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ABSTRACT

In planetary environments with extreme visual aliasing, traditional place

recognition systems for robots encounter di�culties in unstructured and aliased

environments. E↵ective place recognition is essential for robust localization and

mapping, which, in turn, significantly impacts the performance of Simultaneous

Localization and Mapping (SLAM) systems. This research aims to enhance existing

place recognition systems by utilizing both LiDAR and visual information, improving

performance in extreme environments. The use of LiDAR is crucial, as it provides

valuable geometric data that complements visual data, resulting in more expressive

and robust 3D grounded global features.

We evaluated our methods using the Mt. Etna dataset and a synthetic dataset

generated with the OAISYS tool. Our comprehensive review of state-of-the-art

place recognition systems led to the development of a novel UMF (Unifying Local

and Global Multimodal Features with Transformers) model, specifically designed for

place recognition in environments with extreme aliasing. The UMF model integrates

elements from the most advanced methods, enhancing performance in challenging

environments by capturing intricate relationships between local and global context

in both LiDAR and visual data.

Two variants of the UMF model were explored, o↵ering alternative ways of

processing and utilizing fine local features. Our UMF model outperforms other

state-of-the-art methods in place recognition tasks, demonstrating the project’s success.

The improved place recognition capabilities o↵ered by the UMF model can contribute

to more accurate and robust SLAM systems, enabling robots to better navigate and

explore unstructured and aliased environments.

This research highlights the importance of multi-modal fusion, particularly the

integration of LiDAR and visual data, in addressing the challenges of place recognition

in aliased and low-texture environments. It also opens an exciting line of research focus

in unified fusion multimodal approaches for robotics, computer vision, and machine

learning applications, with a direct impact on SLAM and other related fields.
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Chapter 1

Introduction

1.1 Motivation

Simultaneous Localization and Mapping (SLAM) has emerged as a central technology

in a multitude of industries including autonomous driving [14],[15], automated

construction [16], and agriculture [17],[18]. Its development and adoption have been

largely catalyzed by advances in sensor technologies, such as multi-camera setups,

RGB-D sensors, and more recently, 3D Light Detection and Ranging (LiDAR) sensors.

The integration of 3D LiDAR sensors into mobile robots, in particular, has facilitated

the construction of large-scale and robust maps, especially in urban and artificial

environments.

Yet, despite the extensive research and numerous methodologies developed for

visual or LiDAR-based SLAM [19][20], the challenge of SLAM is far from being

fully addressed. This becomes particularly evident in environments lacking structured

features and exhibiting severe visual aliasing, which include extreme locations such as

deserts or volcanic surfaces [21],[22]. In these settings, the scarcity of unique visual or

structural landmarks complicates reliable place recognition, while the dearth of vertical

structures poses di�culties for the robust convergence of Iterative Closest Point (ICP)

algorithms in LiDAR SLAM [23].

The majority of widely-used datasets, such as KITTI [24], Oxford RobotCar

[25], KAIST [26], and 4Season [27], primarily target autonomous driving in urban

environments. While these datasets incorporate substantial challenges, such as

dynamic objects or large seasonal variations, the highly structured scenarios and

vehicle-centric perspectives simplify the tasks of odometry computation and place

recognition.

Other datasets like TUM RGB-D [28], TUM VI [29] o↵er sequences captured using

hand-held stereo or RGB-D cameras primarily in indoor environments. However, these

sequences are typically short, frequently re-observe places from similar viewpoints, and

1



(a) Common scenes. (b) Image and LiDAR aligned.

Figure 1.1: (a) Common scenes from Cambridge landmarks [1] and 7-Scenes [2]
datasets, where discriminate features can be extracted. (b) Challenging situations
from underwater Aqualoc dataset [3] and Mars-Analogue dataset [4]. Data are severely
corrupted with ambiguous elements and low image quality, image extracted from [5].

have limited variations in visual appearance. To address the limitations associated with

these datasets, synthetic datasets such as ICL-NUIM [30] and TartanAir [31] simulate

di↵erent motion characteristics and environments. Despite the diversity they o↵er,

unstructured natural environments still pose the most challenging conditions for the

application of visual or LiDAR-based SLAM.

Over the past few decades, computer vision has evolved into a critical

interdisciplinary research area, striving to emulate various aspects of human visual

systems. However, even with significant progress in many areas, fully replicating the

capabilities of the human visual system remains a formidable challenge. The complex

interplay between our understanding of the human vision system’s functionality and

the limitations of computational resources significantly contributes to this challenge.

With the surge of LiDAR technology adoption in recent years, especially in

autonomous vehicles and robotics, the generation of precise and high-resolution 3D

maps has become crucial. These maps are integral to robust and reliable place

recognition and navigation in diverse environments.

One of the most pressing challenges in computer vision is SLAM. Given the

increasing interest in mobile robotics and planetary exploration, resolving the SLAM

problem is essential for accurately localizing a camera within an unknown environment

while simultaneously mapping it. Moreover, the fusion of multimodal data, such as

visual and LiDAR information, shows great potential in enhancing SLAM performance,

especially in aliased or planetary-like environments.

Recent advancements in deep learning have shown immense promise in the field of

computer vision. By integrating deep learning features and attention mechanisms, we

can significantly enhance the performance of visual and LiDAR-based SLAM systems.

2



This enhancement involves unifying local and global features, thereby optimizing the

system’s overall performance. The fusion of deep learning with SLAM methodologies

can also facilitate better handling of challenging environments, thereby extending the

range of applications of these technologies.

This thesis presents research conducted at the German Aerospace Center (DLR),

specifically within the Perception and Cognition group. The primary focus of this study

is the development of innovative navigation solutions using the Lightweight Rover Unit

(LRU), showd in Fig. 1.2. The LRU integrates cutting-edge technologies, including

stereo vision and LiDAR, paving the way for autonomous navigation in unexplored

and challenging planetary-like environments.

(a) The LRU traversing a planetary-like
environment. (b) Image and LiDAR aligned.

Figure 1.2: DLR Planetary Stereo, Solid-State LiDAR, Inertial (S3LI) dataset[6],
recorded on Mt. Etna, Sicily, an environment analogous to the Moon and Mars.

The potent combination of advanced SLAM methodologies and deep learning

mechanisms, along with the extensive capabilities of the LRU, o↵ers promising

prospects in the field of autonomous navigation and exploration. The continuous

pursuit to refine these techniques remains crucial not only for progress in planetary

exploration but also for the broader field of robotics. The work carried out in this study

contributes to this ongoing endeavor, proposing novel solutions and methodologies that

take advantage of the most recent advancements in sensor technology and deep learning.

1.2 Problem Statement

The central focus of this thesis is to explore and develop novel approaches to visual place

recognition, specifically through the integration of multimodal fusion of LiDAR and

visual data. Given the inherent complexities and challenges of certain environments

- notably aliased or planetary-like settings[6] - traditional methodologies often fall

short. As such, our research focuses on the unification of local and global features
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and the strategic employment of deep learning with attention mechanisms, all aimed

at bolstering place recognition performance in these challenging environments. To

provide clarity, the specific goals of this thesis are outlined as follows:

� Undertake an exhaustive review of the current landscape of place recognition

methods, including those that utilize visual and LiDAR-based techniques, as

well as those that leverage the capabilities of deep learning. The intent is to

identify and select a handful of the most e�cient and accurate approaches that

can serve as a baseline for our research.

� Develop an innovative multimodal place recognition method that integrates both

local and global features. This approach is designed to leverage deep learning

features and attention mechanisms to o↵er a more robust solution for place

recognition, particularly in challenging environments.

� Validate the proposed method using a novel challenging dataset, the Mt. Etna

Dataset. This dataset, which was captured with Stereo and Solid-State LiDAR

Inertial sensors, o↵ers an accurate representation of the Moon-like environment

of Mount Etna, providing an ideal testbed for the proposed methodology.

The overarching goal of this research is to contribute to the body of knowledge

in the field of SLAM and place recognition by developing innovative methods capable

of handling challenging environments. By bringing together visual and LiDAR data,

and leveraging deep learning techniques, we aim to create a more versatile and reliable

solution that can be used in a wide range of applications, from autonomous navigation

to planetary exploration.

1.3 Methodology

To achieve the objectives of this thesis, we will follow the following methodology:

1. Literature Review: Conduct a comprehensive review of existing research and

methods in the field of visual place recognition, focusing on multimodal fusion,

unifying local and global features, and deep learning with attention mechanisms.

2. Data Collection amnd Processing: Gather appropriate datasets that contain

LiDAR and visual information from planetary-like environments to train and

evaluate the proposed approach.
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3. State-of-the-art exploration: Investigate the most recent and cutting-edge

techniques in visual place recognition, analyzing their performance, limitations,

and potential for improvement.

4. Algorithm Development: Develop a novel visual place recognition algorithm that

leverages deep learning and attention mechanisms, as well as multimodal fusion

and unification of local and global features.

5. Implementation: Implement the proposed approach using the aforementioned

tools, such as Pytorch and OpenCV, following best practices in software

development.

6. Evaluation and Benchmarking: Assess the performance of the proposed approach

and compare it with existing methods using appropriate metrics and benchmarks,

to identify the strengths and weaknesses of the approach.

In the annex A a table has been included with the duration of each task, as well

as a Gantt chart, which details how time has been managed during the course of the

project.

1.4 Tools

The implementation, evaluation, and benchmarking of our proposed approach depend

on a suite of specialized tools, encompassing both hardware and software components.

This section details the main tools that facilitate our research:

1.4.1 Hardware

LiDAR: Our research utilizes the Blickfeld Cube-1 LiDAR, known for its

MEMS-actuated beam deflection mirror. This feature makes it superior to traditional

360-degree LiDARs in terms of mechanical robustness, weight, and power consumption

- qualities especially important for space applications. The LiDAR is configured to

capture a maximum of 17400-point clouds within a field-of-view of approximately 70°H
× 30°V, resulting in a scan rate of 4.7 Hz.

Stereo Cameras: Two AVT Mako cameras form a stereo setup with a 20 cm

baseline. They are programmed to capture monochromatic images at a frequency

of 30 Hz. Each image has a resolution of 688 × 512 pixels. Automatic exposure control

helps manage the extreme lighting conditions encountered on the mountain.
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Inertial Measurement Unit (IMU): The XSens MTi-G 10 unit, connected via

USB, records linear acceleration and angular velocity data at a rate of 400 Hz.

Figure 1.3: Suite of sensors onboard the LRU. Solid-State LiDAR, Inertial (S3LI).

Global Positioning System (GPS): We employ a Ublox f9p GNSS receiver for

accurate di↵erential estimates in tandem with a base station. The data logs are later

processed using RTKLIB, which enables the acquisition of ground truth positions at 5

Hz with centimeter-level accuracy.

Server: Our dedicated server, outfitted for training purposes, houses two 32-core

AMD CPUs, 768GB RAM, and eight 3090 RTX (Ampere) GPUs, each with 24GB of

memory.

1.4.2 Software

Python3: As a flexible and powerful programming language, Python is utilized

for a wide array of tasks, including algorithm implementation, data processing, and

visualizations.

OpenCV[32]: This open-source computer vision library assists with image

processing, feature extraction, and other computer vision tasks.

PyTorch[33]: PyTorch, an open-source machine learning library for Python,

supports our research with its extensive deep learning capabilities and GPU

acceleration. It is particularly useful for implementing our deep learning models,

attention mechanisms, and multimodal fusion techniques.
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OAISYS[12]: The Outdoor Artificial Intelligent SYstems Simulator (OAISYS) is

specifically designed for unstructured outdoor environments, considering the unique

requirements of planetary robotics. Based on the open-source Blender engine, it

generates a wide variety of outdoor scenes and rich metadata, including multi-level

semantic and instance annotations. The use of OAISYS does not require expert

knowledge in rendering pipelines, making it a user-friendly tool for our research.

1.5 Outline

The remainder of this thesis is structured as follows: Chapter 2 reviews the

existing literature in the field of visual place recognition, placing particular emphasis

on multimodal fusion, unification of local and global features, and deep learning

approaches leveraging attention mechanisms.

In Chapter 3, we introduce various relevant place recognition techniques, with a

special focus on the specific methods that will be evaluated within the scope of this

research. Chapter 4 also presents our innovative algorithm for place recognition, UMF.

Chapter 5 provides a comprehensive evaluation of the selected approaches, discussing

the benchmarking suite, the domain of the evaluation, the results obtained, as well as

the interpretations of these results.

