, what was said, but only what was recognized. 

The ontologies also differ in how they represent absence of 
an instruction or callsign. SLUS represents what is present, but 
not what is absent, e.g., when a transcript does not contain a 
callsign, then a callsign concept does not appear in the semantic 
interpretation. In contrast, SLEU states explicitly when the 
callsign is absent with a unique attribute value 
“NO_CALLSIGN” attached to each instruction. Furthermore, 
SLEU also notes, when no instructions were detected in the whole 
transcript with the unique command type “NO_CONCEPT”. 

As shown in the examples in Tables VI, VII and in Figure. 3 
SLEU has a dedicated ontology element for the conditional com-
ponent of any instruction, whereas SLUS currently allows custom 
conditions that are curated to fit specific command types. Con-
ditions in SLEU are initiated by a conditional keyword from the 

finite set of conjunctions “WHEN”, “UNTIL”, “AFTER”, and 
“IF”, and followed by the requirement. 

The ontologies also differ in how they represent ambiguity. 
SLUS imposes requirements on what Parameters must be present 
for an instruction to be unambiguous and represented as a Com-
mand Interpretation. The Parameters required differ by Com-
mand Type. For example, the standalone transcript “maintain 
three four zero” would be considered ambiguous and not evalu-
ate to a Command Interpretation under SLUS, because the Pa-
rameter Type of the instruction cannot be disambiguated to a 
speed in knots, an altitude flight level, or a vector heading. 

SLEU generates all possible semantic interpretations on the 
ambiguous text and assigns a plausibility value below 1.0 to 
each. In the example, “maintain three four zero”, SLEU would 
generate three possible semantic interpretations, (1) 
“MAINTAIN HEADING 340 none”, (2) “MAINTAIN 
ALTITUDE 340 none”, and (3) “MAINTAIN SPEED 340 none”, 
and then use aircraft and dialogue context to associate a plausi-
bility value. Figure. 4 shows the ambiguous output of this exam-
ple in JSON format. 

 
Figure. 4. SLEU JSON structure for ambiguous instructions. 

The differences that we observed at the semantic level can 
be summed up as fitting into the following categories: 

 How callsigns are represented. 

 The extent of and representation of inferred and implied 
information in the semantic representations. 

 The level of detail represented for advisory-type trans-
missions (e.g., traffic advisories, pilot call-in status in-
formation). 

 Which less-common ATCo instructions have defined 
representations. 

 How ambiguous ATCo instructions are represented. 



B. Quantifying the Differences 
MITRE and DLR exchanged 100 transmissions, with tran-

scripts and semantic annotations, from the terminal area of a ma-
jor US airport and a European hub airport. The US transcripts 
and annotations were manually transformed into the European 
format and vice versa. We assessed the word level differences 
on the transcript level in terms of Levenshtein distance [25]. 

Out of 1554 total words in the transmissions; 187 of them 
required modification to adhere to the other party’s ontology, 
i.e., 12.0% of words were modified through substitution (89), 
deletion (35), and insertion (63). We omit uppercase to lower-
case transformation from this measure. Figure 5 shows a sample 
transcript and its transformation. 

 
Figure. 5. Word Level Difference between European (first row) and 
US (second row) transcripts resulting in a Levenshtein distance of 5. 

In the following bullets we list and explain some of the most 
often occurring cases from the 200 transcripts that are repre-
sented differently at the word level in the MITRE and European 
ontologies as sketched in subsection VI.A: 

 Separation and combination of words/letters 
o ”ILS” vs. “i l s” (23 times) 
o “southwest” etc. vs. “south west” etc. (19 times) 

 Different spellings 
o “nine” vs. “niner” (9 times) 
o “juliett” vs. “juliet” (6 times) 
o “OK” vs. “okay” (4 times) 

 Special sounds and their notation 
o “[unk]” vs. no transcription (7 times) 
o “[hes]” vs. “uh” (7 times) 

Table X shows the overlap of commands represented by the 
MITRE and European ontologies at the semantic level, after an-
alyzing 121 ATCo instructions from Europe and 120 from the 
US. DESCEND in SLEU corresponds to Descend in SLUS. 
MAINTAIN ALTITUDE with Value and Unit in SLEU corre-
sponds to Maintain with the US Qualifier feet or FL. The 
Cleared ILS Z in SLUS now corresponds to CLEARED ILSZ in 
SLEU. GREETING and FAREWELL in SLEU correspond to 
Courtesy in SLUS. SLUS's Radar Service Terminated is currently 
not modelled in SLEU. In contrast, SLUS does not model SLEU’s 
CALL_ YOU_BACK command type. 

