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A B S T R A C T

The family of Double–Double (DD) laminates is in focus of the present study. Well established buckling-cases for
rectangular plates are examined in this article from a DD perspective. It is shown that the DD conventions allow
for beneficial reformulation of the available equations, which leads to drastic simplification. It is demonstrated
that the lightest DD laminate can directly be determined for a specified buckling load. Permutation discussions
and the corresponding evaluation of thousands of discrete solutions, known for conventional laminates, become
obsolete. The developed DD-buckling equations are further examined from an invariant-based perspective using
𝐼𝑄 = 𝑄11+𝑄22+𝑄66+𝑄12 which reveals the important role of the 3

√

1∕𝐼𝑄 term for minimum-laminate-thickness
calculations.
1. Introduction

Composite structures usually face multiple dimensioning load cases.
Stress engineers face the task of identifying a compromise stacking
sequence, which can sustain all those individual loads. Comprehensive
literature is available for the topic of laminate optimization, which is
excellently discussed in recent review articles [1,2]. Identifying the best
stacking sequence and assuring laminate zone compatibility is still a
challenging task.

Minimizing the structural weight is a common goal in laminate de-
sign, which is in focus of this article as well. Thus, the thinnest laminate
which can sustain a required buckling load limit is denoted as the
’best’ laminate hereafter. DD laminates are candidates to replace today’s
conventional laminates, as the DD family promises advantageous by
simplifying design, manufacturing and optimization. The present article
is focused on buckling analysis of simply supported, rectangular DD
laminates, to demonstrate how the DD concept leads to simplification.

1.1. Problem statement

The bending properties of composite laminates, made from unidirec-
tionally (UD) reinforced plies, depend on the stacking sequence. Thus,
the coefficients 𝐷11, 𝐷12, 𝐷22, 𝐷66 of the laminate’s bending-stiffness
matrix [𝐷] play a key-role within buckling-analysis equations. Those
𝐷𝑖𝑗 -coefficients depend on additional parameters, such as the plies’
Engineering constants, the individual ply orientations, the number of

E-mail address: erik.kappel@dlr.de.
1 As the sole author Erik Kappel is responsible for the whole content.
2 Additional so called ’stacking-rules’ are pursued in practice which are not further discussed here for conciseness.

plies in the laminate and the position and order of the individual plies
within the whole stack. Engineers need to reduce the design space
in order to handle millions of conceivable permutations. In aerospace
practice, ply orientations are often limited to the group of (0◦, 45◦,
−45◦, 90◦) plies. This family is denoted as QUAD hereafter, which is
in line with the related literature on Double–Double (DD) laminates
later discussed. For QUAD laminates symmetry is usually required to
eliminate unwanted coupling effects.2

The simple case of a symmetric, quasi-isotropic (QI) laminate is
used hereafter to briefly outline the challenge related to permutations.
In a QI laminate, composed of (0◦, 45◦, −45◦, 90◦) plies, the specific
ply-orientation fractions are identical (25%, 25%, 25%, 25%). Conceivable
laminate thicknesses are 𝑛 ⋅ 8 ⋅ 𝑡𝑝𝑙𝑦. The thinnest laminate in this group
has eight plies (𝑛 = 1). Due to the symmetry constraint one finds 4! = 24
conceivable stacking sequences. The next thicker laminate in the group
has 16 plies (𝑛 = 2) with 4!2 = 576 conceivable stackings. A 32-ply
laminate (𝑛 = 4) already leads to 4!4 = 331776 conceivable stackings
within the focused laminate family. An easy and elegant procedure for
determining the best QUAD laminate does not exist, in particular when
multiple adjacent laminate zones need to be compatible.

Within the present article it is demonstrated how the particular
laminate architecture of the hereafter introduced family of Double–
Double laminates leads to drastic simplifications for the process of
determining the ‘best’ laminate for buckling-relevant load case.
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Fig. 1. Locally thickened DD panel with varying BB repeats from 𝑟 = 3 to 𝑟 = 10 and 1:10, 1:20 ramps, which demonstrates how DD promotes patch design.
1.2. Double–Double family of laminates

Double–Double (DD) laminates have been proposed as a promis-
ing alternative to conventional, stacking-rule-conform QUAD laminates
[3–5]. A DD laminate consists of balanced four-ply building blocks
(BB), for example [±𝜑,±𝜓], which are repeated 𝑟-times to meet struc-
tural requirements. Thus, a DD-laminate is written as [±𝜑,±𝜓]𝑟𝑇 . 𝜑
and 𝜓 are individual ply angles and 𝑟 denotes the number of repeats.
The index 𝑇 denotes ‘total’, which follows the convention of Nettles [6,
p.27] and the aforementioned publications in DD context.

Asymmetric laminates show complex distortions after manufactur-
ing and when laminates are subjected by mechanical and thermal
loads. DD laminates are asymmetric, as BBs are simply stacked on each
other without considering any symmetry requirement. However, this
particular stacking convention leads to the fact that critical coupling
terms in the [𝐵] matrix and the [𝐷] matrix diminish proportional to 1∕𝑟
and 1∕𝑟2, respectively [5]. This effect is denoted as homogenization, as
the ABD-matrix population approaches a state known from isotropic
materials, in particular [𝐵] → [0] and 𝐷16, 𝐷26 → 0. Manufacturing-
induced distortions, as warping or twist, as well as coupling-driven
distortions under mechanical loads diminish as a consequence, even
though the DD laminate is asymmetric (See chapter 3 in [4]).

