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Abstract: At intersections, road users need to comprehend the intentions of others while also implic-
itly expressing their own intentions using dynamic information. Identifying patterns of this implicit
communication between human drivers and vulnerable road users (VRUs) at intersections could
enhance automated driving functions (ADFs), enabling more human-like communication with VRUs.
To this end, we conducted a coupled vehicle–bicycle simulator study to investigate interactions
between right-turning motorists and crossing cyclists. This involved 34 participants (17 pairs of
motorists and cyclists) encountering each other in a virtual intersection. The analysis focused on
identifying interaction patterns between motorists and cyclists, specifically aiming to discern which
patterns were more likely to be accepted by both parties. We found that in CM (vehicles overtaking),
the post-encroachment time (PET) and the average speed of vehicles were higher than in the other
two interaction patterns: C (bicycles always in front) and CMC (bicycles overtake). However, subjec-
tive ratings indicated that CM was viewed as more critical and less cooperative. Furthermore, this
study unveiled the influence of crossing order and overtaking position on subjective ratings through
ordered logistic regressions, suggesting that earlier overtaking could improve cyclists’ acceptance of
the interaction. These findings may contribute to the optimization of communication strategies for
ADF, thereby ensuring safety in interactions with VRUs.

Keywords: VRU; implicit communication; intersection; multiple driving simulator cyclists

1. Introduction
1.1. Motivation

In daily life, implicit communication often refers to non-verbal forms of communica-
tion, such as gestures and facial expressions. Similarly, implicit communication plays a
significant role in the field of transportation. In traffic, “verbal” forms of communication
typically involve explicit signals produced for conveying specific messages, such as turn
signals and brake lights. On the other hand, “non-verbal” signals may not be intended for
communication purposes but still convey information implicitly, such as speed and position.
Effective communication is essential as road users may need to occupy the same region of
space simultaneously in the near future [1]. Road users may communicate through both
explicit and implicit cues. However, recent research suggests that implicit communication
is the primary strategy for communication between motorists and vulnerable road users
(VRUs) [2]. For example, cyclists can predict whether a vehicle will pass through an in-
tersection upon observing its current speed and subsequently decide whether or not to
continue crossing. This form of implicit communication applies to motorists as well.

This phenomenon poses a challenge for high-level automated driving functions
(ADFs). Understanding and replicating implicit communication between motorists and
VRUs is vital for developing effective and safe ADFs. On the one hand, the prediction of
VRU intentions primarily relies on implicit signals. Properly functioning ADFs should
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be able to interpret and respond to subtle cues from other road users. On the other hand,
ADFs must express their intentions through implicit signals, ensuring seamless integration
with existing traffic patterns and minimizing the risks associated with miscommunication.
Both aspects need to be based on the interaction patterns accomplished through implicit
communication that already exists between humans. A human-like ADF should neither
be more aggressive, increasing the risk of collision, nor more conservative, leading VRUs
to over-trust that the ADF will always yield to them. Therefore, determining the existing
interaction patterns between motorists and VRUs is essential for ADF development.

1.2. Implicit Signals and Interaction Patterns

The accurate interpretation of implicit signals can help ADFs anticipate and avoid
potential conflicts. This capability depends on both advanced sensing technology and
a comprehensive understanding of human interaction models on the road. The Wiede-
mann Car-Following Model [3] is a good example that investigates interaction models
between human drivers. This model provides insight into the dynamic interactions be-
tween following and leading vehicles, considering implicit signals such as distance and
speed differences between vehicles. In terms of implicit communication between motorists
and VRUs, kinematic information and spatiotemporal relationships are also considered. In
a field study of a shared space, Fuest et al. [4] observed VRUs determined whether they
cross a road based on a vehicle’s speed. For VRUs, a vehicle’s deceleration often implies
yielding, while maintaining speed or accelerating may suggest the vehicle is not giving
right-of-way [5–8]. This aligns with common sense. However, on an operational level, it is
not immediately clear at what distance from the VRU the vehicle should decelerate and by
how much in order to reassure the VRU that they are safe to proceed. Such tacit interaction
patterns may already exist among human road users.

