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Abstract: A fault detection system together with a flight control reconfiguration algorithm is
proposed to tackle the problem of oscillatory failure case scenarios in hydraulically actuated
flight control loops. The fault detection system employs a set of residual filters designed using a
model-based approach via command-input decoupling and free assignment of the filter dynamics
via dynamic inversion. As underlying design model, an optimized, multi-model hydraulic
actuator approximation covering the actuator dynamics together with stochastically distributed,
uncertain parameters is derived. A flight control reconfiguration algorithm is presented which
smoothly transitions the control law from its normal configuration to the alternate law after
detection of a fault. The performance of the transition is analyzed using advanced linear time-
varying analysis methods based on an extension of the well-known Bounded Real Lemma. The
achieved detection and reconfiguration performance is verified via non-linear simulations.
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1. INTRODUCTION

The detection of failures and the subsequent reconfigura-
tion of the flight control systems (FCS) is an important
feature to be considered in today’s aircraft design in or-
der to increase aircraft autonomy and maintain optimal
aircraft performance. One example of a failure influencing
the aircraft performance and impacting the design process
is the oscillatory failure case (OFC) in hydraulic actua-
tors, see Goupil (2010). The early detection of an OFC
allowing for FCS reconfiguration measures is important as
a fully developed OFC can negatively affect not only the
quality of the airplane’s closed-loop response, i.e., the rigid
body dynamics, but can also excite structural wing modes.
This paper explicitly tackles the challenges described in
the Industrial Benchmark on Fault Detection and Fault
Tolerant Control dedicated to OFC detection and FCS
reconfiguration provided as design challenge for the 2023
IFAC world congress, see Engelbrecht et al. (2022).The
proposed solution to these challenges, which are summa-
rized in Section 2, is a fault detection system triggering
a flight control reconfiguration in case of the detection of
an OFC. The fundamentals of the employed methods are
summarized in Section 3.
The fault detection challenge for OFCs is the necessity of
an early detection with a typical required detection time
below three oscillation periods (Goupil (2010)) together
with the necessity of detecting the smallest oscillation
amplitudes possible. Limiting factors on the latter are

measurement noise and turbulence acting on the aircraft.
To address these fault detection challenges, a multi-model
approximation of the actuator dynamics is developed. This
approximation is necessary as not all parameters and in-
puts of the actuator are available online. For example,
the aerodynamic force component acting on the actuator
rod and the available hydraulic pressure delivered to the
actuator are not fully known. This multi-model description
of the actuator dynamics sets the basis for the model-based
residual filter design described in Section 4. The design
strategy employs command-input decoupling and free as-
signment of the filter dynamics via dynamic inversion to
create a set of residual filters allowing a fast and robust
OFC detection.
After the detection of an OFC, a controller reconfigura-
tion and control input re-allocation algorithm (Section 5)
ensures smooth transitions to the alternate control law.
A common strategy after the OFC detection is to set the
faulty actuator passive and to reconfigure to an alternate
flight control law. For the design of the reconfiguration,
the static and dynamic part of the alternate control law
are separated to enable a hybrid switching scheme. The
static part is reconfigured by a simple blending techniques,
while the dynamic part is reconfigured using a bumpless
scheme based on solving an algebraic Riccati equation.
This approach enables an adequate update of the dynamic
controller part of the alternate law as long as it is running
off-line, i.e., in parallel mode. The closed-loop performance



of the transition is analyzed using advanced linear time-
varying analysis methods based on an extension of the
well-known Bounded Real Lemma. This analysis allows
verifying efficiently the stability and performance with-
out performing extensive non-linear simulation studies.
Finally, the achieved closed-loop detection and reconfig-
uration performance is verified via non-linear simulations.