The laminate architecture of the DD-concept promotes local-patch
applications, as building blocks can be added locally without the neces-
sity so re-shuffle plies, to keep symmetry or to reconsider the laminate
stacking sequences in the adjacent zones.

This creates an independence of the individual laminate zones.
Those differ only in the number of BB repeats in a DD laminates. Thus,
optimization simplifies to finding the best two ply angles for the BB and
the local number of repeats. Stacking-sequence discussions diminish.

While in QUAD laminates, drop-offs of single plies are usually
distributed within the laminate stack in through-thickness direction
(denoted as staggering), the DD concept features full BB drop-offs
(four plies at once). Those BB drop-offs can be located on the parts’
outer surfaces preferably, as this helps to avoid laminate-internal resin
pockets [7].3

Fig. 1 shows a DD-panel example, with a local thickening from 𝑟 = 3
(12 plies) to 𝑟 = 10 (40 plies, 5 mm) [4] repeats. Drop-offs are located

3 Laminate-internal drop-offs are conceivable as well. But the effect of
larger resin pockets needs further investigation and mechanical tests.
2

on the bag-side surface of the part, which creates a resin-pocket free
inner laminate architecture and a minimum out-of-plane ply undulation
(see bottom picture in Fig. 1).

Hereafter it is outlined how the unique DD laminate architec-
ture simplifies design for laminates prone to buckling. The process
of determining minimum-weight laminates for a given load case is
demonstrated.

1.3. DD key basics

Classical laminate theory (CLT) is usually used in composite de-
sign [6,8–12]. A normalized formulation is used in context of DD by
Tsai and Melo [7, p.164], which can be deduced from CLT.
(
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. (1)

Therein, the normalized matrices are defined as

[𝐴∗] = 1
𝑡𝑙𝑎𝑚

⋅ [𝐴] , [𝐵∗] = 2
𝑡2𝑙𝑎𝑚

⋅ [𝐵] , [𝐷∗] = 12
𝑡3𝑙𝑎𝑚

⋅ [𝐷] , (2)

and stresses and strains are {𝜎0} = 1
𝑡𝑙𝑎𝑚

⋅ {𝑁}, {𝜎𝑓 } = 6
𝑡2𝑙𝑎𝑚

{𝑀} and

{𝜀𝑓 } = 𝑡𝑙𝑎𝑚
2 {𝜘}. This thickness normalization leads to the fact that

all matrices have the same unit of type [Pa]. Hereafter, established
buckling relations are examined from the DD perspective, while those
equations are updated using the normalized relations presented above.

1.4. Buckling reference scenario

The parametric buckling case of a simply-supported rectangular
plate under uni- or bi-axial compression is examined in this article
as the reference. It can be found in Reddy [12, p.273] in the utilized
parametric form. Fig. 2 shows the scenario, with its parameters.

The critical buckling load for this scenario can be determined using
(see Reddy [12, p.273])

𝑁0(𝑚, 𝑛) =
𝐷11𝛼4 + 2

(

𝐷12 + 2𝐷66
)

𝛼2𝛽2 +𝐷22𝛽4 with

𝛼2 + 𝑘 ⋅ 𝛽2
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Fig. 2. Scenario in line with Reddy [12, p.273].

𝛼 = 𝑚𝜋
𝑎
, 𝛽 = 𝑛𝜋

𝑏
, 𝑘 =

𝑁𝑦

𝑁𝑥

𝑚 and 𝑛 denote half waves along x- and 𝑦-direction, respectively.
Parameters 𝑎 and 𝑏 define the panel dimensions. Introducing the terms
𝛼, 𝛽, 𝑘 and rearranging leads to

𝑁0(𝑚, 𝑛) =
𝜋2

𝑎2
⋅
𝐷11𝑚4 + 2

(

𝐷12 + 2𝐷66
)

𝑚2𝑛2
(

𝑎2

𝑏2

)

+𝐷22𝑛4
(

𝑎4

𝑏4

)

𝑚2 + 𝑘 ⋅ 𝑛2
(

𝑎2
𝑏2

) . (3)

For a square plate, with (𝑏 = 𝑎), Eq. (3) simplifies to

𝑁0(𝑚, 𝑛) =
𝜋2

𝑎2
⋅
𝐷11𝑚4 + 2

(

𝐷12 + 2𝐷66
)

𝑚2𝑛2 +𝐷22𝑛4

𝑚2 + 𝑘 ⋅ 𝑛2
. (4)

When identical edge-loads are considered (𝑘 = 𝑁𝑦
𝑁𝑥

= 1) in addition, the
relation further simplifies to

𝑁0(𝑚, 𝑛) =
𝜋2

𝑎2
⋅
𝐷11𝑚4 + 2

(

𝐷12 + 2𝐷66
)

𝑚2𝑛2 +𝐷22𝑛4

𝑚2 + 𝑛2
, (5)

which is identical to the demo case in the Milhandbook [13, page 5–
75]4. The 𝐷𝑖𝑗 -factors in these equations are the [𝐷]-matrix coefficients
(see Eq. (1)). The 𝐷𝑖𝑗 are stacking-dependent [13, page 5–77] and
determined with 3𝐷𝑖𝑗 =

∑𝑛
𝑘=1[�̄�]𝑘(𝑧

3
𝑘 − 𝑧

3
𝑘−1). Numerous discrete stack-

ings must be examined for QUAD to identify the optimum with the
corresponding laminate thickness.