Taking crossing interactions as an example, the straightforward interaction patterns
can be categorized based on the order of access; either the vehicle crosses first, or the VRU
crosses first [8–10]. Alternatively, these patterns can also be classified according to motorists’
braking behavior, such as no braking, ideal initial braking, and provoked braking caused by
competition [11]. Furthermore, based on the process of transferring priority, four types of
interaction patterns have been defined, which include the prioritized road user going first
with or without forcing the right-of-way, the prioritized road user actively giving away the
right-of-way and the road user who should yield not slowing down, forcing the prioritized
road user to stop [12]. Investigating interaction patterns between VRUs and motorists
requires a large amount of real-world data to offset the influence of context factors (e.g.,
traffic density, time of day) and individual differences (e.g., desired speed). For example,
Zhang et al. [13] collected the trajectories of over 200 interactions using video-based traffic
observation, based on which three interaction patterns were identified: The motorist does
not yield to the cyclist, the motorist actively yields to the cyclist, and the motorist passively
yields to the cyclist.

It is not only essential to identify specific interaction patterns but also to evaluate them
to determine which patterns are more widely accepted and which ones pose safety risks.
Evaluations can be approached from a performance perspective by estimating relevant
dimensions such as safety and efficiency. For instance, PET and predicted PET could be
used to assess the risk at the time of crossing (e.g., [14]), while average speed or passing
time could be used to indicate traffic efficiency (e.g., [15]). It could be imagined that an
interaction pattern with high safety and efficiency for both interaction partners may be more
likely to be accepted and should thus be adopted by ADFs. In addition to the performance
perspective, the subjective feelings of drivers and other road participants are also crucial in
evaluations. Subjective feelings in the field of traffic could refer to subjective risk, which
has been involved in driving studies since the 1960s [16]. Some scholars have included
subjective risk in the category of mental workload, arguing that so-called high subjective
risk is caused by a mismatch between task difficulty and individual capabilities [17]. In
addition to subjective risk, the quality of communication, namely the recognizability
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of the other party’s signals and whether people feel a sense of cooperation during the
process, also form part of the subjective evaluation. However, in traffic observation studies,
subjective indicators are not easily obtained, as the object of measurement is often randomly
encountered road users. The emergence of driving and cycling simulators has compensated
for the shortcomings of traffic observation. On the one hand, they allow participants to
engage in realistic scenarios and obtain objective data without exposing them to physical
danger (e.g., [18]). On the other hand, other measurement methods targeting psychological
indicators, such as physiological measurements and questionnaires, can be implemented
under laboratory conditions.

1.3. The State of the Art

Motorist–cyclist interactions have always been an important topic in the field of trans-
portation. Previous studies focused on the behavioral choices of observers when facing
oncoming vehicles in different manners, using the subjective perspective video of cy-
clists [8]. Some studies have built models for the yielding behavior during motorist–cyclist
interactions through traffic observation using performance parameters [19]. However, these
methods lack the integration of subjective ratings and performance parameters. Driving
simulators provide a platform that can record driving data and the subjective ratings of the
participants simultaneously during the experiment. Such simulation experimental designs
are usually formulated in the form of “human–machine interaction.” That is, either the
participant interacts as a motorist with a programmed bicycle [20,21] or as a cyclist with a
programmed self-driving vehicle [22]. To achieve a “human–human interaction” simulation,
coupling of different simulators is required. The concept of a coupled simulator has already
been applied to study motorist–motorist [23,24] and motorist–pedestrian interactions [25].
However, to our knowledge, it has not been used to study motorist–cyclist interactions.