TABLE X.  PERCENTAGE OVERLAP BASED ON ANALYSIS OF 241 ATCO 
INSTRUCTIONS  

Type of Semantic Comparison Overlap of 
Concepts 

Concept present in both ontologies, before adaptation 82% 
Corresponding concept after small adjustments 95% 
Achievable match with existing model structures  100% 

 

C. Operations Related Differences 

1) Different Units for Air Pressure 
In the US, ATC Handbook [22] specifies the rules and guide-

lines for air traffic radio communications, including vocabulary, 
phraseology, and meaning. In Europe, a set of ICAO documents 
including [26] serve the same purpose. 

One difference between FAA and ICAO communications is 
how altimeter information is conveyed between an ATCo and 
pilot. Europe uses hectopascals (hPa) for the QNH, whereas the 
US uses inches of mercury. For example, 29.92 inches of mer-
cury correspond to 1013.21 hPa. The European ontology was not 
able to semantically model “burbank altimeter is two nine nine 
two”, whereas the US ontology does not have a representation 
for “swanwick QNH zero nine nine five”. Note that both ontol-
ogies could be expanded to handle both the FAA and ICAO ver-
sions. The authors were pleasantly surprised that they did not 
observe more differences of this type already in the 200 tran-
scripts. Table XI shows a possible ontology enhancement for 
both versions e.g., SLUS introduces two new Qualifiers that ex-
plicitly state the air pressure units. Both ontologies do not model 
the leading zero. 

TABLE XI.  EXTENSION OF BOTH ONTOLOGIES TO MODEL AIR PRESSURE 

burbank altimeter is two nine nine two 

SLUS Altimeter:{2992, inHg} 

SLEU (INFORMATION ALTIMETER) 2992 

swanwick QNH zero nine nine five 

SLUS Altimeter:{995, hPa} 

SLEU (INFORMATION QNH) 995 

 

2) Special ILS approach procedures 
US hub airports can have different ILS approach procedures 

for the same runway. The word sequences “cleared ILS zulu 
runway one nine approach” and “cleared ILS yankee runway 
one nine approach” would be mapped in European ontology to 
(CLEARED ILS) RW19. This is a loss of information, because 
zulu or yankee is an additional identifier suffix added to ap-
proach plates to distinguish them from other approaches of the 
same type to the same runway. Table XII shows a suggestion of 
how to extend SLEU. Version 1 creates a new second type for the 
command type CLEARED. Version 2a creates a new runway 
name, version 2b allows two values for the CLEARED ILS com-
mand type, and version 2c (looks the same as version 2b) inter-
prets the Z as a qualifier instead of a further value. Which one to 
use in the future is not yet decided, but it shows that SLEU is 
flexible enough to adapt to special cases in US airspace. 

TABLE XII.  EXTENSION OF ONTOLOGY TO MODEL ILS ZULU ETC. 

cleared ILS zulu runway one nine approach 

SLUS Cleared:{19, ILS, Z}, 

SLEU (CLEARED ILSZ) RW19 or 
(CLEARED ILS) RW19Z or (CLEARED ILS) (RW19 Z) 



VII. OPPORTUNITIES FOR HARMONIZATION  
The authors recognize that significant resources would be 

needed to migrate to a new common ontology that harmonizes 
the two different ontologies presented in the previous sections. 
Thus, instead, we explore smaller steps that could bring the Eu-
ropean and MITRE ontologies closer without major disruption 
to either’s downstream applications. 