The particular architecture of the DD laminate family promises a
simplification of the problem. The DD conventions allow for a re-
formulation of the aforementioned equations, from a [𝐷]-based to a
[𝐷∗]-based formulation. This introduces the important 𝑟-parameter, as
it is shown hereafter. Based on the thickness-normalized matrix

[𝐷∗] = 12
𝑡3𝑙𝑎𝑚

⋅ [𝐷] = 12
(𝑟 ⋅ 4 ⋅ 𝑡𝑝𝑙𝑦)3

⋅ [𝐷] = 3
16 ⋅ 𝑡3𝑝𝑙𝑦 ⋅ 𝑟

3
⋅ [𝐷] , (6)

one finds

𝐷𝑖𝑗 =
16
3

⋅ 𝑡3𝑝𝑙𝑦 ⋅ 𝑟
3 ⋅𝐷∗

𝑖𝑗 . (7)

Introducing the specific coefficients yields the DD-specific relation

𝑁0(𝑚, 𝑛) =
𝜋2

𝑎2
⋅
16 ⋅ 𝑡3𝑝𝑙𝑦

3
⋅𝑟3 ⋅

𝐷∗
11𝑚

4 + 2
(

𝐷∗
12 + 2𝐷∗

66
)

𝑚2𝑛2 +𝐷∗
22𝑛

4

𝑚2 + 𝑛2
. (8)

It is worth commenting here that one finds [𝐴∗] = [𝐷∗] for in-
creasing 𝑟, while even for small 𝑟-values all relevant matrix entries
considered in Eq. (8) are equal (𝐷∗

11 = 𝐴∗
11, 𝐷

∗
22 = 𝐴∗

22, 𝐷
∗
12 = 𝐴∗

12,

4 Note that Eq. 5.7.1.6(a) is erroneous in the numerator’s second term in
Milhandbook. (𝑏∕𝑎)4 shall be (𝑏∕𝑎)2.
3

Table 1
Buckling cases −𝑚, 𝑛 denote half waves in x- and y-direction, respectively.
Cases 1 2 3 4 5 6 7 8 9

𝑚 1 1 1 2 2 2 3 3 3

𝑛 1 2 3 1 2 3 1 2 3

𝐷∗
66 = 𝐴∗

66). Thus, one can rewrite the critical buckling load in terms of
[𝐴∗] as

𝑁0(𝑚, 𝑛) =
𝜋2

𝑎2
⋅
16 ⋅ 𝑡3𝑝𝑙𝑦

3
⋅ 𝑟3 ⋅

𝐴∗
11𝑚

4 + 2
(

𝐴∗
12 + 2𝐴∗

66
)

𝑚2𝑛2 + 𝐴∗
22𝑛

4

𝑚2 + 𝑛2
. (9)

which directly indicate the stacking independence, as [𝐴∗] is stacking
independent.

When proceeding from Eq. (8), one can directly solve for 𝑟

𝑟 = 3

√

√

√

√𝑁0(𝑚, 𝑛) ⋅

(

3𝑎2

16𝜋2𝑡3𝑝𝑙𝑦
⋅

𝑚2 + 𝑛2

𝐷∗
11𝑚

4 + 2
(

𝐷∗
12 + 2𝐷∗

66
)

𝑚2𝑛2 +𝐷∗
22𝑛

4

)

(10)

which leads to the minimum number of BB-repeats that is mandatory to
sustain the buckling load 𝑁0. Note, that BB repeats 𝑟 are proportional
to the laminate thickness, as 𝑡𝑙𝑎𝑚 = 4 ⋅ 𝑡𝑝𝑙𝑦 ⋅ 𝑟. From Eq. (10), 𝑟 is
usually determined as a float number. Thus, it is important to highlight
that 𝑟 needs to be rounded to the next higher integer value, due
to manufacturing convention, saying that the DD laminate concept
requires four-ply BBs.

Eq. (10) can be separated in different independent pre-factors and
constants. One find a load pre-factor 3

√

𝑁0(𝑚, 𝑛), a constant 3
√

3
16𝜋2 , a

composite-material-specific pre-factor 1
𝑡𝑝𝑙𝑦

and a plate-dimension pre-

factor 3
√

𝑎2 (only valid for square plates), as shown hereafter.

𝑟 = 1
𝑡𝑝𝑙𝑦

3
√

𝑁0(𝑚, 𝑛) ⋅
3

√

3
16𝜋2

⋅
3√

𝑎2

⋅ 3

√

√

√

√

(

𝑚2 + 𝑛2

𝐷∗
11𝑚

4 + 2
(

𝐷∗
12 + 2𝐷∗

66
)

𝑚2𝑛2 +𝐷∗
22𝑛

4

)

(11)

All pre-factors neither depend on stacking nor on ply orientations.
The last term in Eq. (11) 3

√

𝑓 (𝑚, 𝑛, [𝐷∗]) is particularly important. It
depends on the ply angles 𝜑 and 𝜓 of the BB, the material’s Engineering
constants (in [𝑄] used for [𝐷∗]) and the buckling form, described by
half-waves 𝑚 and 𝑛 in x- and 𝑦-direction, respectively. It also depends
on the panel dimension for non-square (𝑎 ≠ 𝑏) configurations.

The minimum 𝑟-value refers directly to the minimum laminate
thickness required to sustain the considered buckling load. Thus, the
minimum 𝑟-value relates to the maximum weight-specific buckling
resistance of the regarded panel.

𝑟 ∝ 3

√

√

√

√

(

𝑚2 + 𝑛2

𝐷∗
11𝑚

4 + 2
(

𝐷∗
12 + 2𝐷∗

66
)

𝑚2𝑛2 +𝐷∗
22𝑛

4

)

(12)

However, the buckling form is essential. Nine buckling cases are ex-
amined hereafter in detail to describe the process of finding the best
laminate. Those cases are summarized in Table 1.