1.4. Current Study

This study investigated the interaction between right-turning motorists and bicyclists
traveling straight in the same direction using a coupled vehicle and bicycle simulator,
which allowed participants to interact freely in the same virtual environment. The aim of
this study was to explore how human road users accomplish cooperation at intersections
through implicit communication. It was hypothesized that there exist interaction patterns
based on implicit communication between motorists and cyclists. These interaction patterns
may reflect the tacit understanding and unspoken rules that human road users follow to
achieve cooperation on the road. These patterns were evaluated using performance and
subjective indicators in terms of criticality, cooperation, and certainty. Additionally, the
effect of the widely-discussed factors, crossing order and overtaking position, on subjective
evaluations was examined. The results may not only help in establishing more complex
interaction patterns, thereby enhancing the accuracy of predicting VRU (vulnerable road
users) behaviors, but also contribute to the application of ADFs by providing valuable
insights into the evaluation of these interaction patterns.

2. Methods
2.1. Participants

Seventeen pairs of participants (randomly paired) took part in this study. Of the
34 participants, 18 were male and 16 were female. Participants aged between 18 and 59 years
(mean (M) age = 27.6 years; standard deviation (SD) of age = 10.0 years). All participants
held a valid driver’s license for 9.7 years on average (SD = 9.6 years, range = [1; 40]), with
16 participants owning a private vehicle. Participants were invited via the institute’s
database for recruiting participants as well as via online advertisement. Participants were
compensated with 10 €/h. The study protocol (experimental design, assessed data, used
methods, etc.) was approved by the DLR ethics committee.
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2.2. Set-Up and Design
2.2.1. Study Design

The study design was a 2 × 2 within-subject design with role (motorist, cyclist), and
driving mode (manual, autonomous) (see Figure 1). It should be noted that this study
covered the evaluation of all types of human–machine interfaces (HMI), including external
HMI (eHMI), internal HMI (iHMI), and dynamic HMI (dHMI). Manual driving involves
dHMI, while autonomous driving involves eHMI and iHMI. Every session consisted of
four experimental blocks: In the first two blocks, Participant A drove, and Participant B
cycled. In the last two blocks, Participant A cycled, and Participant B drove. Within the
first two blocks (last two blocks), Participant A (B) drove manually in one block and was
driven autonomously in the other block. The order of blocks was counterbalanced with
respect to driving mode. Within a block, trials were performed in a randomized order. In
the “manual driving” blocks, three unique trials (variation of the vehicle’s starting position:
0, 5, or 10 m behind the bicycle) were each repeated once (= six trials per block). The two
“autonomous driving” blocks are not reported in this paper.
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2.2.2. Coupled Simulator

This study was completed in a coupled vehicle and bicycle simulator (see Figure 2).
The vehicle simulator consisted of three screens and a steering wheel as well as gas and
brake pedals to control a virtual car in a simulated environment. The bicycle simulator con-
sisted of a break force sensor, a steering resistance motor, a force bike trainer, and a motion
platform. Additionally, the simulated environment was presented through VR glasses. The
visualization of environmental 3D models and scenarios was accomplished using Unreal
Engine 4. The two simulation systems were synchronized during the experiment, allowing
the participants to see each other in real time at the simulated intersection.

2.2.3. Scenario

In every trial, the cyclist was supposed to cross an intersection going straight, and the
motorist (coming from the same direction) was supposed to turn right at the intersection
and cross the cyclist’s path (Figure 3). The traffic lights for both the cyclist and the motorist
were set to green. No dynamic surrounding traffic was present. The cyclist initiated the
trial by starting to cycle. When arriving at a specific distance, the vehicle was triggered and
started driving autonomously. In the “manual driving” blocks, the driver had to take over
vehicle control, which was signaled using a color change in an LED light band within the
vehicle. The simulated intersection was based on the DLR AIM Research Intersection in
Braunschweig, Germany (Hans-Sommer-Straße/Brucknerstraße).

2.3. Procedure

Every session started with a short introduction, including information about the
general scope and procedure of this study as well as information about the potential
risks and data protection. Participants then gave their informed consent. Afterward,
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participants filled out questionnaires regarding demographic information, technical affinity,
and simulation sickness.
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Figure 3. Trajectories (204 pairs) and moving directions of cyclists and motorists in the simulators
with the background of the aerial view of Hans–Sommer–Straße/Brucknerstraße in Braunschweig,
Germany.