Finally, Chapter 6 brings this thesis to a close with a summary of the study,

underscoring the contributions made to the field of place recognition for low-texture

or planetary-like environments. This chapter also explores potential avenues for future

work in this area.
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Chapter 2

Related Work

2.1 Place Recognition

Place recognition is a central task in several areas, including robotics, autonomous

driving, and augmented reality. It involves the encoding of sensor data into global

descriptors, which are then used to retrieve similar places using appropriate distance

metrics in the feature space. The encoding methods are largely dependent on the

type of sensor data used. This has led to the development of a wide variety

of place recognition approaches, which can broadly be classified into vision-based,

LiDAR-based, and visual-LiDAR fusion methodologies. The latter leverages the

benefits of both vision and LiDAR data to o↵er more robust and reliable place

recognition, particularly in aliased and low-texture environments.

2.2 Vision-Based Place Recognition

The vision-based place recognition paradigm involves the extraction and encoding of

features from image data. Traditional methods in this category utilize hand-crafted

local feature descriptors such as SIFT, SURF, and ORB [10, 34] to capture salient

information in images. However, these handcrafted features have limitations in

handling severe appearance changes. With the advent of deep learning, researchers have

started using networks [35, 36, 37, 38, 39] to replace hand-crafted feature descriptors.

Specifically, NetVLAD [35], a trainable framework that combines Convolutional

Neural Networks (CNNs) and Vector of Locally Aggregated Descriptors (VLAD), has

inspired several subsequent works. For instance, Patch-NetVLAD [40] implements both

local and global descriptors in an end-to-end manner. Other learning-based methods

have incorporated attention mechanisms [37, 41, 42, 43] to enhance resistance to visual

appearance changes. These attention mechanisms, implemented as shallow CNNs, can

be trained either separately [44] or jointly [45] with the backbone network.
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2.3 LiDAR-Based Place Recognition

LiDAR-based place recognition methods exploit the geometric structural information

of the environment, which is captured as point clouds. The irregular format of point

clouds presents unique challenges for applying conventional CNNs. Some solutions

include discretizing the 3D space into voxel grids and applying 3D convolution [44, 13],

or using PointNet [36] to process point clouds directly.

Several works such as PointNetVLAD [36] and LPD-Net [29] have been proposed

based on PointNet. These methods have also explored the integration of attention

mechanisms for better concentration on important features, such as in TransLoc3D

[46] and OverlapTransformer [38].

In contrast, MinkLoc3D [13] uses a sparse voxelized representation. It

employs a 3D convolutional architecture modeled on the Feature Pyramid Network

(FPN) [11] design pattern to extract informative local features, which are then

aggregated using the Generalized Mean Pooling (GeM) [47] layer into a discriminative

global descriptor. MinkLoc3D has demonstrated superior performance in standard

benchmarks, outperforming other point cloud-based global descriptors.

2.4 Visual-LiDAR Fusion for Place Recognition

The fusion of visual and LiDAR data for place recognition capitalizes on the strengths

of di↵erent sensor modalities and can improve performance in challenging environments

[44, 13, 48]. Fusion techniques include projecting segments of point clouds onto images

and using 2D and 3D convolution to extract features [13, 44], concatenating image and

point cloud features directly [13], and integrating attention modules to enhance feature

representation [44]. This approach leverages the complementary strengths of both RGB

images and 3D point cloud data, thus proving beneficial for applications like SLAM

where robust and accurate recognition is crucial for loop closure and relocalization.

2.5 Transformers in Multimodal Place Recognition

Transformers [49], originally designed for natural language processing, have been

progressively adopted in various vision tasks [50, 45]. Their self-attention mechanisms

have proven valuable in multiple areas, including image retrieval and visual place

recognition [42, 43, 51], lidar-based recognition [46], and fusion of modalities [44,

48]. Transformers are particularly adept at managing long-range dependencies and

adaptively identifying relevant regions in complex environments. Their ability to o↵er
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a global perception field for each output token enables the capture of semantically

meaningful structures, thereby showing promise across various domains in recent years.

There are several reasons to use transformers for multimodal place recognition:

Flexible data fusion: Transformers can adaptively learn to attend to di↵erent

modalities, allowing the model to weigh the contributions of each modality depending

on their relevance to the task [44].

Improved performance: Transformers have demonstrated state-of-the-art

performance in various tasks, including image recognition and 3D point cloud analysis

[46, 51], [51] suggesting their potential to excel in multimodal place recognition.

2.5.1 Attention Mechanisms

The application of attention mechanisms in place recognition has shown significant

potential. They enhance the models’ ability to adaptively identify task-relevant regions

in complex scene images. Attention maps can be utilized in multiple ways: as patch

descriptor filters [45, 37] that highlight the significant parts of the scene, or as weight

maps that modulate the CNN feature maps to generate global features [51]. This

enables models to focus on salient features and ignore irrelevant information, thereby

improving the robustness of place recognition. In the context of transformer-based

models, attention modules can be implemented with simplicity and e�ciency, often as

a linear layer that decodes the attention information from transformer tokens. This

exemplifies the flexibility and power of transformer-based models in multimodal place

recognition tasks, opening up exciting avenues for future research and development.

Receptive field:

As seen in Fig. 2.1, if we want the model to learn to establish a connection between

the L and R elements to extract their joint feature representation. Due to the local

connectivity of convolutions, many convolution layers need to be stacked together in

order to achieve this connection. The global receptive field of Transformers enables

this connection to be established through only one attention layer

2.6 Unification of Local and Global Features

Local descriptors, such as SIFT or ORB [52], encode an image Ii with a set Di =

dk|k = 1, ..., K of vectors dk 2 Rd at K regions of interest. They often provide better

performance than holistic descriptors, but require computationally expensive methods

for local feature matching like homography estimation, computation of the epipolar

constraint, or deep-learning matching techniques, e.g., SuperGlue[53] or LoFTR [7].
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Figure 2.1: Illustration of the receptive field of (a) Convolutions and (b)
Transformers[7]. .

On the other hand, global descriptors represent an image Ii 2 DB,Q with a single

vector di 2 Rd. This allows for e�cient pairwise descriptor comparisons with low

runtimes.

Figure 2.2: Example of local and global descriptors for place recognition (Source: [8])

The fusion of local and global features can result in more robust and informative

representations. Patch-NetVLAD [40], for instance, demonstrates the e↵ectiveness of

combining local and global features in an end-to-end manner. It uses a global descriptor

technique, NetVLAD [35], to extract descriptors from predefined image patches. This

fusion approach capitalizes on the strengths of both local and global features, providing

a comprehensive representation of the environment.

A similar concept was explored by Zheng et al. [5], albeit in the context of 6D

camera relocalization. Their work is particularly relevant because it focuses on the

aliasing problem using the MADMAX dataset[4], which includes stereo data but no

LiDAR.

Zheng et al. trained their model on images from Mars analog sites in the

Moroccan desert. These scenes are characterized by desolate landscapes like sands

and rocks, where textureless places and repetitive contents amplify ambiguity in

localization, simmilar to the Etna dataset. They employed pretrained SuperPoint
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Figure 2.3: Environment-aware image enhancement method proposed by Zheng et al.
[5]. The method employs a CNN to predict the residual of the input image under a
self-supervised framework by minimizing the keypoint matching assignment loss. The
robust pretrained keypoint detectors and matchers, SuperPoint and Superglue, are
used.

and Superglue to extract and track sparse features for e�cient Structure from Motion

(SfM) reconstruction. For global descriptors, they referred to the state-of-the-art image

retrieval method SFRS. During inference, they performed temporal matching within a

30-frame window for 10 iterations, and empirically defined an inlier threshold. They

also trained a lightweight network for image enhancement, which improved the expected

performance of these methods.

Despite the challenging desert environment, their system managed to generate

a coherent trajectory. In comparison, other state-of-the-art methods such as

DSAC++/DSAC*[54, 55] struggled due to the ambiguity. While the majority of the

time was consumed by the 2D keypoints matching step in both global and temporal

matching, they noted that this could be significantly reduced in a parallel manner.

Their work provides a robust and e�cient solution for feature extraction in ambiguous

scenarios, demonstrating the promise of unifying local and global features.

2.7 Self-Supervised Pretraining

Self-supervised pretraining is a prominent methodology that has shown remarkable

results in a variety of machine learning tasks. It enables a model to learn useful

features from the data without the need for explicit labeling, which can drastically

reduce the cost and e↵ort required for manual annotation. This approach is often used

to initialize models before fine-tuning them on a smaller, task-specific labeled dataset,

thereby enhancing their robustness and data e�ciency.
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2.7.1 Contrastive Learning Methods

Contrastive methods form a critical part of self-supervised learning, focusing on

learning representations such that similar instances are brought closer together in the

latent space while dissimilar ones are pushed apart. Two key examples of this approach

are SimCLR [56] and BYOL [57].

SimCLR (Simple Contrastive Learning of Visual Representations) [56, 58]

leverages data augmentations to generate positive pairs, and then optimizes the

representations using a contrastive loss function. The key idea is that di↵erent

augmentations of the same image should be similar to each other and dissimilar to

other images in the latent space.

BYOL (Bootstrap Your Own Latent) [57] also aims to bring the representations

of augmentations of the same image closer together, but uniquely, it does not rely

on negative pairs. It uses two networks, a target network, and an online network,

and minimizes the mean squared error between the normalized predictions of the two

networks.

These methods have proven e↵ective for pretraining on large unlabeled datasets

and have shown to improve performance on downstream tasks, particularly in the field

of computer vision.

2.7.2 Generative Methods: Masked Autoencoders

Recently, a shift towards generative self-supervised methods, such as masked

autoencoders, has been observed, as they have demonstrated superior performance

in many applications.

Masked autoencoders work by learning to reconstruct an input after part of it has

been masked out or corrupted. This way, the model learns to capture the underlying

structure and dependencies in the data. By learning to fill in the missing parts, the

model implicitly learns a rich, useful representation of the data.

Self-Supervised Learning for Images

Two recent developments in masked autoencoders are ConvNeXt [59] and Spark [60].

ConvNeXt employs 3D sparse convolutions (fig. 2.4), which allows for the application

of CNNs to point clouds, a departure from the common use of transformers. Spark also

uses sparse convolutions and is particularly designed for pretraining on point clouds.

These methods present a significant advantage as they are not dependent on

carefully designed data augmentations or pair constructions, unlike contrastive

methods. Moreover, they are particularly suited for modalities such as point clouds,
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where defining appropriate data augmentations can be challenging.

Figure 2.4: Pretraining pipeline using masked autoencoders for visual and point cloud
data. The masked input is fed into the encoder, and the decoder reconstructs the
original input. During pretraining, the masked regions are used as a self-supervised
signal. Source: [9].

In this work, we employ generative self-supervised pretraining methods due to their

promising results, adaptability to various data modalities, and lack of dependence on

intricate data augmentations. The masked autoencoder approach provides a robust

basis for learning powerful representations from our multi-modal data, contributing to

the overall performance of our place recognition system.

2.7.3 Self-Supervised Learning for LiDAR Data

LiDAR (Light Detection and Ranging) data, often represented as point clouds, presents

unique challenges for self-supervised learning. Point clouds are inherently sparse

and unordered, and contain rich geometric and spatial information that needs to be

adequately captured. Despite the successes of self-supervised learning in other domains

like images and language, its application to large-scale point clouds has remained

relatively unexplored.

Recently, a novel self-supervised pretraining approach specifically designed for

large-scale point clouds has been proposed: Voxel-MAE (Masked Voxel Autoencoder)

[61]. It combines the advantages of voxelization and mask-based pretraining. Point

clouds are transformed into voxel representations, and a portion of these voxels are

randomly masked out during training. The task of the network is to predict whether
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a voxel contains points, thus making the model voxel-aware of the object shape. This

approach e↵ectively utilizes the redundancy in large-scale point clouds and learns

representative features, even with a high masking ratio of up to 70% and outperforms

training from scratch on various downstream tasks, including 3D object detection,

semantic segmentation.

In this work, we focus on the use of the Voxel-MAE method due to its ability

to handle large-scale point clouds and its proven e↵ectiveness in various downstream

tasks. The unique design of Voxel-MAE, with its voxel-aware approach and high

masking ratio, provides a robust and e�cient way to learn representative features

from large-scale LiDAR point clouds, thus enhancing the perception capabilities of

autonomous vehicles.
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Chapter 3

Multi-modal Place Recognition

Place recognition plays a crucial role in autonomous navigation and mapping

technologies. The ability of an autonomous system to recognize its location within

a pre-mapped environment is pivotal for tasks such as relocalization, loop closure

detection, and waypoint navigation. The place recognition models used for this project

are categorized into unimodal and multimodal approaches.