All analyses presented hereafter refer to unidirectional IM7/977-3
prepreg material (Data from Tsai [14, p.5]). The relevant Engineering
constants and the ply thickness are provided in Table 2.

The corresponding ply-stiffness matrix [𝑄] and the invariants 𝐼𝑄 =
𝑄11 +𝑄22 +𝑄66 +𝑄12 and ‘Trace’ 𝑇 𝑟 = 𝑄11 +𝑄22 + 2𝑄66 (used later in
Section 4) are given by

[𝑄] =
⎡

⎢

⎢

⎣

192.225 3.501 0
3.501 10.004 0
0 0 7.790

⎤

⎥

⎥

⎦

GPa →

{

𝐼𝑄 = 213.52 GPa
𝑇 𝑟 = 217.81 GPa

.

(13)



Composites Part C: Open Access 11 (2023) 100364E. Kappel
Fig. 3. Term from Eq. (12) and dominating 𝑚 − 𝑛 case for the maximum 𝑟 (see Eq. (12)).
Table 2
IM7/977-3 Material data
from Tsai [14, p.5].
𝐸1 191.0 GPa

𝐸2 9.94 GPa

𝜈12 0.35

𝐺12 7.79 GPa

𝑡𝑝𝑙𝑦 0.125 mm

2. Procedure

The determination process of the best DD-laminate configuration
is presented hereafter. A DD laminate can be described by its two
independent ply angles 𝜑 and 𝜓 in the building block. Thus, simple 2D
visualization becomes possible, as demonstrated in laminate optimiza-
tion context in [5]. Full-degree ply angles are considered hereafter for
𝜑 and 𝜓 , which is linked to realistic, feasible manufacturing precision
for prepreg ply layup (hand layup and also automated processes such
as automated fiber placement (AFP)). Thus, 912 = 8281 ply-angle
combinations are considered for all nine half-wave combinations.5 As
the term’s magnitude refers to the number of repeats, its minimum
leads to the thinnest laminate which can sustain the considered load.

The minimum of all nine half-wave-case-specific calculations is
stored for each angle combination 𝜑,𝜓 , as each minimum refers to the
laminate with the highest buckling resistance, which is equivalent to
the lowest repeat value.

The square panel case, with identical edge loads (𝑘 = 1), is further
examined hereafter. Fig. 3(a) shows the determined result analysis of
the term given in Eq. (12). The global minimum is marked by a white
cross, which is found at 𝜑 = 𝜓 = 45◦ for the considered square plate.

Fig. 3(b) shows, that half-wave case 1 (see Table 1) is the dominat-
ing case for the problem at hand. This is not surprising, as the term (see
Eq. (12)) is of kind 𝑥−1∕3, while 𝑥 is growing rapidly for increasing 𝑚
and 𝑛 values. The analysis indicates (see Fig. 3(a)) the particular role of
[±45◦,±45◦] configuration, for which the minimum laminate thickness
is needed.

2.1. General formulation

The general form, for rectangular DD-laminate plates (𝑎 ≠ 𝑏),
subjected to uni- or inhomogeneous bi-axial compression (𝑘 ∈ R), is

5 Further reduction is possible due to plot symmetry, but not mandatory
calculation times of seconds are short already.
4

given by

𝑟 =
3
√

𝑁0(𝑚, 𝑛)
𝑡𝑝𝑙𝑦

⋅ 3

√

3
16𝜋2

⋅
3√

𝑎2

⋅ 3

√

√

√

√

√

√

𝑚2 + 𝑘 ⋅ 𝑛2
(

𝑎2
𝑏2

)

𝐷∗
11𝑚

4 + 2
(

𝐷∗
12 + 2𝐷∗

66
)

𝑚2𝑛2
(

𝑎2
𝑏2

)

+𝐷∗
22𝑛

4
(

𝑎4
𝑏4

) . (14)

It is used in the following.

3. Application

A square-shaped panel with homogeneous edge loads and a rectan-
gular panel with inhomogeneous edge loads are examined hereafter for
sake of verification. Analytic calculations are compared to correspond-
ing finite-element (FE) results, determined with ABAQUS CAE, to verify
the propagated direct determination procedure for the ‘best’ laminate.
The FE-model specs are outlined in Appendix.

3.1. Case 1: Square panel, homogeneous edge loads

The square-panel case is defined by the parameters 𝑎 = 𝑏 = 1 m,
𝑁𝑐𝑟 = 𝑁𝑥 = 𝑁𝑦 = 0.05 MN/m, 𝑘 = 𝑁𝑦∕𝑁𝑥 = 1 and 𝑚, 𝑛 in range [1, 2, 3],
𝑡𝑝𝑙𝑦 = 0.125 mm. The parametric Eq. (15)

𝑁0(𝑚, 𝑛) = 𝜋2 ⋅
𝐷11𝑚4

(

1
𝑎4

)

+ 2
(

𝐷12 + 2𝐷66
)

𝑚2𝑛2
(

1
𝑎2𝑏2

)

+𝐷22𝑛4
(

1
𝑏4

)

𝑚2
(

1
𝑎2

)

+ 𝑘 ⋅ 𝑛2
(

1
𝑏2

)

(15)

simplifies for the DD scenario to

𝑁0(𝑚, 𝑛) =
𝜋2

𝑎2
⋅
16 ⋅ 𝑟3 ⋅ 𝑡3𝑝𝑙𝑦

3
⋅
𝐷∗

11𝑚
4 + 2

(

𝐷∗
12 + 2𝐷∗

66
)

𝑚2𝑛2 +𝐷∗
22𝑛

4

𝑚2 + 𝑛2
(16)

and solving for 𝑟 yields

𝑟 = 3

√

√

√

√𝑁0(𝑚, 𝑛) ⋅
3𝑎2

16𝜋2𝑡3𝑝𝑙𝑦
⋅

(

𝑚2 + 𝑛2

𝐷∗
11𝑚

4 + 2
(

𝐷∗
12 + 2𝐷∗

66
)

𝑚2𝑛2 +𝐷∗
22𝑛

4

)

.