In terms of familiarization with the simulators before the experimental drive, partici-
pants were trained on the bicycle simulator and in the driving simulator for approximately
15 min each. In training sessions, the motorist first followed a predefined route through
a simulated city and was instructed to familiarize him-/herself with the vehicle and its
communication signals (indicator, headlights, horn). After this drive, every motorist prac-
ticed the experimental scenario, including the take-over, three times (without the cyclist
being present). The cyclist also first followed a predefined route, once without and once
with VR glasses. Afterward, s/he practiced the experimental scenario three times without
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the motorist being present. If the cyclist was still not comfortable handling the bicycle
simulator, the experimental scenario was practiced more often.

After the training, both participants filled out a simulator sickness questionnaire
(SSQ; [26]). Then the first two experimental blocks started: The “manual driving” block
consisted of six trials with a short questionnaire after every trial and a post-questionnaire
after the block for both the participant cycling and the participant driving. After the first
two blocks, participants again filled out the SSQ and paused for at least 10 min. For the
third and fourth experimental blocks, participants switched roles, and the procedure of
the first two blocks was repeated. Afterward, participants were informed about the exact
details of this study and left. An experimental block lasted around 20 min; the complete
session took about three hours.

2.4. Questionnaires

After every trial, participants were asked four questions about the experienced en-
counter (see Table 1).

Table 1. Questions asked after every trial of the “manual driving” blocks.

Addressee Question Response Scale

Cyclist

How critical would you rate the driving situation you just experienced? 1 totally not critical (1)–
extremely critical (6)

How confident were you that the vehicle would respond appropriately to you? 2 totally not confident (1)–
extremely confident (6)

How cooperative would you rate the driving situation you just experienced? 3 totally not cooperative (1)–
extremely cooperative (7)

Did you cross the road before or after the vehicle? 4 before/after

Motorist

How critical would you rate the driving situation you just experienced? 1 totally not critical (1)–
extremely critical (6)

How confident were you that you could turn in front of the cyclist? 2 totally not confident (1)–
extremely confident (6)

How cooperative would you rate the driving situation you just experienced? 3 totally not cooperative (1)–
extremely cooperative (7)

Did you turn before or after the bicycle? 4 before/after
1 criticality; 2 certainty; 3 cooperation; 4 control question. Note that an additional neutral option was included in
the cooperation scale, resulting in a total of seven levels for this scale.

2.5. Analyses

First, interaction patterns were classified. Then these patterns were evaluated with
respect to participants’ subjective ratings regarding criticality, certainty, and cooperation
(see Table 1) and performance parameters based on participants’ driving/cycling behavior.
In terms of objective measures, the position, kinematic information, and the spatiotemporal
relationships of vehicles and bicycles were focused. Table 2 describes the objective variables
considered in the analysis.

Table 2. Description of performance parameters.

Parameter Unit Description

distance to conflict point m the longitudinal distance between the current position and the conflict point, where two
trajectories intersect.

average speed m/s the mean value of the speeds of the bicycle or vehicle from the starting point until they
reach the intersection

speed difference m/s the difference between the speeds of the vehicle and the bicycle at a given moment

PET s post encroachment time, an observed time, which describes the time interval by which
two road users miss each other

pPET s predicted PET, the time at which the vehicle and bicycle would intersect if they maintain
their current speeds at a given moment
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According to the results of Shapiro–Wilk normality tests, the performance parameters
(average bicycle speed: W = 0.90, p < 0.001; average vehicle speed: W = 0.88, p < 0.001;
PET: W = 0.90, p < 0.001) and the subjective ratings (criticality (cyclists: W = 0.66, p < 0.001,
motorists: W = 0.73, p < 0.001), cooperation (cyclists: W = 0.85, p < 0.001, motorists: W = 0.85,
p < 0.001), certainty (cyclists: W = 0.77, p < 0.001, motorists: W = 0.88, p < 0.001)) were
not normally distributed. Therefore, we used Kruskal–Wallis tests as well as pairwise
Wilcoxon–Tests (using the Holm method for adjusting p values) to reveal the effect of the
interaction patterns on the performance parameters and subjective ratings. The results
of the Kruskal–Wallis tests were converted into Z-scores. We used η2, recommended by
Tomczak and Tomczak [27], to indicate the effect size of the Kruskal–Wallis tests. The effect
size is considered low when η2 is less than 0.06, medium when η2 is less than 0.14, and
large when η2 is greater than 0.14.