3.1 Unimodal Approaches

Unimodal approaches leverage a single modality of data, either visual or LiDAR, for

place recognition. Visual models primarily depend on image data, extracting features

and descriptors that capture the appearance of a place. However, these models may

struggle in low-light conditions or when the appearance of a place changes over time

due to factors like seasonal changes, weather variations, and human activity.

On the other hand, LiDAR models primarily utilize three-dimensional point

cloud data generated by LiDAR sensors. They exploit geometric properties of the

environment, which are usually invariant to lighting conditions and less a↵ected by

appearance changes. Nevertheless, LiDAR models may face challenges in sparse or

texture-less environments, where geometric features are scarce or repetitive.

Despite their individual limitations, unimodal models are often straightforward and

computationally e�cient, making them suitable for real-time applications.

3.2 Multimodal Approaches

Multimodal approaches, as the name implies, combine multiple modalities of data,

typically visual and LiDAR, for place recognition. These models exploit the

complementary nature of visual and LiDAR data, leveraging the strengths of each

modality to enhance the robustness and performance of the place recognition system.
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For instance, visual data provides rich texture and color information, while LiDAR

data o↵ers accurate geometric structure.

By fusing these modalities, multimodal models can handle a wider variety of

environmental conditions and often outperform their unimodal counterparts. They

can also mitigate some of the challenges faced by unimodal models, such as lighting

variations for visual models and sparse environments for LiDAR models.

3.3 Taxonomy of Visual and LiDAR Modalities

Visual and LiDAR modalities can be further categorized into traditional and learned

approaches. Traditional approaches typically involve handcrafted feature descriptors,

which are manually designed to capture specific properties of the data. These methods

have been widely used in computer vision and robotics due to their interpretability and

computational e�ciency.

However, traditional approaches often struggle to handle complex and diverse

data as they rely on predefined feature representations that might not generalize

well to di↵erent environments or conditions. To overcome these limitations, learned

approaches employ machine learning algorithms, particularly deep learning, to

automatically learn feature representations from data.

Learned approaches have shown superior performance in various tasks, including

place recognition, due to their ability to learn complex and high-dimensional feature

representations. Nevertheless, these models often require large amounts of data for

training and are more computationally demanding than traditional methods.

The taxonomy of the place recognition models used in this project can be illustrated

as follows:
Place Recognition Models

Visual

Traditional

DBoW2[10]

Learned

NetVLAD[35]

Patch-NetVLAD[40]

LiDAR

Traditional

M2DP[62]

Scan Context[62]

Learned

PointNet++[36]

Multimodal

Learned

MinkLoc[13]

AdaFusion[44]

3.4 Selected Methods

The choice of methods for this project hinged on their ability to e↵ectively handle the

respective modalities, their compatibility with the overarching architecture of the place

recognition system, and their proven performance in previous research. Furthermore,
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the chosen models o↵er a balanced representation of both traditional and learned

approaches, as well as unimodal and multimodal methods.

3.5 DBoW2

DBoW2[10], or Dynamic Bag of Words, is a prominent model for visual place

recognition. It leverages ORB[52] descriptors, a type of feature descriptor that is

binary and thus e�cient to compute and match. By using binary descriptors, DBoW2

reduces the computational complexity of matching operations, which is crucial for

real-time applications.

The process for constructing the vocabulary begins by obtaining ORB keypoints

from thousands of generic images. In the context of our work, we have elected to use

a database of planetary-like images in order to construct a more relevant vocabulary.

Once these keypoints are gathered, a ’bag of words’ is created. This technique utilizes a

visual vocabulary (fig. ??3.1 3.1onvert an image into a sparse numeric vector, allowing

us to handle large image sets. The visual vocabulary is created o✏ine by discretizing

the descriptor space into W visual words.

In the case of a hierarchical bag of words, the vocabulary is structured as a tree. To

build it, a large set of features from training images, independent from those processed

online later, are extracted. These extracted descriptors are first discretized into kw

clusters by performing k-medians clustering with a k-means++ [63] seed. Any resulting

medians that are non-binary are truncated to zero. These clusters form the first level of

nodes in the vocabulary tree. Subsequent levels are created by repeating this operation

with the descriptors associated with each node, up to Lw times. Finally, a tree with

W leaves is obtained, which are the words of the vocabulary.

Figure 3.1: Diagram of DBoW vocabulary, extracted from [10].

The importance of each word is assigned a weight according to its relevance in the

training image set. Words that are very frequent, and therefore less discriminatory,

have their weights reduced. This is achieved using the term frequency-inverse document
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frequency (tf-idf) [64].

When converting an image It, taken at time t, into a bag of words vector vt 2 RW ,

the descriptors of the detected features traverse the tree from the root to the leaves,

selecting intermediate nodes at each level that minimize Hamming distance.

To calculate the similarity between two bag-of-words vectors v1 and v2, the L1

score s(v1, v2), which falls in [0, 1], is computed:

s(v1, v2) = 1� ||v1� v2||1
2|v1||v2|

Along with the bag of words, an inverted index is maintained. This structure stores,

for each word in the vocabulary, a list of images in which it is present. This is beneficial

when querying the database, as it enables comparisons only with those images that

share some words with the query image. The inverted index is updated when a new

image is added to the database.

Additionally, a direct index is used to store the features of each image. The nodes

of the vocabulary are separated according to their level l in the tree, starting with the

leaves (level l = 0) and ending at the root (l = Lw). For each image It, the direct

index stores the nodes of level l that are ancestors (higher level, closer to the root) of

the words present in It, along with the list of features ftj associated with each node.

DBoW2 uses the direct index to expedite the computation of correspondences

between two sets of ORB features. It can limit brute force pairings to only those

features that belong to the same vocabulary tree node at a certain level. This trick

is used when searching for matches to triangulate new points, and in loop closure and

relocalization.

3.5.1 Implementation details

In terms of implementation details, we follow the same configuration used for

ORB-SLAM2[52]. This includes a vocabulary with a branching factor of 10 and depth

levels of 6, creating a dictionary of 1 million words.

We extract ORB features as seen in fig. 3.2 and create a custom vocabulary using

images from Mt Etna and similar environments.

Despite its e�ciency and simplicity, DBoW2 can struggle with changes in viewpoint

and scale, as well as appearance changes over time. Its reliance on visual data also

makes it sensitive to lighting conditions and occlusions.
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Figure 3.2: Extracted ORB keypoints using an image from the Etna datset.

3.6 PointNet++

PointNet++[36] is a significant deep learning model designed to process point cloud

data, which is particularly applicable to LiDAR-based place recognition. This model’s

significance lies in its ability to capture local structure from raw point clouds, compute

point features, and aggregate these features to classify or segment the input. Unlike

traditional methods that require preprocessing steps like voxelization or meshing,

PointNet++ operates directly on raw point clouds, thus preserving the original

geometric structure of the data. Its hierarchical structure enables the processing

of a large number of points, making it ideal for handling large-scale LiDAR data.

However, despite its robustness to various transformations, it might struggle in

cluttered environments or when point clouds are sparse, as it relies on the local

geometric structure of the data [36].

The mathematical basis of PointNet++ lies in its consideration of a discrete metric

space X = (M, d), where the metric is inherited from a Euclidean space Rn, M ✓ Rn

is the set of points, and d is the distance metric. In scenarios where the density of M

in the ambient Euclidean space is not uniform, PointNet++ learns set functions f that

take X as input and produce information of semantic interest regarding X .

PointNet++ introduces a hierarchical grouping of points and progressively abstracts

larger and larger local regions along the hierarchy to capture local context at di↵erent

scales, as seen in Fig. 3.3. This hierarchical structure is composed of several set

abstraction levels. At each level, a set of points is processed and abstracted to produce

a new set with fewer elements. The set abstraction level comprises three key layers:

Sampling layer, Grouping layer, and PointNet layer.

The Sampling layer employs an iterative farthest point sampling (FPS) approach

to select a subset of points, ensuring better coverage of the entire point set. In

the Grouping layer, local region sets are constructed by finding ”neighboring” points
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Figure 3.3: Pointnet++ architecture. Illustration of our hierarchical feature learning
architecture and its application for set segmentation and classification using points in
2D Euclidean space as an example

around the centroids. This is done using a kNN search.

For tasks such as semantic point labeling, which require detailed information for all

points in the data set, the subsampling approach inherent to PointNet++ might not

provide su�cient granularity. Hence, to obtain features for all original points without

the high computational cost of treating all points as centroids, the authors propose a

hierarchical propagation strategy.

This strategy involves distance-based interpolation and the integration of skip links

across levels. In this context, a feature propagation level is defined as the process of

propagating point features from a set of Nl ⇥ (d + C) points to a larger set of Nl�1

points. Here, Nl and Nl�1 denote the point set size at the input and output of set

abstraction level l, with Nl  Nl�1.

The propagation of point features is realized by interpolating feature values f from

the Nl points at the coordinates of the Nl�1 points. Among the various possible

interpolation methods, we employ inverse distance weighted average based on k nearest

neighbors. The interpolation is given by the formula:

f (j)(x) =

P
k

i=1 wi(x)f
(j)
iP

k

i=1 wi(x)
where wi(x) =

1

d (x, xi)
p , j = 1, . . . , C

The interpolated features on Nl�1 points are then combined with the skip-linked

point features from the set abstraction level. This fusion of features is subsequently

passed through a ’unit pointnet’, which can be compared to a one-by-one convolution

in convolutional neural networks (CNNs).

Finally, to update each point’s feature vector, we apply several shared fully
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connected layers with ReLU activation. This process is repeated until features

have been propagated to the entire original set of points, providing comprehensive,

point-wise feature information necessary for tasks like semantic point labeling.

3.7 NetVLAD

NetVLAD[35] combines the robust feature extraction capabilities of Convolutional

Neural Networks (CNNs) with the Vector of Locally Aggregated Descriptors (VLAD)

encoding, a widely used method in image retrieval tasks. This integration results in a

potent model for visual place recognition that leverages the strengths of deep learning

and traditional image retrieval techniques.

The design of NetVLAD is inspired by the standard pipeline in the image retrieval

community, which includes extracting local descriptors and subsequently pooling them

in an orderless manner. To learn the representation end-to-end, NetVLAD mirrors this

pipeline using di↵erentiable modules within a CNN architecture.

Figure 3.4: NetVLAD architecture.

NetVLAD employs a CNN as a dense descriptor extractor by truncating the network

at the last convolutional layer. This practice is e↵ective for instance retrieval and

texture recognition, transforming the output into a H ⇥ W ⇥ D map. This map

represents a set of D-dimensional descriptors extracted at H ⇥W spatial locations.

A VLAD layer, inspired by the VLAD encoding method, is integrated into the

architecture for pooling the extracted descriptors into a fixed image representation.

This VLAD layer contains learnable parameters optimized via back-propagation. It

facilitates the generation of a fixed-size vector f (Ii) for each image, a crucial component

for place recognition tasks.

ResNet50, a well-established CNN architecture, serves as the backbone of

NetVLAD. The backbone is truncated at the last convolutional layer (conv5), before

the ReLU activation. The network is further extended with Max pooling (fmax) and

NetVLAD (fV LAD). For the VLAD layer, we set the cluster size K = 64, resulting in

16k and 32k-D image representations.
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The training parameters ✓ of the representation f✓ are optimized using Stochastic

Gradient Descent (SGD).

NetVLAD has demonstrated superior performance in various place recognition

benchmarks. It exhibits robustness to variations in viewpoint, scale, and lighting

conditions, attesting to the capability of CNNs in learning invariant features from

complex visual data and the power of VLAD encoding in aggregating these features

into a single, robust descriptor.

3.8 MinkLocMultimodal

MinkLocMultimodal[13] is a multimodal place recognition model that fuses visual and

LiDAR data. Utilizing 3D convolution on sparse voxelized point clouds, it extracts

local features that are then aggregated into a global descriptor. The model is designed

to harness the complementary strengths of visual and LiDAR data to achieve robust

place recognition under various environmental conditions [13].

The architecture of MinkLocMultimodal consists of two branches, a sparse

convolutional neural network (Sparse CNN) for LiDAR processing and a traditional

CNN for visual processing. The Sparse CNN operates on a voxelized representation

of the point cloud, allowing for e↵ective processing of sparse 3D data. Meanwhile, the

CNN processes visual data to extract image features encapsulating the appearance of

a place [13].

However, despite its strengths, MinkLocMultimodal has certain limitations. The

fusion strategy employed by MinkLocMultimodal is static and does not account for

the varying importance of each modality in di↵erent situations. This leads to the

”dominating modality” problem during training. This issue arises when the network

overly focuses on a modality that overfits to the training data, driving the loss down

during training but leading to suboptimal performance on the evaluation set. This

Figure 3.5: MinkLocMultimodal architecture.
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research aims to address this problem by proposing an adaptive fusion strategy that

takes into account the importance of each modality based on the environmental context.