(17)

Inserting the parameters from above yields

𝑟 = 36.84 3

√

𝑁
𝑚

⋅ 2134.6 3

√

1
𝑚

⋅
3

√

𝑚2

𝑁
3
√

𝑓 ([𝐷∗], 𝑚, 𝑛)

= 78638.6 ⋅ 3
√

𝑓 ([𝐷∗], 𝑚, 𝑛) . (18)
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Table 3
Particular solutions: red-dot, green-dot and the [45, −45, 45, −45] case.
DD layup [𝐷∗] in N/mm2 3

√

𝑓 ([𝐷∗], 1, 1) Result

[𝐷∗
[45,−45, 45,−45]] ’best case’

⎡

⎢

⎢

⎣

60098.0 44518.0 0.0
44518.0 60098.0 0.0

0.0 0.0 48806.6

⎤

⎥

⎥

⎦

1.704E−4 𝑟 = 13.40, 14 repeats
needed, 56 plies

[𝐷∗
[10,−10, 40,−40]] ’red dot case’

⎡

⎢

⎢

⎣

129544.4 25790.3 −8667.8
25790.3 28107.0 −13294.0
−8667.8 −13294.0 30078.9

⎤

⎥

⎥

⎦

1.824E−4 𝑟 = 14.34, 15 repeats
needed, 60 plies

[𝐷∗
[30,−30, 40,−40]] ’green dot case’

⎡

⎢

⎢

⎣

96531.8 38772.5 2000.7
38772.5 35155.1 −6059.1
2000.7 −6059.1 43061.2

⎤

⎥

⎥

⎦

1.737E−4 𝑟 = 13.66, 14 repeats
needed, 56 plies
Fig. 4. Minimum number of repeats in DD to sustain the regarded bi-axial compression load. The highest minimum needs to be considered for the laminate. Thus, 𝑟 = 14 is
determined, leading to a 56-ply laminate, with 7 mm thickness.
Fig. 4 visualizes results of the evaluation graphically. For sake of
clarity it is focuses on the first six half-wave cases defined in Table 1.
Both the red-dot and the green-dot are particular solutions, which are
used hereafter to demonstrate the plots’ application.

Table 3 lists data for three discrete DD configurations to evaluate
the 3

√

𝑓 ([𝐷∗], 𝑚, 𝑛) term. 𝑟 is usually determined in ∈ R with Eq. (17).
However, a manufactured DD laminate shall only feature full BBs per
definition. Therefore, above plots show iso-lines, which refer to those
integer values. Each plot shows a buckling-case (m,n combination)
specific minimum number of repeats. Thus, the highest of those minima
determines the minimum laminate thickness. The evaluation of the best
case and the green-dot case leads to r-values of 13.xx. Both need to
be rounded up to 14, which is the next higher BB count. The red-dot
laminate requires 𝑟 = 15 to sustain the load, as the dot-position is
located between 14 and 15 in Fig. 4(a).

Fig. 5 summarizes the result of the preceding analysis. For the
case at hand a group of laminates, all with 14 repeats (56 plies), can
sustain the load, which is illustrated by the green area. From a weight
perspective, all those laminates are equally good. The Margin of safety
5

Fig. 5. Feasible region (green area) for minimum-weight laminates with 14 repeats
(56 plies, 𝑡𝑙𝑎𝑚 = 7 mm).
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Fig. 6. Eigenvalues for [±30◦ ,±40◦]14𝑇 laminate is ascending order. Title-block and legend information can be scaled up in the pdf version of the article.
Table 4
Buckling cases −𝑚, 𝑛 denote half waves in x- and y-direction, respectively.
𝑚 1 1 2 1 2 1 3 2 1

𝑛 1 2 1 3 2 4 1 3 5

𝑁𝑐𝑟 in MN/m 0.054 0.094 0.146 0.146 0.215 0.217 0.285 0.290 0.307
will be smaller for laminates close to the outer boundary of that area.
The determined range allows designers to select from the group of
lightest laminates, while the best stacking within the group can be
selected based on stiffness requirements, for example (see [5]).

Numerical validation

An Eigenvalue analysis has been performed in ABAQUS to verify
the preceding analytic results. The validated modelling procedure, pre-
sented in [15], has been adopted for the FE models presented hereafter.
An example input file is provided in Appendix. Fig. 6 shows the first
nine Eigenvalues for the [±30◦,±40◦]14𝑇 square-plate configuration,
which represents the green-dot case from above. The given quantities
denoted 𝐸𝑖 in the plots refer to compressive edge loads in kN/m.

Table 4 lists the determined critical buckling loads for the buckling
configurations in Fig. 6.