In addition, we investigated the effect of crossing order and overtaking position on
the subjective ratings of criticality, cooperation, and certainty from the perspective of both
road users. The categorical parameter “order” with motorist first as default was used
to indicate the crossing order, while the continuous parameter “distance,” meaning the
longitudinal distance between the overtaking position and the conflict point, was used to
indicate the overtaking position. Subjective ratings were considered ordered parameters
with a range of one to six (criticality and certainty) and one to seven (cooperation). One
cyclist did not report the subjective ratings and was therefore excluded. We employed an
ordered logistic regression as implemented in the package MASS (version: 7.3–53.1; [28])
for the R programming language, building a regression model and reporting coefficient (r),
the results of t-Tests (t) and p-value (p) for criticality, cooperation and certainty from the
cyclists’ and the motorists’ perspective separately. A significance level of α = 0.05 was used
for all tests.

3. Results
3.1. Interaction Patterns

Two hundred four interactions between right-turning motorists and crossing cyclists
were clustered. According to the crossing order (cyclist first vs. motorist first) and whether
the motorist has overtaken the cyclist, three interaction patterns were defined (see Table 3).
The naming of the patterns reflects the leading interaction partner at each stage. It has to be
noted that, due to the experimental design, the vehicle always appeared behind the bicycle,
so the bicycle leads in the first stage in all three patterns.

Table 3. Description of interaction patterns.

Patterns N (%) Description

CM 49 (24%) cyclists are first in front of motorists but cross the intersection after motorists
CMC 57 (28%) cyclists are first in front of, then behind motorists, and cross the intersection before motorists

C 98 (48%) cyclists are always in front of motorists and cross the intersection before motorists

3.1.1. Performance Parameters

• Speed difference

In CM, the vehicle maintains a speed difference of at least 2 m/s throughout the
interaction. However, in CMC and C, this speed difference is smaller, and within a 30 m
range, the speed advantage gradually shifts to the cyclist (see Figure 4a). Compared to C,
the transition in CMC is more abrupt.

• Average speed

With respect to cycling speed, a significant difference was observed among the patterns
CM, CMC, and C (Z = 6.26, p < 0.001, η2 = 0.21). According to the results of the Wilcoxon
tests (α = 0.05), the average speed of the bicycle in C (Md = 4.46 m/s) was significantly
greater than in CMC (Md = 4.05 m/s, Z = 5.11, p < 0.001) and in CM (Md = 4.09 m/s,
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Z = 5.1, p < 0.001). There was no difference between CMC and CM (Z = 0.27, p = 0.61). A
significant difference was observed in the driving speed among the patterns CM, CMC, and
C according to the Kruskal–Wallis tests (Z = 10.77, p < 0.001, η2 = 0.59). The average speed
of the vehicle was greater in CM (Md = 9.25 m/s) than in CMC (Md = 4.93 m/s, Z = 8.66,
p < 0.001) and C (Md = 5.55 m/s, Z = 9.35, p < 0.001). The average speed of the vehicle in C
was greater than in CMC (Z = 4.83, p < 0.001). The difference in average speed from both
perspectives is shown in Figure 4b.
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Figure 4. (a) Boxplots of the speed difference (+: vehicle faster, −: bicycle faster) over the distance
of the first object to the conflict point in interaction patterns CM (red), CMC (blue), and C (green);
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and C (green) and significant difference (***: p < 0.001).