3.8.1 Implementation details

The loss function L, defined by Eq. 3.1, is a sum of three terms: the first based on the

fused multimodal descriptor D, the second on the point cloud descriptor DPC , and the

third on the RGB image descriptor DRGB:

L = (1� ↵� �)LF + ↵LPC + �LRGB, (3.1)

where ↵, � are experimentally chosen weights, and each component LF ,LPC ,LRGB

is a triplet margin loss function [65] defined as:

L⇤ (ai, pi, ni) = max
�
d (ai, pi)� d (ai, ni) +m, 0

 
, (3.2)

where d(x, y) = kx � yk2 is the Euclidean distance between descriptors x and

y; ai, pi, ni are descriptors of an anchor, a positive, and a negative element in i-th

triplet and m is a margin.

For each batch, LF is computed from triplets constructed from multimodal

descriptors D; LPC from triplets constructed from point cloud descriptors DPC ;

and LRGB from triplets constructed from RGB image descriptors DRGB. This loss

function is designed to encourage the network to learn useful representations from

both modalities and to fuse these representations e↵ectively.

3.8.2 Parameters and Hyperparameters

3D point coordinates are normalized to [-1,1] and quantized with a 0.01 quantization

step to ensure computational e�ciency. The initial learning rate for network

parameters in the RGB image feature extraction block is set to 10�4 and for all other

parameters to 10�3. The network is trained for 50 epochs, with the learning rate

reduced by a factor of 10 at the end of the 30th epoch. This learning rate schedule is

intended to allow the network to make large adjustments in the early stages of training

and more refined adjustments in the later stages.

The dimensionality of point cloud and RGB image descriptors is set to k = 128,

and the multimodal descriptor has 2k = 256 dimensions. This dimensionality setting

provides a balance between computational e�ciency and the ability to capture su�cient

information in the descriptors.

To prevent embedding collapse in early epochs of training, the author propose a

dynamic batch sizing strategy. The initial batch size is set to 8. When the number
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of active triplets falls below 70% of the current batch size, the batch size is increased

by 40% until the maximum size of 160 elements is reached. This strategy allows the

model to adapt the batch size based on the complexity of the learning task at each

stage of training.

To mitigate overfitting, we can employ L2 weight regularization with a coe�cient

of � = 10�3. The coe�cients of the loss terms in Eq. 3.1 are ↵ = 0.5, � = 0. These

values were chosen to balance the contributions of the multimodal, point cloud, and

RGB image descriptors to the total loss.

In the next chapter, we will propose modifications and improvements to this

model to address the limitations identified in this chapter, particularly the dominating

modality problem and the static fusion strategy.

3.9 AdaFusion

Developed by Lai et al.[44], AdaFusion is a multimodal place recognition model which

fuses visual and LiDAR data using a trainable fusion module. This model allows

for adaptive combination of features based on their relative importance, thereby,

increasing the robustness of place recognition, particularly in challenging environmental

conditions.

Figure 3.6: AdaFusion architecture.

The AdaFusion model consists of separate branches for visual and LiDAR data

processing, similar to MinkLocMultimodal[13]. However, in contrast to merely

concatenating the global descriptors, AdaFusion utilizes a fusion module that

adaptively weighs each modality’s contribution. This approach allows the model to
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emphasize the most reliable modality in di↵erent situations, thereby improving place

recognition performance.

AdaFusion has demonstrated promising results in various place recognition

benchmarks, indicating its ability to handle diverse and challenging conditions.

Nevertheless, the model’s complexity and computational demand are higher than

traditional methods and some learned approaches due to the adaptive fusion module.

3.9.1 Implementation Details

In AdaFusion, the convolution blocks ConvXd di, X 2 {2, 3}, i = 1, 2, 3 are constituted

by basic convolution blocks (denoted as C). The structure of C is outlined in Fig.

3, where a convolution with kernel = 3, stride = 1 and padding = 1 is applied,

followed by a ReLU activation function, repeated twice. As shown in Fig. 4, we

add a batch normalization (BN) layer [66] to the last blocks ConvX d3 to reduce the

internal covariate shift before obtaining the local visual feature map M I =
⇣
mI

c,h,w

⌘
2

RC1⇥H1⇥W1 and the local LiDAR feature map MP =
⇣
mP

c,x,y,z

⌘
2 RC1⇥X1⇥Y1⇥Z1 .

The use of BN in our structure significantly improves the feature extraction ability.

Our observations reveal that when directly using a single visual or LiDAR feature as

a global descriptor for searching nearest neighbors, a significant improvement of about

10% can be achieved with the BN layer compared to those without.

Global features are produced by applying a Global Average Pooling (GAP) [67] to

MI and MP . GAP is a special case of generalized-mean (GeM) pooling [67]. These

global pooling methods, compared to FC layers, have fewer parameters and are more

robust to resolution changes of the input data.

Adaptive Weights are proposed, utilizing a two-stage fusion strategy to combine the

attention information of images and point clouds. These weights, ↵ = [↵1,↵P]
>, are

derived through a weight generation branch that employs a two-stage fusion strategy

to e↵ectively fuses the attention information of images and point clouds. Unlike

traditional attention-augmented place recognition methods, the attention mechanism

within this network doesn’t function as salient region masks. Instead, it modifies the

contribution of visual and LiDAR features, e↵ectively acting as a dynamic weighting

function.

The two-stage fusion strategy begins with multi-scale attention, as seen in [68],

which is utilized to fully leverage the information available in di↵erent network layers.

As depicted in Fig. 2 and Fig. 3, for each modality, spatial attention and channel

attention are computed from the feature extraction branch following the methodology

presented in [69]. However, the implementation in [69] and other related works, such as
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[70], [71], focus only on 2D images. We extend this to encompass 3D voxel grid form,

given the query mapQ, the key mapK, and the value map V of shape C2⇥X2⇥Y2⇥Z2.

The attention maps are derived as follows:

Sx = Softmax
⇣
K>Q

⌘
, Sc = Softmax

⇣
QK>

⌘
,

where the softmax operation is performed along the row (second dimension) of

the matrix. The spatial attention and the channel attention can then be obtained by

reshaping V S>
x
and ScV back to shape C2 ⇥X2 ⇥ Y2 ⇥ Z2.

To reduce computational cost and retain useful information, a convolution with

a kernel of 1 is applied to linearly fuse the attention. This is performed before

outputting from the attention block (A), where downsample with nearest interpolation

is performed to ensure all the results have the same size.

Intra-modality fusion involves concatenating the multi-scale attention of the same

modality along the channel dimension. As mentioned previously, attention from

di↵erent layers of the network concentrates on varying contents. To fuse and merge

these, a convolutional layer with a kernel size of 1 is applied to the attention of the

same modality. This operation acts as a transformation of the number of channels,

balancing the attention across layers.

For inter-modality fusion, an issue that arises when fusing attention of di↵erent

modalities is the inconsistency of data structures. For instance, in this case, the

visual attention A1 is of 3D shape (C3 ⇥H3 ⇥W3) while the LiDAR attention AP

is of 4D shape (C3 ⇥X3 ⇥ Y3 ⇥ Z3). To address this, GAP is applied to AI and AP

respectively, yielding two 1D vectors a1 2 RCa and aP 2 RC3 that have the same

shape and dimension. The length of these vectors can be easily controlled in the

intra-modality fusion stage, where a pre-determined size that represents the number of

channels after fusion within each modality. The key is to set C3 such that it captures

enough information from each modality but doesn’t overly complicate the fusion process

or increase computational burden. For example, C3 might be set to 128 or 256 in typical

applications.

These two vectors, a1 and aP, are then concatenated and passed through a fully

connected layer, and a softmax activation function is applied to obtain the weights

↵ = [↵1,↵P]
>:

↵ = Softmax
⇣
FC

�
Concat (a1, aP)

�⌘

The softmax function ensures that these weights sum up to 1 and are within the

range of 0 to 1, thus they can serve as a valid weighting scheme for the fusion of features
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from the two modalities.

These weights ↵ = [↵1,↵P]
> are then used in the fusion of features from the two

modalities. The final feature representation F is a weighted sum of the image and

point cloud features, F1 and FP, respectively:

F = ↵1 · F1 + ↵P · FP

This strategy allows the network to adaptively adjust the contribution of each

modality based on the attention information, which could be especially useful in

challenging scenarios, such as low light conditions, where one modality may provide

more reliable information than the other. This enhances the robustness of the place

recognition task and could potentially lead to improved performance.

Additionally, the adaptive weighting scheme allows the network to be more versatile

in di↵erent scenarios. For instance, in a low-light or obscured vision scenario, the

network may assign a higher weight to the point cloud information, whereas in scenarios

with clear vision but cluttered or unstructured point cloud data, the network might

assign a higher weight to the image information.

In conclusion, this fusion strategy allows the system to better handle the

heterogeneity and varying reliability of di↵erent sensor modalities, and therefore

enhances its robustness. However, to ensure the e↵ectiveness of this approach, it is

important to train the network with diverse data covering a wide range of scenarios.

29



30



Chapter 4

Proposed Method: UMF

In this chapter, we introduce our novel approach named Unifying Local and Global

Multimodal Features (UMF) - an architecture explicitly designed the aforementioned

challenges in extreme environments. The UMF architecture is uniquely engineered to

overcome the identified challenges encountered in aliased and low-texture environments,

representing a step-change in place recognition methodologies.

UMF distinguishes itself from conventional methods through its sophisticated fusion

of local and global multimodal features via transformer-based mechanisms. The

principal contributions of this method revolve around exploiting multimodal inputs

integrated via transformers, inspired by the performance and versatility of Adafusion,

strengthen by robust pre-training. Additionally, it capitalizes on both local and global

features for initial matching and subsequent re-ranking of top K candidates, manifesting

a formidable strategy to excel in challenging environments while minimizing the

matching overhead.

The UMF framework processes LiDAR and visual data inputs, each being

encoded through distinct branches. The intermediary outputs of these branches are

coalesced through a transformer-based attention mechanism, forming a compact feature

representation that is employed for candidate retrieval.

The core of the multimodal fusion process employed by UMF lies in the extraction

of features from the visual and LiDAR data, accomplished via a Feature Pyramid

Network (FPN) as shown in fig. 4.1. The FPN is specifically chosen for its proficiency

in extracting multi-scale features, thereby capturing both the local fine detail and the

global context. Using a ResNet50 backbone, the FPN within UMF is endowed with the

capability to learn high-level features while displaying resilience against environmental

variations.

The coarse intermediate features retrieved from the FPN are fused employing a

series of attention layers, balancing the contribution from each modality, taking into

account the relative importance of each type of data.
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Figure 4.1: Diagram of the Feature Pyramid Network (FPN) used in the UMF
architecture. Source: [11]

UMF is deployed in two distinctive versions, each uniquely addressing the

incorporation of fine local features:

� Superfeatures, elucidated further in section 4.3

� RANSAC, a method explained in detail in section 4.4

The unique approach for feature extraction, fusion, and attention mechanism in the

UMF architecture enhances its ability to adapt and perform reliably in the challenging

environments of low-texture and aliasing, improving previously evaluated baselines.

4.1 Self-Attention and Cross-Attention

In the UMF model, attention mechanisms are employed to enhance the ability of the

model to dynamically focus on di↵erent parts of the input data. UMF utilizes both

self-attention and cross-attention mechanisms, as established by Vaswani et al. [49] in

the original Transformer model.

In self-attention layers, the model assigns di↵erent weights of importance to the

features within a single modality (either FA or FB), thereby capturing intricate

relationships within local and global contexts. This allows the model to identify

distinctive patterns within each modality and enhances its ability to recognize places

based on a single modality.

Cross-attention layers, on the other hand, take as inputs features from both

modalities (either FA and FB or FB and FA). By interleaving self and cross-attention

layers in the UMF module, the model is able to capture the intricate relationships

between the two modalities, and this helps improve the robustness of place recognition.
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Visualizations of attention weights from self attention layers in UMF are shown in sec.

5.4.2.

The proposed UMF model e↵ectively combines the strengths of the FPN, positional

encoding, and transformer-based attention mechanisms, o↵ering an innovative and

e↵ective solution for multimodal place recognition in aliased and low-texture

environments. Through extensive experiments and evaluations, we demonstrate the

superior performance of the UMF model, particularly in challenging scenarios where

traditional place recognition methods struggle.