The results verify, that for [30,−30, 40,−40]14𝑇 (green-dot case) the
buckling load of 0.05 MN/m can be sustained by the 56-ply laminate
(14 ⋅ 4, with 𝑡𝑙𝑎𝑚 = 7 mm). The discrepancy to the exact value, refers to
the up-rounding procedure.
6

3.2. Case 2: Rectangular panel, deviating edge loads

For a rectangular plate, with the parameters 𝑎 = 3𝑏 = 3 m, 𝑁𝑐𝑟 =
𝑁𝑥 = 0.05 MN∕m, 𝑘 = 𝑁𝑦∕𝑁𝑥 = 3, 𝑚 in range [1, 2, 3], n in range [1, 2],
𝑡𝑝𝑙𝑦 = 0.125 mm Eq. (14) leads to

𝑟 = 3

√

√

√

√𝑁0(𝑚, 𝑛) ⋅

(

3
16𝑡3𝑝𝑙𝑦

⋅
9
𝜋2

⋅
𝑚2 + 27 ⋅ 𝑛2

𝐷∗
11𝑚

4 + 2
(

𝐷∗
12 + 2𝐷∗

66

)

𝑚2𝑛2 ⋅ (9) +𝐷∗
22𝑛

4 ⋅ (81)

)

.

(19)

Fig. 7 shows the corresponding case-specific minimum repeats.
Fig. 7a indicates the dominance of the 𝑚 = 𝑛 = 1 buckling scenario

for this load case as well. Only the 20-repeat regions show an overlay
for the 𝑚 = 𝑛 = 1 and the 𝑚 = 2, 𝑛 = 1 region. The determined minimum
laminate thickness is 10.0 mm for the material at hand (4⋅20⋅0.125 mm)
(upper right corner of 𝑚 = 𝑛 = 1 case). The overlay between 𝑚 = 𝑛 = 1
and 𝑚 = 2, 𝑛 = 1 case indicates two very similar buckling loads for
the two different half-wave combinations. The corresponding numerical
analyses substantiate this observation, as shown in Fig. 8.
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Fig. 7. Minimum number of repeats in DD to sustain bi-axial compressive loads, depending on the DD BB selection. The highest minimum needs to be considered for a certain
BB setup.
Fig. 8. Minimum weight panels with [±79,±88]20𝑇 (80 ply, 10 mm laminate thickness)
Fig. 8 shows the first three Eigenvalues of the corresponding case.
Two eigenvalues are found very close to each other at 50.58 and 50.66
kN/m, which refer to the two buckling shapes (𝑚 = 2, 𝑛 = 1) and
(𝑚 = 1, 𝑛 = 1), respectively. The numerical minimum is determined
for the [±79,±88] BB. The corresponding [𝐷∗] matrix is

[𝐷∗
[±79,±88]] =

⎡

⎢

⎢

⎣

10454.188 6479.049 2.340
6479.049 185819.594 23.700
2.340 23.700 10767.728

⎤

⎥

⎥

⎦

MPa . (20)

The analysis of the 3
√

𝑓 ([𝐷∗], 𝑚, 𝑛) term shows the reason for the very
similar 𝑟-values, for both m-n states.

for 𝑚 = 1, 𝑛 = 1 ∶

3

√

28
10454.188 + 18(6479.049 + 2 ⋅ 10767.728) + 81 ⋅ 185819.594

3

√

28
81 ⋅ 185819.594 ⋅ (1 + 0.001 + 0.033)

= 0.01216
7

for 𝑚 = 2, 𝑛 = 1 ∶

3

√

31
16 ⋅ 10454.188 + 72(6479.049 + 2 ⋅ 10767.728) + 81 ⋅ 185819.594

3

√

31
81 ⋅ 185819.594 ⋅ (1 + 0.011 + 0.134)

= 0.01216

When for some reason the [±45,±45] optimum laminate from the
square-panel case shall be used for the rectangular plate as well, Fig. 7
(green dot) shows that the (𝑚 = 𝑛 = 1) case is dominating for this
layup. 26 repeats are needed to sustain the defined load case (green dot
between the 𝑟 = 25 and the 𝑟 = 26 iso-line) with the selected layup. The
corresponding Eigenvalue analysis (see Fig. 9) substantiates the result,
with a determined buckling load of 0.0527 MN/m.

A minimum laminate thickness of 13.0 mm (104 plies) is needed
to sustain the defined load with the prescribed laminate configuration.
This is a 30% penalty compared to the optimum 80-ply laminate (see
Fig. 8), determined before.
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Fig. 9. Eigenvalues (first three) for the [±45◦ ,±45◦]26𝑇 laminate. The given Eigenvalues refer to buckling load in kN/m (not MN/m).
4. An invariant-based perspective on DD buckling

Invariants of the plies’ stiffness matrix [𝑄] are frequently used in
composite design [7,16,17]. The so-called ‘Trace’ has been proposed
by Tsai, Melo and co-workers as a basis to generalize design processes.
It is defined as 𝑇 𝑟 = 𝑄11 +𝑄22 +2𝑄66. In a recent publication [18] it is
shown that known invariants of [𝑄] are all covered by a parametric
equation. A new invariant 𝐼𝑄 was found particularly practical, as it
is simply defined as the sum of all individual [𝑄]-matrix coefficients
𝐼𝑄 = 𝑄11+𝑄22+𝑄12+𝑄66. Both, 𝑇𝑟 and 𝐼𝑄 can be considered materials
constants (see [14]). The idea of using invariant-based approaches is to
generalize analyses for a whole group of similar materials, as for exam-
ple unidirectionally reinforced carbon-fibre-epoxy-resin laminates. The
material-specific invariant is used at the end of the generalized analysis
process to transfer the general solution towards a material-specific
solution. The invariant 𝐼𝑄 is used hereafter to outline an invariant-
focused perspective on the previous buckling cases. 𝐼𝑄 is used as a
scalar pre-factor in [𝑄].