• pPET

In CM and CMC, either the vehicle or the bicycle demonstrated a clear advantage
during the initial stage (55–70 m), meaning that one interaction partner would clearly cross
in front of the other if both would have continued with the present speed, whereas in C, the
advantage holder had less pPET. In CMC and C, the temporal gap between the advantaged
party reached its minimum at around 25–30 m, while in CM, the advantaged party main-
tained a lead of approximately 4 s or more throughout. Finally, as they approached the
conflict point, the temporal gap between vehicles and bicycles in CM, CMC, and C became
similar, with all of them exceeding 3 s (see Figure 5a).

• PET

The median PET of interaction patterns CM, CMC, and C was 5.57 s, 3.36 s, and 3.73 s,
respectively (see Figure 5b). The Kruskal–Wallis test indicated a significant difference in
PET among the interaction patterns (Z = 5.8, p < 0.001, η2 = 0.18). According to the pairwise
comparisons using Wilcoxon tests (α = 0.05), the PET in CM was significantly greater than
in CMC (Z = 5.32, p < 0.001) and in C (Z = 4.83, p < 0.001). There was no difference between
the PET of CMC and C (Z = 1.38, p = 0.08).

3.1.2. Subjective Ratings

• Criticality

The Kruskal–Wallis test indicated significant differences among the patterns CM,
CMC, and C from the perspective of both road users (cyclists: Z = 2.36, p < 0.05, η2 = 0.03,
motorists: Z = 6.52, p < 0.01, η2 = 0.22). The cyclists’ rating of criticality was higher in CM
(M = 2.29) than in C (M = 1.42, Z = 2.09, p < 0.05) (see Figure 6). There was no difference
between CM and CMC (M = 1.6, Z = 0.97, p = 0.17) as well as between CMC and C (Z = 0.97,
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p = 0.17). With regard to the motorists, the rating in CM (M = 2.76) was higher than in CMC
(M = 1.82, Z = 3.19, p < 0.01) and C (M = 1.36, Z = 6.38, p < 0.001). The rating in CMC was
higher than in C (Z = 3.19, p < 0.01).
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Figure 6. Cyclists’ and motorists’ ratings of criticality (not critical at all (1) to very critical (6)) in
interaction patterns CM, CMC, and C.

• Cooperation

Significant differences were observed among the patterns CM, CMC, and C from the
perspective of both road users based on the Kruskal–Wallis test (cyclists: Z = 5.55, p < 0.001,
η2 = 0.16, motorists: Z = 5.92, p < 0.001, η2 = 0.19). The cyclists’ rating in CM (M = 3.88) was
lower than in CMC (M = 5.96, Z = 5.2, p < 0.001) and C (M = 5.62, Z = 4.11, p < 0.001) (see
Figure 7). There was no difference between CMC and C (Z = 0.97, p = 0.17). The motorists’
rating in CM (M = 3.92) was lower than in CMC (M = 5.61, Z = 4.51, p < 0.001) and C
(M = 5.83, Z = 5.77, p < 0.001). There was no difference between CMC and C (Z = 0.83,
p = 0.80).
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Figure 7. Cyclists’ and motorists’ ratings of cooperation (very uncooperative (1) to very cooperative
(7)) in interaction patterns CM, CMC, and C.

• Certainty

The Kruskal–Wallis test indicated significant differences among the patterns CM,
CMC, and C from the perspective of both road users (cyclists: Z = 2.27, p < 0.05, η2 = 0.03,
motorists: Z = 7.7, p < 0.01, η2 = 0.29). The cyclists’ rating of certainty was lower in CM
(M = 4.33) than in C (M = 5.24, Z = 1.98, p < 0.05) (see Figure 8). There was no difference
between CM and CMC (M = 4.98, Z = 0.77, p = 0.22) as well as between CMC and C
(Z = 0.77, p = 0.22). The motorists’ rating in CM (M = 4.57) was higher than in CMC
(M = 2.72, Z = 5.89, p < 0.001) and C (M = 2.21, Z = 7.04, p < 0.001). The motorists’ rating in
CMC was higher than in C (Z = 2.9, p < 0.01).
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Figure 8. Cyclists’ and motorists’ ratings of certainty (very unconfident (1) to very confident (6)) in
interaction patterns CM, CMC, and C.