2. PROBLEM SETUP
As described in Engelbrecht et al. (2022) the OFC is
occurring on one of two actuator-driven control surfaces
steering the longitudinal motion of an aircraft. Thus, the
available aircraft model describes the longitudinal aircraft
behavior in cruise condition on a single trim-point. It is
of fourth order, including pitch rate q, velocity V , angle
of attack α, and pitch angle Θ. Measured outputs are
pitch rate, load-factor nz, and flight-path angle γ. The
model’s inputs are the elevator deflections δ, provided by
two identical hydraulic actuators, and a disturbance input
on the aircraft states to enable turbulence injection. The
aircraft is augmented with the normal or the alternate
control law, i.e., a downgraded control algorithm used in
fault scenarios, see Engelbrecht et al. (2022); Ossmann
et al. (2017). Both laws have the form

ξ̇ = 0 · ξ + [−ki 0 ki]uc

δc = ξ + [kf kq knz ]uc,
(1)

where δc is the commanded elevator surface position, ξ
and ξ̇ are the controller state and its derivative, and
uc = [nz,c q nz]

T is the controller input vector with the
commanded load-factor nz,c. nz,c is either provided by the
pilot or by an outer control loop, i.e., a proportional γ-
feedback. This outer loop is active when no pilot com-
mands are provided to hold the aircraft in cruise condition.
The gains knz

and kq are the feedback gains on the load-
factor and the pitch rate, ki is the integral gain on the
load-factor control error enz

= nz−nz,c, and kf is the load-
factor feed-forward gain. Subsequently, the integral gains
are summarized by k̄i := [−ki 0 ki] and the proportional
gains by k̄p := [kf kq knz

]. The position and rate limited
command input δc is converted to a actuator rod position
command xc via a non-linear function and sent to the
actuators. While normal and alternate law feature the
exact same structure, the gains of the alternate law (k̄(alt)

p

and k̄
(alt)
i ) are lower, see Engelbrecht et al. (2022).

2.1 Actuator Model with Faults
Hydraulic actuators steer the two elevators. Each actuator
features a proportional, rod position feedback loop to
compute the servo-valve current. A non-linear first order
actuator model is given by

ẋ = vc

√
∆P∆ − FA(x, ẋ)/S

∆Pr + k∆d ẋ2/S
xm = x+ n,

(2)

where x and ẋ is the rod position and velocity, respectively,
xm the measured rod position, n the sensor noise, ∆P
the hydraulic differential pressure delivered to the actua-
tor, ∆Pr the reference differential pressure, S the piston
surface area and vc the commanded rod velocity. The
commanded velocity results from a non-linear mapping
of the commanded current ic by the servo controller, i.e.,
vc = fic→vc(ic). The servo controller generates the current

from the error between the commanded rod position xc

and the measured rod position multiplied with the propor-
tional gain kp, i.e., ic = kp(xc−xm). In equation (2), kd is
the damping coefficient and FA is the aerodynamic force
component acting on the actuator rod. The commanded
and measured rod position are available in the FCS. The
parameters ∆Pr and S can be assumed to be known
and constant, while for the differential pressure ∆P and
the damping coefficient kd only the parameter range is
known. These two parameters are uniformly distributed,
which is indicated by “∆” in (2). The aerodynamic force
is a typical unknown disturbance to the actuator. The
actuator rod position x and the control surface position
δ are connected via a non-linear mapping fx→δ. Thus,
the commanded surface position δc in (1) is converted
to the commanded rod position xc via the inverse of this
mapping, i.e., fδc→xc

= f−1
x→δ.

The OFC is defined by f = Af cos(ωf ), where Af is
the amplitude, ωf the frequency, lying between 1 Hz and
10 Hz. The OFC is either injected to the measured rod
position, mimicking a sensor fault in the servo loop, or
to the current command ic, mimicking a fault in the
electro-hydraulic hardware cycle, see Engelbrecht et al.
(2022). For both locations the OFC is modeled either as
additive (“liquid”) fault or as substituting (“solid”) fault,
completely replacing the actual signal.

2.2 The Challenge
The FCS extensions shall provide fast detections of small
actuator OFCs and smooth controller reconfigurations.
Smooth relates to no discontinuous FCS signals and no
departures from the current flight state (Engelbrecht et al.
(2022)). In addition, the alternate control law shall provide
a similar closed-loop performance as it provides with two
actuators available. Thus, in case of an actuator OFC the
following three actions need to be taken: (i) detection of
the OFC; (ii) smoothly deactivating the faulty actuator
and reallocating the control input to the healthy actuator;
(iii) smoothly activate the alternate control law.

