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Multiphoton processes and higher resonances in the quantum regime of the free-electron laser
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Despite exhibiting novel radiation features, the operation of the proposed quantum free-electron laser would
have the drawback that the number of emitted photons is limited by one per electron, significantly reducing
the output power of such a device. We show that relying on different resonances of the initial momentum of
the electrons increases the number of emitted photons, but also increases the required length of the undulator
impeding an experimental realization. Moreover, we investigate how multiphoton processes influence the
dynamics in the deep quantum regime.
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I. INTRODUCTION

The quantum free-electron laser (Quantum FEL) [1–8] is a
proposed radiation source which shows outstanding radiation
features in the x-ray regime [9,10] and is anticipated to be
a useful tool for applications in material and life sciences
[11,12]. We focused in recent studies [5,10,13] on single-
photon scattering to describe the dynamics of the system.
In this paper, we complement these studies and show how
multiphoton processes as well as different resonances of the
initial electron momentum affect the FEL dynamics and we
discuss their consequences for an experimental realization.

According to Ref. [14], the occurrence of higher-order
resonances and the resulting dynamics would be absent in a
semiclassical model. In contrast, we offer an elementary ex-
planation for higher resonances in terms of energy-momentum
conservation that is still captured by the semiclassical
Hamiltonian.

The underlying mechanism of FEL physics is Compton
scattering [15], where an electron absorbs a wiggler photon
and emits a laser photon—or the vice versa process. Conse-
quently, the momentum p of the electron changes by a discrete
recoil q ≡ 2h̄k, where h̄ represents the reduced Planck con-
stant and k is the wave number of the laser and as well of the
wiggler field in the nearly comoving Bambini-Renieri frame
[16,17].

During such an elastic scattering event not only the total
momentum has to be conserved, but also the kinetic energy
∼p2. From energy-momentum conservation we obtain (also
higher-order) resonances for the initial momentum at integer
multiples of q/2. The emergence of these resonances is visu-
alized in Fig. 1 by identifying the resonant transitions with the
help of energy parabolas in momentum space.
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The first resonant process at p = q/2 occurs when the
electron resonantly emits one laser photon and it jumps to
the momentum −q/2. By the inverse process the electron
can return to q/2 resulting in a two-level system, which we
identified in Ref. [5] as Quantum FEL in accordance with
Ref. [9]. In contrast, for p = q there is no resonant single-
photon transition. However, the electron can take two steps on
the momentum ladder from q to −q while emitting two laser
photons.

At first sight, such higher resonances seem favorable since
more emitted photons imply a higher output intensity. How-
ever, the typical timescale of the dynamics increases for
higher resonances [8,14]. A longer interaction time requires
a longer undulator and thus adds additional challenges to
an experimental realization of a Quantum FEL [18]. More-
over, damping mechanisms like spontaneous emission [19]
or space-charge effects [8,20,21] destroy an efficient Quan-
tum FEL operation already for relatively small interaction
times [11].

According to Fig. 1, the number of involved momentum
steps and by that the number of emitted/absorbed photons
increases for higher-order resonances. Probabilities for multi-
photon processes scale in general with powers of the coupling
strength between light and matter. Specifically, in the quantum
theory of the FEL this behavior implies a scaling in powers
of the quantum parameter, that is the ratio of the coupling
strength to the recoil. For quantum effects to emerge, this
parameter has to be small [5] and thus multiphoton transitions
are suppressed when compared to the single-photon processes
at p = q/2. In this paper we prove this behavior by employing
the method of averaging over rapid oscillations [22,23] in the
low-gain regime (Sec. II), where the change of the photon
number is small compared to the number of photons already
present, as well as in the high-gain regime (Sec. III) of FEL
operation, where this assumption is dropped.