[𝑄] = 𝐼𝑄 ⋅ [𝑄𝐼𝑄 ], (equivalent for ’trace’[𝑄] = 𝑇 𝑟 ⋅ [𝑄𝑇 𝑟]) (21)

Note, that 𝑄𝐼𝑄11 + 𝑄𝐼𝑄22 + 𝑄𝐼𝑄66 + 𝑄𝐼𝑄12 = 1. As 𝐼𝑄 is invariant from ply
rotation, it acts (and 𝑇 𝑟 as well) as a pre-factor in [𝐷∗] as well.

[𝐷∗] = 12
𝑡3𝑙𝑎𝑚

⋅
1
3
⋅ 𝐼𝑄 ⋅

𝑛
∑

𝑘=1
[�̄�𝐼𝑄 ]

(

ℎ3𝑘 − ℎ
3
𝑘−1

)

(22)

Thus, 𝐼𝑄-specific terms can be introduced in the buckling relation.
Recalling the [±30,±40] case from above, with

[𝐷∗
[30,−30,40,−40]] =

⎡

⎢

⎢

⎣

96531.8 38772.5 2000.7
38772.5 35155.1 −6059.1
2000.7 −6059.1 43061.2

⎤

⎥

⎥

⎦

N∕mm2 (23)

one finds the 𝐼𝑄-normalized [𝐷∗] matrix as

[𝐷∗,𝐼𝑄
[30,−30,40,−40]] =

⎡

⎢

⎢

⎣

0.452 0.182 0.009
0.182 0.165 −0.028
0.009 −0.028 0.202

⎤

⎥

⎥

⎦

with 𝐼𝑄 = 213.52 GPa.

(24)

With 𝐷∗
𝑖𝑗 = 𝐼𝑄 ⋅𝐷∗,𝐼𝑄

𝑖𝑗 one can rewrite Eq. (14), leading to

𝑟 =
3
√

𝑁0(𝑚, 𝑛)
𝑡𝑝𝑙𝑦

⋅ 3

√

3
16𝜋2

⋅
3√

𝑎2 ⋅ 3

√

1
𝐼𝑄

⋅ 3

√

√

√

√

√

√

𝑚2 + 𝑘 ⋅ 𝑛2
(

𝑎2
𝑏2

)

𝐷∗,𝐼𝑄
11 𝑚4 + 2

(

𝐷∗,𝐼𝑄
12 + 2𝐷∗,𝐼𝑄

66

)

𝑚2𝑛2
(

𝑎2
𝑏2

)

+𝐷∗,𝐼𝑄
22 𝑛4

(

𝑎4
𝑏4

) .

It says that 𝑟 is proportional to the product of two material-dependent
factors.

𝑟 ∝ 3

√

1
𝐼𝑄

⋅ 3

√

√

√

√

1

𝐷∗,𝐼𝑄𝑚4 + 2
(

𝐷∗,𝐼𝑄 + 2𝐷∗,𝐼𝑄
)

𝑚2𝑛2
(

𝑎2
)

+𝐷∗,𝐼𝑄𝑛4
(

𝑎4
)

8

11 12 66 𝑏2 22 𝑏4
Fig. 10. 𝐼𝑄-factor magnitude.

Table 5
T700 C-Ply 55 from Tsai
[14, p.5].
𝐸1 121.0 GPa

𝐸2 8.0 GPa

𝜈12 0.30

𝐺12 4.7 GPa

𝑡𝑝𝑙𝑦 0.125 mm

𝐼𝑄 136.9 GPa

(25)

With the data from Tsai [14, p.5] one finds a realistic 𝐼𝑄-range of
150 GPa ≤ 𝐼𝑄 ≤ 230 GPa. Fig. 10 shows that the 𝐼𝑄-factor magnitude
in Eq. (25) changes only very little for the outlined 𝐼𝑄 range.

For assessing the relevance of 3
√

([𝐷∗], 𝑚, 𝑛) in Eq. (25) a low 𝐼𝑄
material is introduced here (see Table 5) aside from the high 𝐼𝑄
material IM7/977-3 (see Table 2), with 𝐼𝑄 = 213.52 GPa.

The [𝐷∗] matrix, of the low-𝐼𝑄 material is determined to

[𝐷∗,low 𝐼𝑄
[30,−30,40,−40]] =

⎡

⎢

⎢

⎣

0.447 0.184 0
0.184 0.167 0
0 0 0.201

⎤

⎥

⎥

⎦

. (26)

Table 6 summarizes the analysis of both factors in Eq. (25), for both
materials.

The analysis clearly shows that 3

√

1
𝐼𝑄

is the dominating term in

Eq. (25), while the term 3
√

([𝐷∗], 𝑚, 𝑛) has little relevance only. Thus,
one can simply transfer the determined results from one to another
material by using

𝑟ℎ𝑖𝑔ℎ,𝐼𝑄 ≈ 3

√

𝐼𝑄,𝑙𝑜𝑤
⋅ 𝑟𝑙𝑜𝑤,𝐼𝑄 . (27)
𝐼𝑄,ℎ𝑖𝑔ℎ
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a
a

b
f
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c
f
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c
s
h

Table 6
Evaluation of Eq. (25) for the high and low 𝐼𝑄 material. (...) is the relative difference to High-𝐼𝑄 material value.