One easy win is to merge concepts where each ontology han-
dles non-overlapping variations. For example, MITRE can add 
the barometric altimeter setting (QNH) in hectopascals to its ex-
isting Altimeter concept while Europe can add the equivalent in 
inches of mercury to its QNH concept. Another relatively easy 
way to bring the two ontologies closer together is to coordinate 
future enhancements before we add them to our ontologies and 
implement them in software.  

We expect that new downstream applications will dictate 
new needs for additional semantic information to be added to the 
ontology. In particular, we expect to add specification of addi-
tional types and values to accommodate rarer instructions and 
different airspaces. As new use cases arose for MITRE’s large-
scale post-processing capability, new data types were added to 
support analysis of missed approaches, drone activity, airspace 
excursion advisories, and other less common events. We antici-
pate that there will be a need to expand the ATC ontologies to 
support end-users’ future needs. Here are some specific areas 
where we think close coordination of ontology enhancements 
could be beneficial: 

 New ATM procedures, such as Interval Management 

 New rules for the incorporation of Unmanned Aerial 
Systems (i.e., drones) into the airspace 

 Accommodation of commercial space launches 

The European ontology supports two types of information 
that are not currently supported in the MITRE ontology: 

 n-best interpretations of transmissions 

 Confidence scores 

Ideally, MITRE can incorporate these in a way that is com-
patible with the European implementation. 

 The scopes of both ontologies are targeted to the infor-
mation in single transmissions. MITRE has found that many 
analyses depend on bringing together information from the en-
tire ATCo-pilot dialogue and linking this dialogue with non-
speech information, such as that found in flight plans and sur-
veillance data. There are many design decisions involved in rep-
resenting entire dialogues. This is an opportunity for European 
ATM stakeholders, MITRE, and others to collaborate. 

Both Europe and MITRE have attempted to design ontolo-
gies that are independent of ASR and NLP algorithms and im-
plementations. Ideally, the ontology and semantic data represen-
tation model are independent of ASRU implementation. How-
ever, emerging deep-learning neural network (DLNN) ARSU 
implementations may introduce new challenges to our current 
approach to defining ontology. For example, a DLNN end-to-
end ASR outputs letters, not words, allowing for sequences of 
letters (i.e., words) that are not pre-defined in an ontology 

lexicon. The ontology would need to be adapted for the chal-
lenges emerging that NLP technologies introduce. By working 
together, Europe and MITRE can avoid having their ontologies 
diverge further while benefiting from our combined expertise. 

VIII. CONCLUSIONS 
Our comparative analysis of the two ontologies showed that 

both serve similar purposes and capture largely the same infor-
mation.  

Analyzing differences at the word level, we identified a 12% 
difference in word representations, i.e., out of 1,554 words in the 
US data, 187 were represented differently in the SLEU word level 
ontology. These differences primarily result from alternate con-
ventions for hyphenated words, initialisms, and spelling. Alt-
hough transformation is easily possible in most cases without 
loss of information, this is a first candidate for future harmoni-
zation between US and European ontologies. 

At the semantic level, we identified information that is cur-
rently represented in one ontology but not in the other. These 
omissions fit into two categories: those that were absent, and 
those that were included at a higher-level of detail in one than 
the other. We also discovered that Europe and MITRE have dif-
ferent conventions for when external information is incorporated 
into the semantic representation. This is primarily noticeable 
with aircraft callsigns. 

With this in mind, we concluded that it is possible to convert 
between the European and MITRE semantic representations of 
transmissions, but sometimes with a loss of information and 
sometimes with differences in the underlying meaning. We also 
concluded that an easy opportunity for harmonization is to coor-
dinate on definitions as new ATM procedures and end user ap-
plications dictate the need for additions to the ontologies.  

Future efforts supporting global harmonization for safety 
could create a global standard for controller-pilot voice commu-
nication ontology. Our ultimate goal is still to facilitate seamless 
sharing and reuse of data, models, algorithms, and software be-
tween the US and Europe so that our pooled resources will lead 
to ever more advanced applications of artificial intelligence and 
sophisticated human-machine teaming in the ATC domain.  
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