In Appendix A, we derive the effective Hamiltonian of our
asymptotic method. While we deal in Appendix B with the
population of the momentum levels in the low-gain regime,
we show in Appendix C our calculations in the high-gain
regime.
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FIG. 1. Resonant transitions in an FEL visualized by energy-
momentum conservation. We have drawn the kinetic energy ∼p2

(parabola) of an electron as a function of the momentum p in the
Bambini-Renieri frame [16], where the wave numbers of the laser
and the wiggler mode coincide, that is k ≡ kL = kW and the motion
of the electron is nonrelativistic. In an elastic Compton-scattering
event a wiggler photon is annihilated and a laser photon is emitted,
or vice versa. Hence, (i) the momentum of the electron changes
by multiples of the recoil q ≡ 2h̄k and (ii) the total kinetic energy
of electron and photons has to be conserved. The first condition
implies that the distance between initial and final momenta has to
be an integer multiple of q. The second condition means that only
transitions are allowed that horizontally connect two points on the
energy parabola. (These points have the same distance from the
x axis due to our specific frame of reference.) These two conditions
are only fulfilled by initial and final momenta of the form p = νq/2
with ν being an integer. We consider single-, two-, and three-photon
transitions from the three lowest resonant momenta, that is p = q/2,
p = q, and p = 3q/2 to a different resonant momentum. For the
first resonance, the transition from q/2 to −q/2 is resonant, which
can be achieved by the emission of a single photon or via three-
photon processes, where two photons are emitted and one photon
is absorbed. Regarding the second resonance there are no resonant
transitions with an odd number of photons. However, transitions with
an even number of photons can be resonant, for example two-photon
processes between q and −q. For the third resonance, we require
at least three momentum steps to connect the momenta 3q/2 and
−3q/2. We note that the situation is mirrored for the momenta −q/2,
−q, and −3q/2, with photon emission interchanged with absorption.

II. LOW-GAIN FEL

In the low-gain regime of FEL operation [24], the mean
photon number n ≡ 〈n̂〉 changes only marginally during the
interaction with an electron bunch and the motion of an elec-
tron decouples from the motion of the others [25]. Hence, we
restrict ourselves to the quantized motion of a single electron
with mass m coupled to a classical and fixed radiation field.

Our model relies on the Bambini-Renieri [16] frame of
reference which is defined by the condition that the given
wave number kW ≡ 2π/λW of the (optical) undulator and the
desired wave number kL ≡ 2π/λL of the laser field coincide

after performing a Lorentz transformation into the moving
frame, that is kL, kW → k. From this requirement, we find [5]
that the Bambini-Renieri frame moves at the velocity

vBR

c
≡ kL − kW

kL + kW
(1)

relative to the laboratory frame. For the relevant case, where
λL � λW, we obtain that the Lorentz factor γBR ≡ (1 −
v2

BR/c2)−1/2 corresponds to a relativistic motion, that is γBR �
1. The advantages of choosing this special reference frame are
that (i) the dynamics is described by the motion of a particle
in a standing wave and (ii) that this motion is non-relativistic,
if the transformed momentum of the electron is much smaller
than mc. In the quantum regime the typical momentum scale
is given by the recoil q ≡ 2h̄k and we indeed observe that
q/(mc) ≈ λC/(γBRλL) � 1 since the Compton wavelength
λC ∼ 10−12 m of the electron is much smaller than any real-
istic laser wavelength [5]. Hence, the Bambini-Renieri frame
is—almost—comoving with the electron.

The motion of an electron with initial momentum p may
only change by integer multiples of the recoil q. We describe
the resulting momentum ladder through the momentum jump
operator

σ̂μ,ν ≡ |p − μq〉 〈p − νq| (2)

with μ and ν being integers.
In Ref. [5], we defined the quantum parameter αn ≡

g
√

n/ωr as the ratio of the coupling strength g
√

n, depend-
ing on the mean photon number n, and the recoil frequency
ωr ≡ q2/(2mh̄). The coupling constant g is proportional to the
undulator parameter a0, that is the normalized field strength of
the wiggler [18]. For quantum effects to emerge, we require
(i) that the quantum parameter is small, that is αn � 1, and
(ii) that the initial momentum spread 	p of the electron beam
is small, that is 	p � q. Else, the discrete motion of the
electron is washed out and the particle follows continuous
trajectories [5,26]. Throughout this paper, we assume for sim-
plicity that the electron is initially described by a momentum
eigenstate |p〉. In a more realistic model, the state of the
electron should be described by a momentum distribution
with a nonzero width 	p [27]. Due to velocity selectivity,
the efficient operation of a Quantum FEL is only possible,
if 	p is smaller than the gain bandwidth ∼αnq [13]. Ac-
cording to Ref. [11] a possible design for a Quantum FEL
in the ångström-regime could include a high-power optical
undulator with a wavelength λW in the micrometer range and
a high-quality electron beam with a relative energy spread at
the order of 10−5.