4.2 Integration of Local and Global Features

UMF model incorporates both local and global features to enhance the representation

of the environment, thereby reducing perceptual aliasing. This methodology integrates

fine-grained details along with the global spatial embedding, refining the model’s

di↵erentiation capabilities between visually similar locations. The integration of these

features builds upon existing methodologies [72] with further advancements in merging

these features for multimodal scenarios.

The model utilizes transformers with positional encoding for coarse-level fusion,

employing both self and cross-attention. The use of positional encoding is a standard

technique used in transformers [49]. We implement the same approach introduced in

DETR [73], which ensuring that each element in the feature maps FA and FB has unique

position information and the transformed features become position-dependent, which

enables the model to improve its spatial awareness and the inter and itra modality

relationships between features in the fusion branch.

Additionally, it employs transformers along with self-attention for processing

fine-grained local features specific to each modality as seen in Fig. 5.5 5.6.

4.2.1 Reranking Mechanism for Ambiguity Resolution

The UMF model incorporates a reranking mechanism to refine the initial ranking

of place recognition candidates, taking into consideration the relationships amongst

top-ranked candidates as illustrated in Figure 4.2. This mechanism aids in ambiguity

resolution, thereby improving place recognition accuracy, particularly in visually similar

environments. This unique attribute enhances the post hoc output of the place

recognition model.
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Figure 4.2: UMF’s multimodal place recognition reranking pipeline.

4.3 SuperFeatures

Several recent studies have reported excellent performance by methods that merge

local and global features in demanding deep image retrieval benchmarks. However, the

utilization of local features presents two primary concerns. Firstly, they often amount

to localized map activations of a neural network and can therefore be extraordinarily

redundant. Secondly, they are typically trained with a global loss acting on top of an

aggregated set of local features. Testing, however, is based on local feature matching,

leading to a discrepancy between training and testing stages [42].

To address these issues, Weinzaepfel et al.[42] presented a novel Local Iterative

Transformer (LIT) module trained via contrastive learning, deviating from traditional

methods such as Deep Local and Global features (DELG)[72]. This approach

introduces a contrastive loss that directly operates on Super-features, requiring only

image-level labels for training.

Super-features, serving as high-level representations encapsulating the most

pertinent information for place recognition, are produced by passing local features

through a transformer layer. This process results in an ordered set of Super-features

of dimensions [N,F ], yielding a compact and expressive representation of the local

features.

The construction of Super-features involves an iterative attention module,

generating an ordered set where each element focuses on a localized and discriminative

image pattern. We took the same superfeature principle and extended it to 3D
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scenarios, extracting Superfeatures from the voxelized point cloud as shown inf Fig.

4.3.

Figure 4.3: Diagram of the proposed UMF model with Superfeature learning. Each
branch separately encodes the inputs, the fusion transformer merges the local and
global features, and the Superfeature representation is utilized for candidate retrieval
and reranking during inference.

To construct a set of eligible Super-feature pairs, the selected Super-features are

subjected to a contrastive margin loss. This loss function minimizes the pairwise

distance between matching Super-features, while simultaneously reducing the spatial

redundancy of Super-features within an image. This process generates a diverse set of

Super-features that attend to di↵erent local features or di↵erent image locations.

Contrastive loss on Super-features:

Lsuper =
X

(s,s+)2P

2

4��s� s+
��2
2
+

X

n2n(i(s))

⇥
µ0 � ks� nk22

⇤+
3

5

where µ is a margin hyper-parameter and the negatives for each s are the Super-features

from all n negative images of the training tuple with Super-feature ID equal to i(s).

Reducing spatial correlation between attention maps:

To create as complementary Super-features as possible, they are encouraged to

attend to di↵erent local features, i.e., di↵erent image locations. The cosine similarity

between the attention maps of all Super-features of every image is minimized. Let

matrix ↵ = [↵̃1, . . . , ↵̃N ] denote the N attention maps after the last iteration of LIT.

The attention decorrelation loss is given by:
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Lattn(x) =
1

N(N � 1)

X

i 6=j

↵̃>
i
· ↵̃j

k↵̃ik2
��↵̃j

��
2

, i, j 2 {1, . . . , N}

In other words, this loss minimizes the o↵-diagonal elements of the N̂N

self-correlation matrix of ↵. We ablate the benefit of this loss and others components

presented in this section in Section 5.5

4.3.1 Reranking

One of the key challenges in our task is the determination of correspondences at the

Super-feature level, especially considering that we only have access to pairs of matching

images, i.e., image-level labels. To address this, we propose a simple yet e↵ective

reranking mechanism that relies on nearest-neighbor-based constraints.

For any Super-feature s 2 S, we define a function i(s) that returns the Super-feature

ID, i.e., i (si) = i, 8si 2 S. We also define a function n(s, �) = argminsi2� |s� si|2 that
returns the nearest neighbor of s from the set �.

Given a positive pair of images x,x+, and two Super-features s 2 �, s0 2 �0 from

their respective Super-feature sets �, �0, we impose several criteria to consider the

Super-feature pair (s, s0) eligible:

1. Reciprocal nearest neighbors: s = n(s0, �) and s0 = n(s,S 0).

2. Pass Lowe’s first-to-second neighbor ratio test: |s� s0|2 /
���s0 � n

�
s0, �\s

����
2
> ⌧ .

3. Have the same Super-feature ID: i(s) = i (s0).

Formally, these conditions can be expressed as:

�
s, s0

�
2 P ()

(
s = n(s0, �)
s0 = n(s,S 0)

)
and

8
<

:
i(s) = i (s0)

|s� s0|2 /
���s0 � n

�
s0, �\s

����
2
> ⌧

9
=

;

(4.1)

where P is the set of eligible pairs, and ⌧ is a hyperparameter controlling the

Lowe’s ratio test. We empirically set ⌧ = 0.9.

Overall, the Super-feature concept and its usage in reranking o↵er flexibility

and significant performance improvement, whilst still maintaining computational and

memory e�ciency.

4.4 RANSAC Variant

The RANSAC (Random Sample Consensus) variant of the UMF model emphasizes

salient feature selection and geometric verification. This variant operates by initially
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applying a transformer layer to generate attention maps. These maps then filter and

pinpoint salient local features filtering using a hyper parameter �, retaining only those

that carry significant information for place recognition.

The local features are processed using stacked layers of transformer blocks, we use

the attention maps to filter the salient features attn score > � for both modalitites.

Similarly to the super-features, we project the local features to a one dimensional

embedding and use a constrstive loss on each local modality during training.

4.4.1 Reranking

Subsequently, the RANSAC algorithm is employed to estimate the geometric

transformation between the current observation and candidate locations. This

estimation process provides a robust approach to matching local features,

accommodating the presence of noise and outliers e↵ectively.

The spatial consistency score is given by the number of inliers returned when fitting

a homography between the two images or voxel grids, using corresponding keypoints

computed using nearest neighbor matching.

While this approach has the potential to deliver higher accuracy owing to the

geometric consistency between matched features, it can also be computationally

expensive due to the iterative nature of the RANSAC.

4.5 Training Pipeline

4.5.1 Self-supervised Pretraining

The UMF model leverages unlabeled data from similar domains, such as Mars-like

environments in Morocco, for pretraining. This self-supervised learning approach

makes the encoder robust to environmental variations, thus minimizing the dependency

on labeled data and accelerating model convergence during downstream task

fine-tuning.

Our Unifying Local and Global Multimodal Features with Transformers (UMF)

model takes advantage of self-supervised pretraining methodologies as discussed in

section 2.7. Each part involves the use of di↵erent pretraining strategies tailored to the

unique characteristics of the data.

This pretraining phase leverages the masked autoencoders for both visual and

LiDAR modalities, inspired by Spark [60] and Voxel-MAE [61].

The main objective of the self-supervised pretraining is to generate robust and

informative representations of the input data, which are then transferred to downstream
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Figure 4.4: Schematic of the proposed UMF RANSAC variant. Each branch
independently encodes inputs that contribute to the fusion module and the local feature
extraction process. During inference, the top K candidates are retrieved and reranked
utilizing the salient local features, where attention >⌧ .

tasks.

Visual Pretraining

As one of the crucial components of the multimodal pipeline, the visual input undergoes

a pretraining strategy focusing on enhancing the spatial consistency within the data. A

contrastive learning approach, as depicted in Figure 4.6, is adopted on a vast unlabeled

dataset. This approach is designed to discern visually similar yet distinct locations,

thereby improving the model’s ability to tackle visual aliasing issues.

The pretraining begins with the patch-wise masking strategy that is commonly

employed in masked image modeling. An image is segmented into multiple

non-overlapping square patches, each subjected to independent masking according to a

predetermined mask ratio. The main challenge lies in obscuring the pixel information

from these masked patches without disturbing the data distribution of pixel values,

preventing the loss of mask patterns through successive convolution operations, and

eliminating unnecessary computations on masked regions.

To address these issues, the authors propose to assemble all unmasked patches into

a sparse image, as shown in Fig. 4.5, which is then encoded using sparse convolutions.

This approach ensures no information leakage, maintains compatibility with any

convolutional neural network (convnet) without the need for backbone modifications,

and e↵ectively manages the issues of ”pixel distribution shift” and ”mask pattern

vanishing.” Moreover, sparse convolution only computes at visible places, leading to
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a more e�cient process. When fine-tuning, all sparse convolutional layers naturally

transform into ordinary dense ones, as dense images can be considered a specific case

of sparse images without ”holes”.

The encoding process is hierarchical; the encoder generates a set of feature maps

of varying resolutions or scales. For instance, the selcted ResNet model produces four

scales of feature maps, each with di↵erent resolutions, which are then used for decoding.

Figure 4.5: Sparse masked modeling with hierarchy. To adapt convolution to irregular
masked input, visible patches are gathered into a sparse image and encoded by sparse
convolution. To pre-train a hierarchical encoder, we employ a UNet-style architecture
to decode multi-scale sparse feature maps, where all empty positions are filled with
mask embedding. This “densifying” is necessary to reconstruct a dense image. Only
the regression loss on masked patches will be optimized. After pre-training, only the
encoder is used for downstream tasks.

The decoder mirrors the design of UNet and includes three successive blocks,

[B3,B2,B1], with upsampling layers. Prior to the reconstruction of a dense image,

it is necessary to densify all the empty positions on sparse feature maps. This process,

termed ”densifying”, involves the use of mask embeddings [M4] to get a dense feature

and projection layers �4, in case encoder and decoder have di↵erent network widths.

The optimization target is to reconstruct an image, as shown in fig. 4.6, from

D1 using a head module h that should include two more upsampling layers to reach

the original resolution of the input. The authors chose per-patch normalized pixels

as targets with an L2-loss and calculated errors only on masked positions. These

decisions are based on previous findings indicating that such designs enable models

to learn more informative features. Following pretraining, the decoder is discarded,

and only the encoder is used for downstream tasks. When fine-tuning, the pre-trained

sparse encoder can be directly generalized to dense images without any tuning.

The derived representations exhibit robustness against out-of-distribution data

and surpass the classification accuracy of fully supervised counterparts on diverse
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Figure 4.6: Visualization of the self-supervised pretraining phase for the Robotcar
dataset, masking ratio 0.6%.

labels. Importantly, the loss computation is restricted to masked patches, thereby

circumventing self-reconstruction that may dominate the learning process and obstruct

knowledge assimilation.

LiDAR Pretraining

The pretraining strategy for LiDAR data involves reconstructing the original surface

from which the 3D points were derived. This self-supervised approach generates latent

vectors that serve as inputs for the reconstruction head, as depicted in Figure 4.7

and 4.8. The underlying assumption is that a network adept at reconstructing the

scene surface from sparse input points will also capture essential semantic information,

which is invaluable for perception tasks. The simplicity of this formulation ensures a

straightforward implementation and broad compatibility with various 3D sensors and

appications such as place recognition, semantic segmentation or object detection.

The training loss for this process is calculated using Binary Cross Entropy,

specifically for the reconstruction of voxel occupancy.

To handle the spatial structure of the point cloud data, a voxel-based approach

is employed. This involves partitioning the point clouds into equally spaced voxels,

a strategy frequently employed in 3D perception models. Given a point cloud with

dimensions WxHxD along the XxY xZ axes, each voxel is of size vWxvHxvD, resulting
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Figure 4.7: Architecture of Voxely-MAE. First transform the large-scale irregular
LiDAR point clouds into volumetric representations, randomly mask the voxels
according to their distance from the LiDAR sensor (i.e., range-aware masking strategy),
then reconstruct the occupancy values of voxels with an asymmetric autoencoder
network. The encoder is formed by a set of Spatially Sparse Convolutions with
positional encoding. We apply binary occupancy classification as the pretext task
to distinguish whether the voxel contains points. After pre-training, the lightweight
decoder is discarded, and the encoder is used to warm up the backbones of downstream
tasks.

in a total of nl voxels, where nv voxels contain points. This voxel-based approach

enhances computational e�ciency compared to point-based methods.