3.2. Effect of Crossing Order and Overtaking Position

C was excluded, as there was no overtaking position in this interaction pattern.
Namely, 106 interactions (CM and CMC) were considered in this analysis session. Table 4
presents the results of the ordered logistic regressions estimated for the cyclists’ ratings on
criticality, cooperation, and certainty. The results indicate that cyclists’ ratings on criticality
and cooperation were correlated with the crossing order and overtaking position: 1. when
motorists crossed before cyclists, the cyclists’ ratings on criticality were higher (more crit-
ical), and the cyclists’ ratings on cooperation were lower (less cooperative); 2. when the
overtaking position was closer to the conflict point, the cyclists’ ratings on criticality were
higher (more critical) and the cyclists’ ratings on cooperation were lower (less cooperative).
A small effect was found for crossing order cyclists’ rating of certainty, indicating a lower
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rating of certainty if the motorists crossed before the cyclists. However, no significant effect
of overtaking position was found on the cyclists’ rating of certainty.

Table 4. Results of ordered logistic regressions for cyclists’ and motorists’ ratings on criticality,
cooperation, and certainty.

Criticality Cooperation Certainty
Coeff. t Coeff. t Coeff. t

C
yc

lis
t crossing order 1 0.92 2.25 * −2.4 −5.7 *** −0.6 −1.7 -

overtaking position 2 −0.1 −3 ** 0.04 1.88 - 0.02 1.27

M
ot

or
is

t crossing order 1 1.46 3.8 *** −1.84 −4.76 *** 2.53 5.80 ***

overtaking position −0.02 −1.4 0 0.03 0.02 1.08

1: positive value = motorist first, 2: distance to the conflict point, -: p < 0.1, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Table 4 also presents the results of the ordered logistic regressions estimated for
the motorists’ ratings on criticality, cooperation, and certainty. The results indicate that
motorists’ ratings on criticality, cooperation, and certainty were only correlated with the
crossing order: when the motorists crossed before the cyclists, the motorists’ ratings on
criticality were higher (more critical), on cooperation were lower (less cooperative) and on
certainty were higher (more certain). The overtaking position had no effect on these ratings
from the perspective of the motorists.

4. Discussion

The aim of this study was to investigate how motorists and cyclists cooperatively
interact with each other at intersections through implicit communication. To achieve this, a
coupled vehicle and bicycle simulator experiment was conducted, in which the interaction
behavior of right-turning motorists and crossing cyclists was recorded. Three interaction
patterns were classified and evaluated with respect to criticality, efficiency, certainty, and
cooperation using both performance and subjective indicators.

The analyses presented were guided by the question of what kind of interaction
pattern is more likely to be accepted by the interaction partners in this specific scenario.
Theoretically, based on the experimental set-up, motorists could overtake cyclists and pass
through the intersection first in all interactions. However, this only happened in 24% of
cases. In another 28% of cases, motorists overtook cyclists but chose to control their speed or
wait, allowing cyclists to go first. In the remaining cases (nearly half of all cases), motorists
were always behind the cyclists. This distribution may reflect certain social expectations
among the interacting participants, suggesting that motorists are likely to yield to cyclists in
most situations. Furthermore, in these situations, motorists may prefer not to appear in the
cyclists’ field of vision to avoid influencing their behavior. The effects of this approach were
reflected in the efficiency of cyclists: Compared to CM and CMC, cyclists in C had a higher
average speed. At the same time, motorists did not lose efficiency, as their average speed
was also higher than in CMC, where they yielded as well. Therefore, from the perspective
of combined efficiency for both parties, the performance of C is better. From the perspective
of proximity, the PET in CM is significantly higher than in the other two modes, with
cyclists catching up to the motorists about 5.6 s after the motorists have passed through
the intersection, while in the other two modes, it takes the motorists a maximum of 3.7 s.
This gap in PETs may be partly due to the difference in acceleration between vehicles and
bicycles, and on the other hand, it could imply that motorists will only choose not to yield
when there is a sufficiently safe distance.