The asymptotic method of averaging separates the resonant
processes from the nonresonant ones. For the former ones,
we formulate an effective Hamiltonian Ĥeff [23] and asymp-
totically expand it in powers of αn. We solve the resulting
Schrödinger equation exactly, which gives rise to slowly vary-
ing part of the dynamics. For the nonresonant transitions, we
rely on a perturbative solution which leads to amplitude cor-
rections including rapidly varying terms. Each additional step
on the momentum ladder raises the order of the asymptotic
expansion by one.

In the following, we consider the change of the mean pho-
ton number δnp(t ) ≡ 〈n̂(t )〉 − 〈n̂(0)〉 during the interaction

033057-2



MULTIPHOTON PROCESSES AND HIGHER RESONANCES … PHYSICAL REVIEW RESEARCH 5, 033057 (2023)

of an electron bunch containing N electrons of momentum
p with the fields. In the low-gain regime, this change has to
be smaller than the initial photon number n0 ≡ 〈n̂(0)〉, that
is δnp � n0. Since each momentum step translates to the
emission or absorption of a photon, we calculate the change
δnp via the relation

δnp(t ) = N
∑

μ

μ Pp−μq(t ), (3)

where Pp−μq denotes the time-dependent probability that the
momentum level p − μq is populated.

According to Appendix B, we find that for the initial condi-
tion p = νq/2, the population of levels ±νq/2 corresponding
to resonant transitions are described by Rabi oscillations
between zero and unity, while the probabilities corresponding
to nonresonant transitions are suppressed with powers of αn.
With the help of the explicit expressions for the Pp−μq in
Appendix B we arrive at the results

δnq/2(t ) ∼= N sin2

[
�t

(
1 − α2

n

4

)]
, (4a)

δnq(t ) ∼= 2N sin2

[
αn�t

(
1 − 16α2

n

9

)]
, and (4b)

δn3q/2(t ) ∼= 3N sin2

(
α2

n

4
�t

)
(4c)

of δnp for the first, second, and third resonance, where we have
defined the Rabi frequency � ≡ g

√
n of the fundamental res-

onance q/2. Here we have only included the leading orders in
amplitude and the lowest-order corrections in frequency. We
obtain that for higher resonances (i) the number of maximally
emitted photons increases, but also that (ii) the effective Rabi
frequency becomes smaller leading to a slower growth of the
mean photon number as apparent from Fig. 2.

The calculation of higher-order resonances requires higher
orders of the asymptotic expansion and consequently this in-
crease of time scales continues beyond the third resonance.
Hence, we expect the scaling

�(ν) ∝ αν−1
n � (5)

for the effective Rabi frequency �(ν) that corresponds to the
resonant transition from νq/2 to −νq/2 [25]. We emphasize
that the emergence of different time scales for different initial
momenta follows directly from the number of momentum
steps necessary for a resonant transition. An analogous be-
havior has been also observed in atomic diffraction [28,29].
However, since we observe this dynamics in a semiclassical
model, it has nothing to do with a quantized light field in
contrast to the assumption of Ref. [14].

III. HIGH-GAIN FEL

In the high-gain regime of FEL operation, the relative
change of the laser intensity during the interaction with the
electrons is large and consequently the laser field cannot be
seen as an fixed, external field. In contrast, the motion of each
electron in the bunch influences the motion of the remaining
electrons via their common interaction with the laser field
[13,30].

FIG. 2. Change δnp of the mean photon number in a low-gain
FEL in the quantum regime divided by the number N of electrons
as a function of the phase �t with the Rabi frequency � for the
first resonance at p = q/2. We compare the curves for three different
initial electron momenta, that is (i) p = q/2 (cyan line), (ii) p = q
(orange, dashed line), and (iii) p = 3q/2 (magenta, dotted line) for a
fixed value of the quantum parameter of αn = 0.25. If we increase the
order of the resonance, the number of emitted photons per electron
increases. However, the photon number grows more slowly for higher
resonances. We observe that the analytical results (top) from Eq. (4)
and the numerical simulation (bottom) agree.