3. THEORETICAL BACKGROUND
This section provides the theoretical background of the
employed methods in this paper.

3.1 Model-Detection based Fault Detection
A model-based fault detection approach requires a design
model of the underlying process to be monitored. Such
a model must contain only known quantities. This is not
the case for the actuator model described in Section 2.1,
which includes randomly distributed parameters and an
unknown force. To solve this problem, an approach based
on the model-detection problem (Varga (2017)) is modified
to solve the fault detection problem herein. For each model
with fixed parameters, a residual filter is designed and
the resulting residual vector is fused to a scalar residual.
To describe the principal idea and shorten notation, the
approach is presented for a linear system and extended to
the non-linear actuator model in the application section.
Generally, a residual filter processes known system outputs
y(t) and inputs u(t) to generate the residual r(t), which is
decoupled from any inputs but the fault. Assume a linear
multi-model system description of the form

y(i)(s) = G(i)
u (s)u(s) +G

(i)
d (s)d(s) +G

(i)
f (s)f(s), (3)



where y(i)(s), u(s), d(s) and f(s) are Laplace-transformed
vectors of the output vector y(i)(t) ∈ Rp, the control
input vector u(t) ∈ Rmu , the disturbance input vector
d(t) ∈ Rmd , and the fault input vector f(t) ∈ Rmf . G(i)

u (s),
G

(i)
d (s) and G

(i)
f (s) are the transfer function matrices

from the control inputs to outputs, disturbance inputs to
outputs and fault inputs to outputs, respectively, of the
i = 1, . . . ,M model. A residual filter for the ith model is
expressed by

r(i)(s) = Q(i)(s)

[
y(i)(s)
u(s)

]
. (4)

Replacing y(i)(s) in (4) by (3) yields

r(i)(s) = Q(i)(s)

[
G(i)

u (s) G
(i)
d (s) G

(i)
f (s)

I 0 0

] [ u(s)
d(s)
f(s)

]
. (5)

To solve the fault detection problem for the ith model, the
choice of Q(i)(s) needs to guarantee the decoupling of all
control and disturbance inputs from the residual r(i), i.e.,

Q(i)(s)

[
G(i)

u (s) G
(i)
d (s)

I 0

]
= 0, (6)

and guarantee the coupling of the fault to the residual, i.e.,

Q(i)(s)

[
G

(i)
f (s)
0

]
6= 0. (7)

As additional constraint, the residual filter Q(i)(s) needs
to be stable and proper. This formulation of the fault
detection problem can be solved numerically for each
ith model using tools provided in Varga (2017). For the
benchmark problem herein it is solved analytically.
As in the solution of the model detection problem, for the
ith filter Q(i)(s) the decoupling condition (6) for all other
systems j 6= i does not hold. However, in case the structure
of G(j)

f (s) is constant over all M models, it can be assumed
that the coupling condition (7) holds also ∀j. Then, a valid
scalar residual can be computed online via

r̂(tk) = min
i

|r(i)(tk)|. (8)

To generate the fault indicator if , the residual r̂ is com-
pared to a threshold τ in each time step, i.e.,

if (tk) =

{
0 if r̂(tk) < τ

1 otherwise. (9)

3.2 Hybrid Bumpless Switching

A hybrid switching solution is proposed to maintain the
given controller gains (Engelbrecht et al. (2022)) but mit-
igate reconfiguration transients. The static contribution
δ

(p)
c , composed by the proportional gains (k̄p and k̄

(alt)
p ),

is computed by a blending scheme. The dynamical (in-
tegral) contribution δ

(i)
c , composed by the integral gains

(k̄i and k̄
(alt)
i ), is driven by a bumpless scheme following

Turner and Walker (2000). The scheme originates from
linear quadratic approaches to derive an optimal controller
update matrix via solving an algebraic Riccati equation.
The approach has been successfully applied in aerospace,
see Cieslak et al. (2008, 2015). Finally, the control signal
applied to the actuators is computed by δc = δ

(p)
c + δ

(i)
c .