LiDAR point clouds are unique due to their sparsity levels being directly associated

with the distance from the LiDAR sensor. The points closer to the sensor are densely

packed, whereas those further away are notably sparse. As such, a standard masking

strategy cannot be applied uniformly across both near-range and far-range points. To

address this, we employ a range-aware random masking strategy, proposed by Min et

al.[61], which takes into consideration the distance information. This strategy separates

the occupied voxels into three groups based on their distance from the LiDAR sensor:

0-15 meters, 15-30 meters, and ¿30 meters. The masking ratio decreases with increasing

distance, applying a distinct random masking strategy to each group.

In contrast to other masked autoencoding works that primarily aim to reconstruct

the masked parts through a regression task, the pretraining for LiDAR data in this

work focuses on predicting the occupancy of the 3D scene. This task is crucial in

3D perception, where the occupancy structure of the 3D scene plays a vital role in

perception models. Motivated by this, the pretraining aims to encourage the network
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Figure 4.8: Visualization of the self-supervised pretraining phase for the Robotcar on
the left and Etna datatset on the right, the first shows the original point cloud, then
the masked and final reconstructed one, masking ratio 0.6%.

to reason about high-level semantics to recover the masked occupancy distribution of

the 3D scene from a limited number of visible voxels. To this end, a binary occupancy

classification loss is calculated using cross-entropy between the predicted occupied

voxels P and the ground truth occupied voxels T:

loss = � 1

batch

batchX

i=1

nlX

j=1

Ti

j
logPi

j
,

where Pi

j
represents the predicted occupancy probability of voxel j for the i-th

training sample, and Ti

j
corresponds to the ground truth indicating whether the voxel

contains point clouds.

4.5.2 Downstream task: Place recognition

Upon completing the self-supervised pretraining phase, we fine-tune the UMF model

on place recognition tasks using a triplet margin loss with batch hard negative mining

strategy, inspired by MinkLoc [13]. Each triplet consists of an anchor, a positive, and

a negative example. We define similarity based on spatial proximity, with a radius of

12 meters for similar locations and a distance of more than 60 meters for dissimilar

locations, thereby introducing a neutral zone.
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Our training strategy employs batch-hard negative mining to construct informative

triplets and disregard less informative ones. Specifically, we focus on active triplets,

where the loss exceeds the margin, as they provide valuable insights for model

refinement.

Lastly, we have to balance and adjust the global triplet loss to the individual local

modality losses. This balance aids in fostering harmonious interaction between the

di↵erent branches, which subsequently boosts overall performance. Further research is

required to optimally calibrate this interplay, potentially revealing more sophisticated

ways of integrating multi-modal data within the UMF framework.

4.6 Implementation Details

UMF, built on the PyTorch deep learning library, is trained on a multi-GPU server.

We employ the Adam optimizer for weight updates, with an initial high learning rate

for quick convergence, which is gradually decreased via a learning rate scheduler for

fine-tuning the model.

The key advantage of this 2 step training strategy is the option to freeze the encoder

during the fine-tuning phase. This action dramatically decreases computational

requirements and helps prevent the model from overfitting. The encoder, post its

pre-training phase, is already adept at recognizing necessary features. Therefore, any

further fine-tuning on a narrower dataset might lead to the model fitting too closely to

this specific dataset, reducing its general applicability.

The model’s performance is assessed on two datasets: the common benchmark

RobotCar and the Etna dataset. An in-depth comparison with state-of-the-art methods

is covered in Chapter 5.4.
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Chapter 5

Evaluation

In this chapter, we present a comprehensive evaluation of our proposed Unified

Multimodal Fusion (UMF) model’s performance is assessed primarily on the Mt. Etna

Dataset, a novel dataset obtained from Stereo and Solid-State LiDAR Inertial sensors

in the lunar-like environment of Mount Etna. This dataset provides a rigorous testbed

for evaluating the robustness and precision of the model in challenging scenarios.

Additionally, we also deploy the renowned Oxford RobotCar dataset [74] for further

validation and comparison against state-of-the-art methods.

5.1 Datasets and Preprocessing

5.1.1 Oxford RobotCar

The Oxford RobotCar dataset [74] is a cornerstone dataset in the autonomous driving

research domain, o↵ering an extensive variety of driving scenarios across distinct

weather conditions and times of day. This dataset, featuring a suite of sensors (RGB

cameras, LiDAR sensors, GPS/INS) mounted on a car that repeatedly traverses the

same route in the city of Oxford at di↵erent times of day and year, o↵ers a rich and

diverse data source for training and testing our model.

Point clouds are generated from consecutive 2D LiDAR scans during a 20-meter

drive, with the ground plane removed and the point clouds downsampled to 4096 points.

Corresponding RGB images with the closest timestamps are retrieved from the original

RobotCar dataset for each point cloud, with each image downsampled from 1280x960

to 320x200 resolution.

To enhance data diversity and limit overfitting, we randomly sample from 15 closest

RGB images during training, while only one RGB image with the closest timestamp is

used during evaluation. Similarity between elements is defined based on their spatial

proximity: elements within 10m are deemed similar, while those separated by at least

50m are considered dissimilar. Those falling between 10 and 50m are treated as neutral.
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The dataset is split into disjoint training (21.7k elements) and test (3k elements)

areas based on UTM coordinates, following the evaluation protocol and train/test

split (Baseline scenario) introduced in [13].

5.1.2 Mt. Etna Dataset

The Mt. Etna dataset [6], collected in the volcanic environment of Mt. Etna, Sicily,

o↵ers a unique challenge due to its resemblance to lunar and Martian landscapes.

The dataset consists of 7 sequences recorded at an altitude of 2650 meters near the

Cisternazza crater, characterized by a surface of smooth dark lava ash, extreme visual

contrast, and a scarcity of unique geological features. This challenging environment

for localization algorithms provides a realistic multisensory dataset for testing UMF in

planetary exploration-like scenarios.

Sensor Suite

The Lightweight Rover Unit (LRU) sensor suite, detailed in Section 1.4.1, was employed

for collecting the Mt. Etna Dataset. It comprises the Blickfeld Cube-1 LiDAR,

two AVT Mako stereo cameras, an XSens MTi-G 10 IMU, and a Ublox f9p GNSS

receiver. The data was captured as the LRU navigated diverse terrain and harsh

lighting conditions on Mount Etna, providing a realistic and challenging dataset for

our research.

Data Preprocessing

To ensure that the data is suitable for training and testing, it undergoes a series of

preprocessing steps. These include filtering and downsampling the LiDAR data, stereo

rectification, and disparity computation for the stereo images. The data from di↵erent

sensors is synchronized based on timestamps to ensure consistency. To avoid overlap

between samples, the images are subsampled and aligned using their timestamps. The

estimated pose is used as ground truth for evaluation.

Ground Truth Generation

For the Mt. Etna dataset, ground truth positions of the LRU’s trajectory are derived

from the processed GPS and IMU data, using VINS-Fusion [75, 76, 77]. These ground

truth positions serve a dual purpose: they provide a benchmark for assessing the

accuracy of our proposed methods and they provide camera poses for training our

models. The estimation of accurate ground truth is a crucial aspect of our evaluation

as it provides a reliable reference for assessing the model’s performance.
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For this research, we consider points as positives if they are less than 12 meters

away and negatives if they are more than 60 meters away or the orientation diverges

for more than 30ª in either direction.

Sequences

The Mt. Etna dataset is partitioned into unique traverses, each encapsulating a

distinct set of terrain types, lighting conditions, and geological features. This dataset’s

comprehensive nature provides an exhaustive and challenging testing ground for our

proposed UMF model. The full trajectories can be seen in Fig. 5.1 alongside a detailed

breakdown in table 5.3.

Figure 5.1: Bird’s-eye view of the dataset recording site with the trajectories for each
sequence overlaid. The Cisternazza crater is visible on the right. Source: [6]

Sequence Length
s3li traverse 1 726
s3li traverse 2 642

s3li loops 858
s3li crater 1148

s3li crater inout 1590
s3li mapping 696
s3li landmarks 960

Table 5.1: Mt Etna place recognition dataset composition, each sample has stereo,
lidar, and ground truth pose.
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We divide the Mt. Etna Dataset into training and validation sets. All sequences

are used for training except for s3li loops and 0s3li traverse 10, as these sequences

have more overlapping sections. This partitioning strategy ensures the robustness and

reliability of our evaluation by preventing model bias towards the training set.

5.1.3 Additional Datasets for Pretraining

To further bolster the model’s robustness and improve its final performance, we

incorporate additional datasets with images from planetary-like environments. These

datasets lack LiDAR or use a di↵erent sensor and are utilized during the pretraining

phase.

The additional datasets include images captured from the Australian team present

in the last Arches mission from the University of Technology Sydney (UTS) in Mt.

Etna, other missions from the DLR team such as the MADMAX dataset from Morocco,

and Mt. Etna from previous years. The details of these datasets are as follows:

Dataset Notes
Merzouga[78] Stereo + HDL64 or HDL32
MADMAX Morocco, Stereo only
Etna 2018 Stereo only
Etna UTS Stereo LiDAR, no ground truth

Table 5.2: Additional datasets used for the pretraining phase. These datasets do not
require LiDAR information or ground truth poses.

5.1.4 Synthetic Dataset

To overcome the restrictions imposed by limited access to real-world planetary like

environments, we create a new synthetic dataset. This approach aims to supplement

our training data, boosting the model’s robustness and generalization capabilities

to a broader range of situations. To achieve this goal, we use OAISYS [12], a

state-of-the-art, photorealistic terrain simulation tool explicitly designed for robotics

research, built upon the foundations of BlenderProc [79]. This tool o↵ers the ability to

simulate a broad range of terrains, lighting conditions, textures, and rock formations,

shown in Figs. 5.3 5.4, thereby enriching our training data with scenarios that might

be absent in our real-world Mt. Etna dataset.

As demonstrated in Fig. 5.2, it can produce instance, semantic segmentation, depth,

and point cloud data.

The generation of synthetic datasets begins with the random sampling of the

initial location and trajectory of the robot. Subsequent trajectory generation involves
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Figure 5.2: Sample from the generated synthetic dataset: (a) Stereo camera view, (b)
Instance segmentation, (c) Semantic segmentation, and (d) Point cloud.

consecutive incremental steps that navigate the simulated environment. These steps

mimic the natural movement of a robotic system, providing an authentic learning

setting for the UMF model.

We used a sensor module that sends viewpoint poses to OAISYS, waits for the

rendering to finish, and then saves the RGB and depth data alongside the labels. The

point clouds were generated from depth renderings using a pinhole camera model,

optinally some noise can be added to imitate natural ocurring noise from the LiDAR

sensor.

The synthetic dataset comprises various sequences as detailed in Table 5.3, each

o↵ering di↵erent environmental characteristics. All samples include stereo, lidar,

instance, and semantic segmentation maps, providing a rich dataset for training and

evaluation.

Sequence Length
OAY SIS random 1, 2, 3 500, 500, 500
OAY SIS canyon 1, 2 500, 500
OAY SIS terrain 1, 2 500, 500
OAY SIS dunes 1, 2 500, 500
OAY SIS mesa 1, 2 500, 500

OAY SIS mounds 1, 2 500, 500

Table 5.3: Synthetic dataset composition, each sample has stereo, lidar, instance and
semantic segmentation maps.

5.1.5 Data Augmentation

Data augmentation techniques are employed to prevent overfitting and to increase

model robustness. These techniques include random cropping, flipping, and rotation

of the images, as well as random scaling and rotation of the LiDAR point clouds. By

introducing variability and complexity to the data, these techniques help our models
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Figure 5.3: Examples of various lighting and atmospheric conditions extracted from
[12].

Figure 5.4: Examples of various types of terrains simulated in the synthetic dataset.

learn more generalized and robust representations.

For images, we employ RandomErasing, ColorJitter, and Normalization. For

point clouds, we use RandomRotation, RandomFlip, and RandomErasing. These

augmentations help generalize and prevent overfitting, especially to the visual modality.
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5.1.6 Hyperparameters

This information is crucial for understanding the behavior of our models and for

reproducing our results.

The specific values of the parameters and hyperparameters used in our

implementation, such as the learning rate, batch size, and number of training epochs,

are detailed in the appendix B.1.

5.2 Metrics

In order to evaluate the performance of our model, we employ a set of standard metrics

commonly utilized in place recognition literature [44, 13]. These include recall@K and

Area Under the Curve-Precision Recall (AUC-PR).