Material 𝐼𝑄 in GPa 3
√

1∕𝐼𝑄
3
√

([𝐷∗], 𝑚, 𝑛) 𝑟 ∝

High 𝐼𝑄 213.52 0.167 1.0481 0.1750

Low 𝐼𝑄 136.90 (−36%) 0.188 (+12.6%) 1.0446 (−0.3%) 0.1964 (+12.2%)
∗
A

∗

∗
∗
∗
∗
Y
∗

∗

∗
∗

∗

∗
∗

∗

∗

∗
∗

∗

∗

∗
∗
∗

∗
∗
∗

∗
∗
∗
B
∗
B
∗
B
∗
B
∗

∗

∗
∗

∗

∗
∗
∗

R

5. Conclusion

The presented study shows how established equations for buckling
problems of simply-supported rectangular plates can be reformulated
for the family of DD laminates. It is shown that DD’s utilized thickness-
normalized description leads to drastic simplification of the buckling
relations. The minimum number of building-block repeats (propor-
tional to laminate thickness) can directly be calculated for a specified
buckling load and the individual half-wave patterns. Thus, discussions
on stacking-sequence optimization, know from the established QUAD
laminates, become obsolete for DD.

The presented DD-specific equations are applied for two use cases.
A square-shaped panel with homogeneous edge loads (𝑘 = 𝑎∕𝑏 = 1) and

rectangular panel (𝑎∕𝑏 = 3) with inhomogeneous edge loads (𝑘 = 3)
re examined for sake of verification.

The results of the developed equations are verified by FE-based
uckling-load analyses using ABAQUS CAE. Due to the restriction to
ull-degree ply-orientation angles, which is in line realistic technical
anufacturing limits, the best combination for DD’s building block

ngles 𝜑 and 𝜓 can be simply identified by picking the best solution out
f 912 calculations, which takes milliseconds to calculate of a desktop
C.

The developed terms have additionally been transferred to an
nvariant-based form, to demonstrate how results from one material
an be extrapolated to another material. The invariant-based relations
eature the invariant 𝐼𝑄 = 𝑄11 + 𝑄22 + 𝑄12 + 𝑄66, which has been
ecently presented by the author. 𝐼𝑄 can be considered a material
onstant. The study reveals that the minimum DD laminate thickness
cales proportional to 𝑟 ∝ 3

√

1∕𝐼𝑄. Thus, the effect of substituting a
igh-𝐼𝑄 material for a low-𝐼𝑄 material on the laminate thickness can

be quantified by using 𝑟ℎ𝑖𝑔ℎ,𝐼𝑄 ≈ 3
√

𝐼𝑄,𝑙𝑜𝑤∕𝐼𝑄,ℎ𝑖𝑔ℎ ⋅ 𝑟𝑙𝑜𝑤,𝐼𝑄 , which can
support designers in material selection processes.
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Appendix. ABAQUS FE-model specs

The used FE model were set up in ABAQUS CAE 6.14. They fea-
ture an eigenvalue buckling prediction step, as is described in detail
in [15]. The analysis returns Eigenvalues. The predicted buckling load
is determined by multiplying a determined eigenvalue with the applied
load.

The code hereafter shows the relevant content of the Abaqus input
file used in Section 3.2. The model dimensions are in mm, the material
is defined in N/mm2.
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Listing 1: ABAQUS input file skeleton
NODE
DD coordinates here

1 , 0 . , 0 . , 0
101 ,3000.0 ,0 . ,0 .
1617 ,0. ,1000.0 ,0.
1717 ,3000.0 ,1000.0 ,0.
. . .

ELEMENT, TYPE=S4R
1 ,1 ,2 ,103 ,102
. . .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
NSET , NSET=BZ
PAR,XPAR
NSET , NSET=BX

1,1617
NSET , NSET=BY

1 ,101
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Orientat ion , name=Ori−1

1 . , 0 . , 0 . , 0 . , 1 . , 0 .
3 , 0 .

She l l Sect ion , e l s e t=PLATE , composite ,
o r i en t a t i on=Ori−1, layup=CompositeLayup−1

0.1250 , 3 , ply , 30.0 , P ly1_r1
0.1250 , 3 , ply , −30.0, P ly2_r1
0.1250 , 3 , ply , 40.0 , P ly3_r1
0.1250 , 3 , ply , −40.0, P ly4_r1
. . .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
El se t , e l s e t=_Sur f−2_E4 , generate

1 ,1501 ,100
El se t , e l s e t=_Sur f−2_E2 , generate

100 ,1600 ,100
Surface , type=ELEMENT, name=Surf−x

_Sur f−2_E4 , E4
_Sur f−2_E2 , E2
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
El se t , e l s e t=_Sur f−1_E1 , generate

1 , 100 , 1 ,
E l se t , e l s e t=_Sur f−1_E3 , generate

1501 , 1600 , 1 ,
Surface , type=ELEMENT, name=Surf−y

_Sur f−1_E1 , E1
_Sur f−1_E3 , E3
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Material , name=ply
E l a s t i c , type=LAMINA

191000. ,9940. , 0.35 ,7790. ,7790. ,4500.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Step , name=Step−1, nlgeom=NO, per turbat ion
Buckle

10 , , 18 , 50
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Boundary , op=NEW, load case=1
Y , 2 , 2
Boundary , op=NEW, load case=2
Y , 2 , 2
Boundary , op=NEW, load case=1
X , 1 , 1
Boundary , op=NEW, load case=2
X , 1 , 1
Boundary , op=NEW, load case=1

BZ , 3 , 3
Boundary , op=NEW, load case=2

BZ , 3 , 3
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Dsload

Surf−x , EDNOR,1
Dsload

Surf−y , EDNOR,3
Restar t , write , frequency=0
Output , f i e l d , va r i ab l e=PRESELECT
End Step
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