Blended scheme: let the fault indicator if defined in (9)
be used to engage a smooth reconfiguration. The control
signal δ(p)

c of the static part is determined by
δ(p)
c = (Ts+ 1)−1((1− if )k̄p + if k̄

(alt)
p )uc, (10)

where the time constant T of the filter is set to achieve a
smooth reconfiguration transients.
Bumpless scheme: before detection (if = 0) the integral
part ξ̇(alt) of the alternate law according to (1) is extended
by

on-line normal law : ξ̇ = k̄iuc

off-line alternate law : ξ̇(alt) = k̄
(alt)
i α

(11)

with α = F [ξ ξ(alt) uT
c ]

T and ξ and ξ(alt) being the state
of normal and the alternate law, respectively. F is a static
matrix to be designed such that the quadratic cost function

J =
1

2

∫ ∞

0

(zTuWuzu + zTσWσzσ)dt (12)

is minimized, with zu = ξ(alt) − ξ and zσ = α − uc. Wu

and Wσ are constant positive-definite weighting matrices
to determine the desired objectives. According to Turner
and Walker (2000) the solution is given by

F = Ω [F1 F2 F3] (13)
with
F1 = (B̃TΠ+ D̃TWuC̃)T

F2 = (−D̃TWu + B̃TM ·
(C̃TWu + C̃TWuD̃ΩD̃T +ΠB̃ΩD̃Wu))

T

F3 = (−Wσ + B̃TM(C̃TWuD̃ΩWσ +ΠB̃ΩWσ))
T

(14)

The matrices Ã, B̃, C̃ and D̃ are the state-space matrices
of the dynamical part of the alternate control law, M =
(AT +ΠB)−1 and Ω = −(D̃TWuD̃ +Wσ)

−1. The matrix
Π is the definite-positive solution of the algebraic Riccati
equation

ΠA+ATΠ+ΠBΠ+C = 0 (15)
with A = Ã + B̃ΩD̃TWuC̃, B = B̃ΩB̃T and C =
C̃TWu(1 + D̃ΩD̃TWu)C̃.
The presented approach enables a bumpless transfer via
updating the alternate law’s integrator running offline.
When the reconfiguration is triggered, the integral con-
tribution δ

(i)
c can be switched directly from the normal

law’s contribution k̄iuc to the alternate law’s contribution
k̄

(alt)
i uc.

3.3 Linear Time-Variant System Analysis

The reconfiguration is a time-variant process that can
be analyzed efficiently using linear time-variant (LTV)
techniques. They allow a rapid computation of the worst-
case scenarios that can occur during the reconfiguration
process, see Tadmor (1990); Biertümpfel and Pfifer (2022).
A finite horizon LTV system G is defined as

ẋt(t) = AG(t)xG(t) +BG(t) d(t)

e(t) = CG(t)xG(t) +DG(t) d(t),
(16)

where xG(t) ∈ Rnxt denotes the state vector, d(t) ∈
Rnd the input vector, and e(t) ∈ Rne the performance
output vector. Its system matrices are locally bounded
continuous functions of time t and compatible size-wise to
the corresponding vectors, e.g., AG(t) ∈ RnxG

×nxG . The



upper bound on worst-case performance outputs at the end
of the trajectory can be quantified by finite horizon energy-
to-Euclidean gain. Assuming DG(t) = 0, it is defined as
(e.g. Tadmor (1990)):

‖G‖E[0,T ] = sup
d∈L2[0,T ]
d6=0,x(0)=0

‖e(T )‖
‖d(t)‖2[0,T ]

, (17)

with

‖d‖2[0,T ] =

√∫ T

0

d(t)T d(t) dt (18)

describing the finite horizon Lebesgue 2-norm L2[0, T ]
of the signal d(t). Consequently, this worst-case gain
describes the ball upper bounding the performance output
over all valid disturbance input signals in L2[0, T ] at the
final point of the trajectory. The restriction DG(t) = 0,
guarantees that the gain is well-defined. Note that the
gain only upper bounds the output at the final time T .
An analysis condition to upper bound ‖G‖E[0,T ] is based
on the extension of the LTI Bounded Real Lemma to finite
horizon LTV systems in Green and Limebeer (1995). The
explicit formulation for (17) is given in Theorem 1.
Theorem 1. Let G be an LTV system defined by (16).
Given x(0) = 0, if there exists a time-dependent, con-
tinuous differentiable symmetric matrix valued function
P : R+

0 → Rnx×nx such that
P (T ) = CG(T )

TCG(T ) (19)
and

Ṗ =− PAG −AT
GP

− (PBG + CT
G)(−γ2Ind

)−1(BT
GP + CG),

(20)

then γ is an upper bound on the L2[0, T ] to Euclidean gain
of G.
Proof. The proof follows the one for Theorem 3.7.4 in
Green and Limebeer (1995).