The subjective evaluations of the participants might provide a direct answer to which
interaction pattern is more acceptable. As shown in Figures 6–8, compared to the other two
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patterns, cyclists rated the pattern CM as a more critical, less cooperative, and less certain
interaction pattern. Interestingly, motorists in CM gave similar ratings, even though they
actively overtook the cyclists in this pattern. However, it is worth noting that this does not
imply that the CM is unacceptable, as the absolute values of the ratings can be described as
low risk, neutral cooperation, and neutral certainty. Compared to CM, both CMC and C
are more likely to be accepted, as they might meet road users’ expectations for the scenario
in which the motorist should yield to the cyclist. However, the difference between CMC
and C is not significant.

Interaction patterns can be understood as several fixed tactical-level modes formed by
the interacting parties through implicit communication. As previously analyzed, interaction
patterns can be evaluated through their frequency as well as performance and subjective
indicators. The following question arises: at the operational level, which specific behaviors
can improve the acceptance of road users, particularly cyclists? We incorporated the two
indicators we focused on, crossing order and overtaking position, into the regression model
for subjective evaluations. In terms of crossing order, the ratings of both road users tend to
be more critical and less cooperative when motorists cross first. Regarding the overtaking
position, results imply a shift from uncertainty (one party is not within the field of view)
to certainty (both parties are within each other’s field of view). The farther this transition
point is from the conflict point, the more time road users may have to assess the situation,
adapt, or adjust through communication. Conversely, the overtaken road user may not be
able to cope, especially when s/he expects to be ahead for most of the journey. Thus, the
results lead to the conclusion that if right-turning motorists decide to overtake the cyclist
traveling alongside them (in CM or CMC), overtaking earlier can increase the acceptance
of the cyclists in terms of criticality and cooperation.

One limitation of this study comes from the questionnaire. Firstly, the questions posed
to cyclists and motorists on the dimension of certainty were different and, therefore, cannot
be directly compared. Additionally, the question posed to motorists, “how confident were
you that you could turn in front of the cyclist?” may rise a unidirectional bias, which may
cause confusion when the driver is certain not to turn in front of the cyclist. As a result,
motorists rated the certainty of CMC and C lower (see Figure 8), even though the situation
might be under their control. Therefore, the certainty ratings of motorists for CMC and C
may not be reliable for reference.

The validity is one of the ongoing challenges with simulator driving studies, namely,
to what extent they capture real-world traffic behavior. The consistency of kinematic
information recorded in vehicle and bicycle simulators, such as speed and acceleration,
with data from real-world scenarios may need to be validated through traffic observations
or research vehicles and bicycles equipped with sensors on actual roads. Recently, a study
has already explored the validation of the used bicycle simulator based on real-world
data (e.g., [29]). As mentioned previously, the intersection simulated in this study is a
1:1 reproduction of a research intersection in Braunschweig, Germany. This provides the
possibility of comparing the results with real data in the same infrastructure context. This
will be considered in future work. In addition, so far, it is unclear what influence the social
situation in a coupled simulator study has on traffic behavior [23,30]. In this study, the two
participants were in the same room and deliberately encountered each other repeatedly in
the same situation, which is rather rare in real road traffic.

5. Conclusions

The current study investigated interaction patterns based on implicit communication
between motorists and cyclists through a coupled vehicle–bicycle simulator experiment.
In the selected scenario, a right-turning vehicle encounters a crossing bicycle, and three
interaction patterns were identified. In nearly half of all cases, motorists stayed behind
cyclists, reflecting a societal expectation for motorists to yield to cyclists. In the other
half of cases, it was found that the earlier overtaking may improve cyclists’ acceptance
of the interaction in terms of subjective criticality and cooperation. The results of this
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research study allow autonomous driving to effectively distinguish the interaction patterns
that people form on the road with other road users, especially VRUs, and to adopt more
acceptable maneuver plans during interactions.
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