Precision and Recall constitute the core components of these metrics. Precision

represents the fraction of correctly identified loop closures amongst all detected

closures, whereas Recall or Sensitivity reflects the ratio of true loop closures correctly

identified by the model. These metrics are formally defined as:

Precision =
TP

TP + FP
(5.1)

Recall(Sensitivity) =
TP

TP + FN
(5.2)

Within the field of place recognition for Simultaneous Localization and Mapping

(SLAM), TP (true-positive) is associated with correctly recognized loop closures, FP

(false-positive) with incorrectly recognized loop closures, and FN (false-negative) with

genuine loop closures that remained unrecognized by the model.

To further understand the model’s performance, we consider the following specific

metrics:

� Recall@N: This metric gauges the model’s competency in identifying the correct

match within the top N results. A superior recall@N score signifies that the

accurate match is more probable to be found within the top N matches delivered

by the model.

� Recall@1: This is a special case of recall@N with N=1. It evaluates the model’s

precision in pinpointing the correct match as the first result.

� Recall top 1%: This metric assesses the model’s capacity to discover the correct

match within the top 1% of the retrieved results.
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Through these comprehensive metrics, we aim to evaluate and understand the

overall performance of our UMF model in place recognition tasks.

5.2.1 Similarity Measure

We employ a cosine similarity measure to determine the similarity between query and

database images, defined as:

Similarity =
A · B

||A||⇥ ||B|| (5.3)

Here, A and B are the feature vectors of the query and database images,

respectively. The cosine similarity measures the cosine of the angle between two vectors.

This measure is insensitive to the scale of the features and instead focuses on the angle

between the feature vectors, making it more robust to variations in feature magnitude

introduced by changes in lighting, viewpoint, or other environmental factors.

The cosine similarity is often used because it provides a normalized measure that

is robust to changes in the magnitude of the feature vectors. It is more interested in

the direction of the feature vectors, which is crucial when comparing high-dimensional

features, as we do in our work.

5.3 Experiments

5.3.1 Baseline Methods

First we evaluate the selected baselines in the Etna dataset. Then, we analyze the

results and compare them to our proposed UMF method.

5.3.2 Implementation Details

All models were implemented using PyTorch [33] and trained on a system equipped

with an NVIDIA RTX 3090 GPU. The learning rate was set to 1e � 4 and reduced

by a factor of 0.1 upon plateauing. The models were trained for a total of 100 epochs

using the Adam optimizer [80] with a batch size of 64. The input image size was set

to 224⇥ 224. When re-ranking global feature retrieval results with local feature-based

matching, the top 25 ranked images from the first stage are considered, each version of

UMF uses a di↵erent reranking strategy and if there is a tie we use the global feature

distance.

Superfeatures The strength of each superfeature was determined using

L2Attention. The attention maps were generated for image sizes of 56⇥ 56 and voxel

sizes of 40⇥40⇥40. The superfeature was represented as a tensor of size [N,F ], where
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N is the number of super-features and F is the dimensions of each one, the dimensions

for the visual and point cloud features is set to 128 and 32 respectively. The final

ranking is based on the number of matching features that satisfy the criteria described

in sec. 4.3.

RANSACWe used a total of 2 transformer layers in our model. The model returns

the average of all attention maps and selects an optimal threshold to identify keypoints.

The output consists of attention maps for the image and voxel, each of size

[N, 56, 56] and [N, 40, 40, 40], respectively, where N is the number of keypoints. The

feature maps for the image and voxel have dimensions [56, 56, 128] and [40, 40, 40, 8],

respectively. The reranking of candidates is done based on the total number of inliers,

for one or both modalities: score = [#inlierspc +#inliersimg]

5.4 Results

This section outlines the experimental results. The performance of the proposed UMF

method is compared with the baseline approaches in terms of AUC-PR, and Recall@N.

Extensive experiments were conducted to contrast our proposal with the baselines on

the Etna datasets. Furthermore, we validated UMF using the RobotCar dataset, which

allows us to compare our method’s performance with the most recent state-of-the-art

multimodal systems.

5.4.1 Quantitative Results

The comparative performance of the UMF model versus other methods on the

Etna dataset is delineated in Table 5.7. The data is segmented according to

modality—Visual, LiDAR, and Multimodal—for clarity and concise evaluation.

UMF’s superior performance is evident in the Etna dataset results. This can be

attributed to the method’s e↵ective fusion of local and global image features.

While the LiDAR data from the Etna dataset has a limited field of view, inherently

restricting its application for place recognition, it provides valuable input under

challenging conditions by diminishing uncertainty. Moreover, its delivery of accurate

depth information plays a crucial role in establishing the correct positive pairs.

The geometric verification using RANSAC shows significant impact in aliasing

environments, outperforming other approaches. It is noteworthy that it enhances the

robustness of the final predictions. Conversely, Superfeatures struggle to consistently

focus on the most salient regions when there are few landmarks, which may be a

consequence of the decorrelation loss at the attention maps level. These features are

compelled to investigate di↵erent areas.
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Method Recall@1 Recall@5 Top 1% recall
Visual

DBoW2 37.44 66.1 68.12
NetVLAD 67.2 75.5 78.3

MinkLoc++ (visual) 68.8 77.3 79.2
LiDAR

PointNet++ 48.41 67.77 71.8
MinkLoc++ (LiDAR) 42.4 65.8 69.4

Multimodal
MinkLoc++ (fusion) 71.4 80.1 85.2

AdaFusion 73.1 82.3 87.2
UMF 73.5 82.9 87.5

UMF (superfeat) 75 85.1 89.1
UMF (RANSAC) 75.3 85.3 89.5

Table 5.4: Performance comparison of various methods on Mt. Etna dataset,
categorized by data modality. The versions of UMF with reranking for both modalities

In aliased environments, geometrical verification via RANSAC appears crucial as

it outperforms other approaches. This is anticipated since it enhances the robustness

of the final predictions. Additionally, superfeatures occasionally struggle to focus on

the most salient regions when there are hardly any landmarks, due to the decorrelation

loss at the attention map level, causing them to be compelled to look at di↵erent areas

(Fig. 5.5).

We further assess the performance of UMF using the RobotCar dataset, and the

results are presented in Table 5.8.

Method Recall@1 Top 1% recall
Multimodal

MinkLoc++ (fusion) 96.7 99.1
AdaFusion 98.1 99.2

UMF 97.9 99.1
UMF (superfeat) 98.1 99.1

UMF (RANSAC) 98.3 99.3

Table 5.5: Performance comparison of various methods on the RobotCar, the versions
of UMF with reranking use both modalities.

The RobotCar dataset, which provides richer geometric information via LiDAR

compared to Etna, demonstrates the robustness and adaptability of UMF across

di↵erent data modalities and environments. This richness of geometric information

can be leveraged by UMF to further enhance its place recognition capabilities.

It is pertinent to note that the quality of local features and the e↵ectiveness of the

reranking mechanism significantly influence UMF’s overall performance. Thus, these
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components necessitate meticulous optimization.

Our UMFmodel, specifically devised for place recognition tasks, exhibits proficiency

in handling aliased and low-texture environments. It synthesizes the strengths of

LiDAR and visual data through the use of transformers to coalesce local and global

features. Further, the model employs an attention mechanism coupled with a reranking

process to augment its performance.

The super-feature variant of the UMF model demonstrates adaptability to diverse

requirements in terms of accuracy and computational e�ciency. Regardless of the

degree of aliasing or complexity of the scenario, both UMF model variants can

e↵ectively navigate challenging place recognition tasks. This resilience underscores

the potential of UMF as a robust solution for multimodal place recognition.

5.4.2 Qualitative Results

This subsection provides an in-depth qualitative evaluation of our proposed

methodology. It aims to show the potential strengths and challenges faced by the

model, thereby shedding light on its overall e�cacy, robustness, and scalability.

As previously explained in Section 4.3, our proposed UMF model with superfeatures

facilitates the alignment of the extracted superfeatures when presented with a positive

pair. This pivotal functionality can be seen in Figures 5.5 and 5.6. These figures

e↵ectively visualize the model’s aptitude to accurately map similar features across

di↵erent images, emphasizing the potency of our approach in identifying and aligning

intricate patterns and objects.

Nevertheless, our model may struggle under certain circumstances. Specifically,

when the overlap between images is sparse, the model may stumble upon challenges in

aligning superfeatures, leading to some misalignment. These non-aligned superfeatures

are subsequently discarded during the matching process, as elaborated in Section

4.3.1. This finding underscores the model’s self-corrective mechanism, which discards

misaligned features, thereby enhancing the precision of its output.

Our model also exhibits proficiency in handling point clouds, as depicted in Figure

5.7. This demonstrates its ability to incorporate supplementary information from areas

that may be concealed from the camera’s line of sight, thereby augmenting the model’s

overall e�ciency and comprehensiveness.

Similarly the RANSAC variant also showcases great e↵ectiveness in feature

extraction. As seen in Figures 5.8 and 5.9, it demonstrates a remarkable ability to

highlight salient and discriminative elements within each modality, providing a more

precise and comprehensive mapping between di↵erent samples.

Additionally, we present the global embeddings in a 2D space, which are derived
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using Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor

Embedding (t-SNE). As popular techniques for dimensionality reduction, both PCA

and t-SNE facilitate e↵ective visualization of high-dimensional data, o↵ering insights

into the feature distribution and potential clusters within the embeddings.

As shown in Figures 5.10 and 5.11, our UMF model performs e↵ectively in

projecting similar locations close together in the global embedding space. This

successful proximity projection is emblematic of the model’s ability to understand and

capture the semantic similarity between di↵erent scenes, reinforcing the robustness and

e�cacy of our proposed approach in place recognition tasks.
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Figure 5.5: Illustration of the super-features attention maps for the image modality
generated by the Learning Iterative Transformer (LIT) module for three distinct
positive image pairs from the Etna dataset. The first three super-features are exhibited,
showcasing the model’s propensity to consistently focus on specific semantic patterns,
such as varying rock formations and terrain structures.

57



Figure 5.6: Demonstration of the super-features attention maps for the image modality
generated by the Learning Iterative Transformer (LIT) module for three image pairs
from the Robotcat dataset. Each pair is a positive match, with the first three
super-features depicted. These super-features exhibit a recurring focus on specific
semantic patterns like windows and tra�c signs while e↵ectively discarding dynamic
objects like cars or cyclists.

58



Figure 5.7: The super-features attention maps for point clouds are generated by the
modified 3D Learning Iterative Transformer (LIT-3D) module for three consecutive
samples from the Robotcat dataset. The first two super-features are prominently
displayed, demonstrating the model’s capability of processing and extracting useful
features from point cloud data.
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Figure 5.8: Visualization of the visual features extracted using the RANSAC variant
on the Mt Etna dataset, the local features are filtered and selected to construct key
points for subsequent matching.

Figure 5.9: Visualization of the visual features extracted using the RANSAC variant
on the Robotcar dataset, using the same process for matching.
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Figure 5.10: Visualization of global embeddings using PCA and t-SNE on the RobotCar
dataset. Each data point on the scatter plot represents a unique place.

Figure 5.11: Visualization of global embeddings using PCA and t-SNE on the Etna
dataset, showcasing well-separated clusters that correspond to distinct locations.
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5.5 Ablations

In this section, we conduct a detailed examination of our proposed UMF model, with a

focus on understanding the individual contributions of each component. This in-depth

analysis of each element will shed light on its relative importance to the overall model’s

performance, enabling further improvements and optimizations.

5.5.1 Impact of Pre-training

To assess the impact of pre-training on our model’s performance, we experiment under

two distinct scenarios: 1) training the model from scratch without any pre-existing

knowledge, and 2) initializing the model with pre-trained weights. This comparative

study aims to emphasize the significance and contribution of pre-training to our

method’s overall e↵ectiveness.

Method Recall@1 Recall@5 Top 1% recall
UMF (with pre-training) 73.5 82.9 87.5

UMF (without pre-training) 70.4 81.2 85.9

Table 5.6: Influence of pre-training on UMF model’s performance in a place recognition
task. The comparison is between the UMF model initialized randomly and the one
using pre-trained weights.

Table. 5.6 demonstrates the crucial role of pre-training in ensuring optimal model

performance, especially as the complexity of the model increases. The pre-training

phase also reinforces the model’s robustness and generalization capabilities by reducing

the propensity of the visual modality to overfit.

5.5.2 Reranking

We conducted a series of experiments to analyze the role and importance of the

reranking module in our approach. This involved variations in the reranking process

such as implementing with and without reranking for one or all modalities, varying the

number of candidates and altering the number of super features.