4. FAULT DETECTION SYSTEM DESIGN
FOR THE AIRBUS BENCHMARK

The design of a model-based fault detection filter providing
fast detection times for small OFC amplitudes and no
false alarms features several challenges. Firstly, the aero-
dynamic force input is unknown, but its direct decoupling
is not possible due to only one available measurement.
Secondly, uncertain parameters are present which provide
a spread in the actuator dynamics. Thirdly, the non-linear
function fic→vc with discontinuities is nested in the model,
complicating the actual generation of the detector.

4.1 Actuator Model Approximation
To address these challenges a simplified, non-linear multi-
model of the actuator is derived which can be used for the
design of a multi-model fault detection filter. Therefore,
as proposed in Varga et al. (2011), the fault free actuator
behavior is approximated with a simpler model,

˙̃x = k̃∆(xc, x̃, ˙̃x)(xc − x̃), (21)
where x̃ and ˙̃x are the estimates of the actuator rod
position and its velocity and k̃∆ is a non-linear actuator
gain. The stochastically distributed parameters ∆P∆ and
k∆d make the estimation of the actuator position difficult as
no direct physical reason for their variation can be modeled
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Fig. 1. Measured actuator rod position ( ) and its
estimate ( ) during a load-factor input.

in the gain k̃∆ of the estimator. For fixed values of ∆P∆

and k∆d , however, the actuator gain in (2.1) is constant
when the actuator is in standstill and varies during motion,
i.e., ẋ 6= 0. Taking this finding and an approximation of
the function fic→vc into account, a suitable approximation
of the gain is found by

k̃∆(xc, x̃, ˙̃x) = c∆0 − c∆1 ˙̃x2 + c2| ˙̃x|(xc − x̃), (22)
where the parameters c∆0 , c∆1 , and c2 are constant param-
eters covering the basic actuator gain, the damping effect
and the non-linear mapping fic→vc , respectively. Changing
the differential pressure can be covered by changing the
basic gain c0, while a change of k∆d can be covered via
c∆1 . The influence of the aerodynamic force on the gain is
found to be neglectable. For fixed values of the differential
pressure ∆P∆ and the damping coefficient k∆d the actuator
gain can be approximated by solving optimization problem

min
c0,c1,c2

N∑
k=1

(x(tk)− x̃(tk, c0, c1, c2))
2, (23)

i.e., minimizing the sum of squared errors between the
rod position x of the actuator model in (2) and the
rod position x̃ from the approximation in (21) and (22)
over N time steps tk. An impulse-like load-factor input
is selected as excitation signal for the aircraft system.
Finally, for different settings of ∆P∆ and k∆d different
model approximations result resulting in a multi-model
approximation of the actuator.
Fig. 1 shows a comparison between the measured rod
position x ( ) and its approximate x̃ ( ) for nominal
values of ∆P∆ and k∆d during a load-factor step-like input
of 0.5 g. The approximation error is considered to be
sufficiently small, staying within ±0.2 mm. Note that the
worst-case approximation error scales proportionally with
the input. Due to the fact that a multi-model approach
is used to cover the uncertain parameters k∆d and ∆P∆

the error can be keep within ±0.2 mm over the whole
parameter range for smaller given inputs than 0.5 g.

4.2 Multi-Model Fault Detection

The basic design conditions for fault detection filters,
namely input decoupling and fault coupling, described
herein in equations (6) and (7) for linear systems, also
hold for non-linear systems. For the non-linear actuator
model (21) a valid fault detection filter subtracts the mea-
surement xm, which get propagated through the inverse
actuator model, from the actual input xc to generate r.
As the system in equation (21) is of first order, its inverse
requires an additional, arbitrary first order system to make
the filter proper. Employing these ideas leads to the non-
linear residual filter



ẋr = −axr +

[
a −a (k̃∆ − a)

k̃∆

] [
xc

xm

]
r = xr +

[
0 − a

k̃∆

] [
xc

xm

]
,

(24)

in the time domain, where a is a free parameter defining
the filter dynamics. To cover the unknown and uncertain
parameters c∆0 and c∆1 of the actuator model a bench
of filters of the form (24) is derived, enabling the multi-
model fault detection approach described in Section 3.1.
For each set of different but constant values of c∆0 and c∆1
in equation (22) a unique filter is designed. The denser
the grid within the known limits of the two parameters is
selected, the better the robustness of the fault detection
against the uncertainties in these parameters becomes.
The decision if an OFC is present or not follows equations
(8) and (9). The decision variable if is used to trigger the
reconfiguration of the FCS.