The post-reranking improvements in the model’s recall rates substantiate the

importance of the additional reranking step in our approach. Notably, we observe

that the visual modality outperforms the others, providing a significant boost in the

recall rates. However, the reranking step using LiDAR data only shows marginal

improvements, as the visual modality proves to be dominant. Fusion of both modalities

aids in overcoming visual domain challenges such as poor lighting conditions or aliasing.
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Method Recall@1 Recall@5 Top 1% recall
Visual

UMF (superfeat visual) 74.5 84.3 89.
UMF (RANSAC visual) 75.1 84.9 89.3

LiDAR
UMF (superfeat pc) 73.7 83.4 87.5
UMF (RANSAC pc) 73.9 83.8 87.8

Multimodal
UMF 73.5 82.9 87.5

UMF (superfeat all) 75. 85.1 89.1
UMF (RANSAC all) 75.3 85.3 89.5

Table 5.7: Comparison of various reranking methods applied to the UMF model on
the Mt. Etna dataset, separated by data modality.

Method Recall@1 Recall@5 Top 1% recall
Base

UMF 97.9 98.3 99.1
Visual

UMF (superfeat visual) 98. 98.4 99.1
UMF (RANSAC visual) 98.1 98.5 99.2

LiDAR
UMF (superfeat pc) 97.8. 98.2 99.1
UMF (RANSAC pc) 98. 98.3 99.1

Multimodal
UMF (superfeat all) 98.1 98.5 99.1

UMF (RANSAC all) 98.3 98.8 99.3

Table 5.8: Performance evaluation of the UMF model with various reranking methods
on the real-world RobotCar dataset.

The benefits of fusing both modalities is particularly prominent in the RobotCar

dataset, which possesses a rich point-cloud information set.

Notably, RANSAC emerged as a clear winner among the reranking methods,

o↵ering superior performance. However, this advantage comes at the expense of

increased computational overhead, which we analyze further in sec 5.5.3.

Fig. 5.12 contains a quantitative comparison of both ranking approaches and

the baseline methods where we study the impact of the number of candidates. The

measurement can vary significantly depending on the dataset used, but we found taking

the top 20 candidates is a reasonable trade-o↵ for most use cases.

In our final analysis, we adjusted the normalized similarity threshold ↵ to examine

the e↵ectiveness of each variant through the precision-recall curves shown in Fig. 5.13.

Expectedly, RANSAC outperforms the superfeatures curve. Despite both approaches

o↵ering competitive performance compared to the baseline model without reranking,
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Figure 5.12: Comparison of top 1 recall of both UMF reranking approaches depending
on the number of candidates used in the Etna dataset.

precision deteriorates rapidly as the Etna dataset proves challenging due to the lack of

salient features and unstructured environment.

Figure 5.13: Precision-recall curves using the test set of Mt Etna, we compare the base
UMF and both reranking variants.
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5.5.3 Computational Complexity and Memory

In this section, we evaluate and compare the computational e�ciency of our proposed

UMFmethod and the baseline methods, focusing on two key metrics: feature extraction

latency and memory usage. These metrics are crucial for understanding the practicality

of these methods, especially in real-time or resource-constrained settings such as

on-board processing in planetary rovers.

In Table 5.9, we present the latency and memory requirements for UMF and

the baseline models. The latency is divided into two parts: feature extraction and

matching. Feature extraction latency refers to the time taken to process an input

and extract features, while matching latency denotes the time taken to compare these

features against a database and find the best match.

The number of parameters in each model is indicative of its complexity, with a

higher number of parameters generally leading to increased memory usage and longer

training times.

Method Extraction(ms) Matching(ms) (#params)
NetVLAD 32 9 24.495.904
DBoW2 3 2 –

PointNet++ 26 9 671.392
MinkLoc++ (visual) 34 9 24.595.904
MinkLoc++ (LiDAR) 27 9 761.392
MinkLoc++ (fusion) 38 9 26.397.243

AdaFusion 54 9 29.358.531
UMF (super) 98 9 + 12 38.466.448

UMF (RANSAC) 98 9 + 71 39.385.229

Table 5.9: Comparison of feature extraction latency, matching time, model complexity
(number of parameters), and memory requirements for di↵erent models, measured on
an RTX 3090ti. the number of parameters represents the complexity of the model and
we compute the inference times for a single sample using global embedding of 256 dim
and/or local features. The times are measured taking the average of 10 runs. The
matching is computed in a database containing 858 samples and selecting the top 20
candidates.

Table 5.9 presents a comparison of the UMF variants: the Superpoint-based

approach (UMF (super)) and the RANSAC-based method (UMF (RANSAC)) in terms

of feature extraction latency, matching time, and model complexity. As expected, the

RANSAC method incurs a higher computational cost, but if this extra computational

overhead is manageable, it can yield a more robust estimate.

It is also important to note that the reduced dimensionality of the fine features

allows us to achieve a considerable speedup when performing geometrical verification,

having the option to opt for more fine grained or coarse representations if necessary.
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Despite optimizations, our method could still be computationally intensive for

real-time applications on resource-constrained devices. Although we strive for a balance

between accuracy and e�ciency, the current implementation may not be suitable for

all hardware configurations, will require a powerfull dedicated ML accelerator. Further

work should be done in optimizing the model for such applications, via quantization

and pruning.

5.6 Discussion and Limitations

Our proposed method, UMF, outperforms the baseline methods in terms of Recall@N

on both the real-world and extreme planetary like environments. This improvement

in performance can be attributed to the e↵ective use of both local and global image

features in our model. Moreover, the use of superfeatures enhances the model’s ability

to recognize places, further improving performance.

The utility of LiDAR data within the UMF framework is notable. In the case

of the Etna dataset, despite its narrower field of view, LiDAR data significantly

contributes to reducing uncertainty under extreme conditions and delivering authentic

depth information, which is instrumental in determining accurate positive pairings. For

the RobotCar dataset, LiDAR data supplies rich geometric information, substantially

enhancing the place recognition prowess of our model.

The UMF model demonstrates superior performance. However, a crucial aspect

that deserves further research is the scalability of our approach and how to best

optimize the trade o↵ betwwen acuraccy and computational e�ciency. As alluded in

previous sections 5.5.3, minimizing latency and memory usage are integral for practical

deployment in real-world applications, especially in environments where computational

resources are constrained, such as during extraterrestrial navigation.

Furthermore, the UMF model’s reliance on both visual and LiDAR data can be

a limitation in scenarios where one or both modalities may be unreliable or absent.

Exploring methods to make the model more resilient to such situations, perhaps by

incorporating other sensor data or employing more advanced fusion techniques, is

another valuable avenue for future research.

Lastly, while the current model excels in handling aliased and low-texture

environments, its performance in other challenging scenarios—such as highly dynamic

environments or in the presence of severe occlusions—has yet to be assessed. Future

work should aim to validate and possibly enhance the UMF model’s ability to perform

under such conditions.
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Chapter 6

Conclusion

In this thesis, we have explored and proposed methods to address the problem of place

recognition, particularly in unstructured environments characterized by aliasing and

low-texture conditions, akin to the challenges presented on extraterrestrial surfaces.

In contrast to previous work that predominantly relies on global descriptor-based

or keypoint-based approaches, we have taken an innovative path by considering a

unified methodology, which fuses local and global features using transformers within

a contrastive learning setting. Our proposed method, termed as Unified Multimodal

Fusion (UMF), exhibits potential in overcoming the inherent limitations associated

with traditional techniques.

The core element of our research involved a rigorous evaluation of several

state-of-the-art place recognition techniques. This assessment helped us acquire a

nuanced understanding of these methodologies, shedding light on their strengths and

weaknesses when applied in demanding environments. Our analysis further enabled us

to identify techniques that can potentially enhance the robustness and performance of

multimodal methods (visual and LiDAR), especially under challenging conditions.

Our proposed UMF model was put to the test by comparing its performance against

various baseline methodologies on two real-world datasets, Mt. Etna and RobotCar.

These datasets, with their unique challenges and characteristics, served as suitable

platforms for assessing the adaptability and robustness of our method.

The outcomes revealed that the UMF model, which optimally fuses local and

global image features, outperformed the baselines in terms of Recall@N. This superior

performance underscores the e↵ectiveness of the UMF model in handling aliasing

and low-texture environments, indicating its potential for place recognition tasks on

planetary like environmets.
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6.1 Future Work

Looking ahead, future research endeavours will primarily concentrate on addressing

the identified limitations and extending the capabilities of our proposed method. Key

areas of interest include:

� Robustness Enhancement: Further research will explore methods to further

improve the model’s robustness against aliasing and other extreme conditions.

Such strategies may involve incorporating data augmentation techniques that

diversify the training data, expand the synthetic dataset and enhance model

generalizability by using some of the latest works on foundational models[81].

� Multiple Scale Local Matching: We plan to explore techniques to perform

cross-matching of local patches at multiple scales between a query and reference

image pairs. This multi-scale approach could potentially enhance the granularity

of place recognition and increase the overall retrieval accuracy by producing a

more comprehensive similarity score.

� Alignment of Multimodal Local Features: Future work will aim to ground

and share representations between modalities, leveraging the complementary

dynamics of di↵erent data types. Investigations will delve into methods for better

alignment and fusion of multimodal local features.

� E�cient Matching with Transformers: We plan to explore the potential of

leveraging the transformer cross-attention mechanisms, as seen in works such as

[41], for forward pass matching. This approach has the potential to improve the

distinctiveness and generalizability of learned features.

� Application Expansion: A fascinating avenue for exploration involves

extending our framework to accommodate a broader range of applications,

including object detection, semantic segmentation, and pose estimation, perhaps

even employing a multi-task learning approach for simultaneous handling of these

tasks. These investigations will not only assess the versatility of our model but

also potentially unveil innovative techniques for multimodal fusion and place

recognition. The ultimate goal will be to establish a unified framework capable

of performing multiple tasks concurrently, leading to a more comprehensive and

e�cient perception system.

� Model Deployment: Future research will also consider the deployment of

the model using smaller backbones, such as E�cientNetv2, with potential
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knowledge distillation from larger models. Attention will also be paid to the

memory requirements for storing local and global features, and the computational

complexity of the matching step, with a view to refining these elements for

practical deployment.

In summary, this work o↵ers a new perspective and a robust solution to the problem

of multimodal place recognition. Our proposed UMF model demonstrates promising

results, paving the way for future research in this field, specifically for applications in

extraterrestrial exploration and beyond.
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Aqualoc: An underwater dataset for visual–inertial–pressure localization. The

International Journal of Robotics Research, 38(14):1549–1559, 2019.

[4] Lukas Meyer, Michal Smı́̌sek, Alejandro Fontan Villacampa, Laura Oliva Maza,

Daniel Medina, Martin J Schuster, Florian Steidle, Mallikarjuna Vayugundla,

Marcus GMüller, Bernhard Rebele, et al. The madmax data set for visual-inertial

rover navigation on mars. Journal of Field Robotics, 38(6):833–853, 2021.

[5] Yang Zheng, Tolga Birdal, Fei Xia, Yanchao Yang, Yueqi Duan, and Leonidas J

Guibas. 6d camera relocalization in visually ambiguous extreme environments.

arXiv preprint arXiv:2207.06333, 2022.

[6] Riccardo Giubilato, Wolfgang Stürzl, Armin Wedler, and Rudolph Triebel.

Challenges of slam in extremely unstructured environments: The dlr planetary

stereo, solid-state lidar, inertial dataset. IEEE Robotics and Automation Letters,

7(4):8721–8728, 2022.

[7] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. LoFTR:

Detector-free local feature matching with transformers. pages 8922–8931, April

2021.

[8] S. Lowry, N. Sünderhauf, P. Newman, et al. Visual place recognition: A survey.

IEEE Transactions on Robotics, 32(1):1–19, 2016.

71



[9] Chaoning Zhang, Chenshuang Zhang, Junha Song, John Seon Keun Yi, Kang

Zhang, and In So Kweon. A survey on masked autoencoder for self-supervised

learning in vision and beyond. July 2022.
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[98] Montiel J. M. M. Mur-Artal, Raúl and Juan D. Tardós. ORB-SLAM: a

versatile and accurate monocular SLAM system. IEEE Transactions on Robotics,

31(5):1147–1163, 2015.

[99] Hao Yu, Zheng Qin, Ji Hou, Mahdi Saleh, Dongsheng Li, Benjamin Busam, and

Slobodan Ilic. Rotation-Invariant transformer for point cloud matching. March

2023.

[100] Yash Bhalgat, Joao F Henriques, and Andrew Zisserman. A light touch approach

to teaching transformers multi-view geometry. November 2022.

[101] Wang Yifan, Carl Doersch, Relja Arandjelović, João Carreira, and Andrew
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