4.3 Simulation based Verification
The threshold τ in equation (9) is set to 0.94 based on sim-
ulation results employing different control inputs, sensor
noise and different turbulence levels, see Engelbrecht et al.
(2022). The threshold is optimized manually to detect the
minimum fault possible while ensuring no false alarms.
Further, the threshold value thus directly be interpreted as
minimum detectable fault on the rod position in millime-
ter, which equals a detectable control surface deflection of
about ±0.35◦. The free parameter a of the detector (24)
has been set to -10, ensuring fast detections.
To verify against false alarms, a fault free analysis has been
performed using load-factor step-like-, chirp- inputs, and
sine-inputs for different turbulence levels. No false alarms
have been detected for load-factor inputs up to ±0.5 g. For
larger inputs, the actuator model approximation shows a
bigger error so that the threshold increases adaptively de-
pending on the pilot load-factor command. This ensures no
false alarms for inputs up to ±1.5 g. To verify the detection
performance it is assumed the fault occurs the aircraft
being in cruise-condition at different turbulence levels. The
induced faults are uniformly distributed between 2.5 mA
and 30 mA on the current and 2.5 mm and 30 mm on the
rod-sensor. The fault frequencies are uniformly distributed
between 1 Hz and 10 Hz. In total 1200 simulations have
been performed resulting in a missed detection rate of 2.6%
and 3.2% late detection rate. All problematic cases corre-
spond to small input amplitudes and high frequencies. As
the upper end of the frequency fault spectrum lies below
the bandwidth of the actuator the residual is not exceeding
an equivalent of ±0.35◦ in control surface deflection.

5. FAULT TOLERANT CONTROL STRATEGY
FOR THE AIRBUS BENCHMARK

After an OFC detection two actions are performed in the
FCS to meet the requirements defined in Engelbrecht et al.
(2022). The control law is reconfigured from the normal to
the alternate law and the control allocation is reconfigured
to maintain the alternate law’s nominal performance. Both
actions are performed quickly and smoothly.

5.1 Control Reconfiguration and Reallocation
For the reconfiguration from the normal to the alter-
nate law, the proportional and integral elements of the

◦

◦
|

◦
◦
|

◦
◦
|

k̄p

k̄
(alt)
i

k̄i

k̄
(alt)
p

F

PT1

PT1

∫
∫

δ(p)
c

δ(i)
c

[
nz,c
q
nz

]

if

δc

if

if

0

1

Fig. 2. Illustration of the controller switching scheme.
controllers are separated to enable the hybrid bumpless
switching scheme described in Section 3.2. As illustrated
in Fig. 2, the proportional gains of the control input are
blended using linear proportional first order filters (PT1)
according to equation (10) to ramp the new control input
up and to fade the old control signal out. The filters’ time
constant is set to T = 0.5 s to meet the allowed 3 s for the
reconfiguration process. Note, in Fig. 2 a decision variable
if = 0 means the upper channel of each switch is active,
while if = 1 initiates switches to the lower channels.
To ensure a continuous integral contribution during the
control law transition the bump-less scheme introduced in
Section 3.2 is implemented, indicated by the matrix F from
equation (13) in Fig. 2. For determining F via equations
(13)-(15) the matrices Ã = 0, B̃ = k̄

(alt)
i , C̃ = 1 and

D̃ = 01×3 describe the state-space representation of the
alternate control law’s integral contribution.
In addition, the control allocation needs to be reconfigured
to ensure that the alternate law performs as it would
with two actuators available. Thus, if an OFC is detected,
the contribution of the remaining actuator needs to be
doubled, as the faulty actuator is switched off. This is
achieved by the simple logic

δc,l = (1− if )δc
δc,r = (1 + if )δc,

(25)

where δc,l and δc,r are the commanded deflections on the
left and right elevator, respectively.

5.2 Linear Time-Variant System Analysis
For a rapid initial verification of the FTC scheme, an LTV
worst-case analysis is performed. The approach avoids
time expensive simulation-based analyses in the design
phase (see, e.g., Biertümpfel and Pfifer (2022)). The anal-
ysis is based on Theorem 1 in Section 3.3. It provides the
worst-case upper bound on the flight-path angle γ at the
final time T of the considered analysis horizon [0, T ] due
to a disturbance at the faulty actuator’s output.
For the analysis, the closed-loop aircraft system including
the linearized actuator dynamics, controller switching, and
reallocation scheme is transferred to the LTV framework.
The proportional controller blending (10) is modeled by
two time-varying gains. For the alternate law path, the
value of the gain is 0 before the OFC detection and follows
the step response of the first order element afterwards.
The nominal law is derived accordingly (from 1 to 0).
The bumpless scheme for the integrator is modeled with
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against non-linear simulation results.

a single integrator with a time-varying gain. The gain’s
value is k̄i before and k̄

(alt)
i after detection. Two time-

varying gains with values according to equation (25)
before and after detection model the control reallocation.
Based on the results in Section 4.3, the onset time for
the reconfiguration is set to 0.5 s. Hence, a maximum
analysis horizon up to 2.5 s deems adequate to analyze the
reconfiguration.
Theorem 1 only upper bounds γ at the final time T . Hence,
the analysis is run for a set of final times {1, 1.5, 2, 2.5} s
to evaluate the reconfiguration. Moreover, the LTV anal-
ysis condition only considers norm bounded inputs with
unit energy. This property necessitates the scaling of the
disturbance input to calculate interpretable γ values. The
L2[0, T ] norm of a solid OFC with a maximum amplitude
of 30 mm and 1 Hz defines the disturbance scaling for the
respective analysis horizon. These scalings upper bound
the norms for the OFC frequency range from 1 Hz to 10 Hz.
Fig. 3 depicts the calculated worst-case γ at the end of
the time horizons. Values between the analysis grid points
are linear interpolated providing a funnel-like worst-case
envelope ( ). The LTV analysis provides an acceptable,
maximum γ-deviation of ±1.8◦ for horizons of 2.5 s. The
derived worst-case envelope provides a strict upper bound
on 400 non-linear simulations with light turbulence and
OFC definitions from Section 4.3.

5.3 Simulation based Verification
To verify the closed-loop performance, a gridded parame-
ter study including different OFC amplitudes, frequencies,
and turbulence levels has been performed. As for the detec-
tion performance, the analysis involves 1200 runs. Figure
4 depicts the cumulative distributions of the maximum
recorded γ in each of the 1200 simulations. For comparison
the analysis is performed once without FTC ( ) and
once using the proposed detection and reconfiguration
( ). With FTC algorithms enabled the maximum γ-
deviation over all simulation runs is reduced from 4.6◦ to
2.5◦. In both analyses, clearly three clusters are present in
the data. They correspond to the three turbulence levels
defined in the simulator. The proposed FTC algorithms
restrict the γ-deviation to the minimum deviation possible.
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Fig. 4. Maximum flight-path angle cumulative distribu-
tions for analysis with ( ) and without ( ) FTC.
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Fig. 5. γ for normal law ( ) and reconfiguration scenario
( ) during a load-factor input ( ).

The remaining deviations are purely driven by the afore-
mentioned turbulence levels. Applying no counteractions
during the OFCs leads to a maximum γ-deviation of about
4.6◦ over all cases. Also, the probability to stay within a
certain maximum γ value is strictly higher when using
the proposed algorithms, as the corresponding cumulative
distribution lies always on or above the distribution when
using no counteractions. To verify that no pitch departure
occurs regardless when the controller reconfiguration hap-
pens, the reconfiguration is initiated during a load-factor
step-input maneuver with no OFC is present. Figure 5
compares γ during a step input ( ) when using the nor-
mal law ( ) against a reconfiguration from the normal
to the alternate law ( ) in the middle of the step input,
i.e, at three seconds simulation time. Clearly, no departure
from the trim state occurs during the reconfiguration.
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