In analogy to Ref. [13], we employ a collective model,
where the single-particle jump operators are replaced by their
collective counterparts, that is,

σ̂μ,ν → ϒ̂μ,ν ≡
N∑

j=1

σ̂ ( j)
μ,ν, (6)

where σ̂
( j)
μ,ν is the single-particle operator for electron j. We as-

sume that each electron is initially described by a momentum
eigenstate with the same momentum p yielding the product
state |p, p, . . . , p〉. Moreover, we introduce a quantized laser
mode with bosonic annihilation and creation operators satisfy-
ing the commutation relation [âL, â†

L] = 1. For the calculation
of the mean photon number we restrict ourselves to an FEL
seeded by a Fock state with n0 photons. In Ref. [10], we
observed that the results for the mean photon number of a
Quantum FEL are very similar for other initial field states with
the same n0, such as coherent or thermal states.

In Refs. [10,13], we found that the leading order of the
effective Hamiltonian for the first resonance p = q/2 is given
by the Dicke Hamiltonian, which describes the collective in-
teraction of many two-level atoms with a quantized mode of
the radiation field [31].

In the current paper, we include the lowest-order cor-
rections emerging from the higher orders of Ĥeff derived
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in Appendix A. From the results in Ref. [10] and from
Eqs. (C8) and (C10a), we deduce for p = q/2 the approximate
expression

nq/2(L) = n0

+ Ncn2

[√
1 + n0

N

L

2Lg

[
1 − α2

N

8

(
1 + 2n0

N

)]
− K,K

]
(7)

for the mean photon number nq/2 as a function of the un-
dulator length L ≡ ct . Here c denotes the velocity of light
and Lg ≡ c/(2g

√
N ) represents the gain length of a Quan-

tum FEL [9,13]. The Jacobi elliptic function cn depends on
its modulus K ≡ (1 + n0/N )−1/2 and K ≡ K (K) denotes the
corresponding complete elliptic integral of first kind [32].
We note that the quantum parameter αN ≡ g

√
N/ωr for the

high-gain regime depends on the number N of electrons in the
bunch. For simplicity, we have neglected in Eq. (7) the terms
responsible for spontaneous emission when compared to the
result in Ref. [10]. Accordingly, the expression for nq/2 goes
to zero for n0 = 0.

In the top panel of Fig. 3, we compare the approxima-
tion for n to the numerical simulation corresponding to the
effective Hamiltonian up to third order. For αN � 2

√
2, the

phase corrections in Eq. (7) are negligible and thus we obtain
only a small phase shift for αN = 0.5 between third-order
and first-order results of the asymptotic method of averaging.
While this frequency shift is perfectly predicted by Eq. (7),
numerics reveals a very small suppression of the amplitude
which arises from resonant second-order processes, where one
photon is emitted and another one is absorbed.

For the second resonance p = q, we observe that the
effective Hamiltonian is analogous to a two-photon Dicke
Hamiltonian [33,34]

Ĥ2ph = α2
N

N

(
â2

Lϒ̂0,2 + â†
L

2ϒ̂2,0
)

(8)

describing the transitions between the levels q and −q (com-
pare to Appendix A). Moreover, we find a second contribution
to this effective Hamiltonian that includes two-photon tran-
sitions, where one photon is emitted and one is absorbed in
rough analogy to the origin of the Stark shift.

To derive an approximate solution for the second reso-
nance, we restrict ourselves for simplicity to the contribution
corresponding to the two-photon Dicke Hamiltonian. In anal-
ogy to Refs. [10,35], we employ two constants of motion to
find in Appendix C the expression

nq(L) = n0
1 + n0

2N

cos2
[√ n0

N

( n0
N + 2

)
αN L
2Lg

] + n0
2N

(9)

for the mean photon number within a semiclassical ap-
proximation that neglects terms responsible for spontaneous
emission.1 Moreover, we compute in Appendix C a numerical

1For a small interaction length L, we find the asymptotic behavior
n ∼= n0[1 + n0(αN L/Lg)2/(2N )]. Hence, a linear analysis (often used
in FEL theory) is not sufficient to obtain this nonlinear short-time
behavior.

FIG. 3. Mean photon number n of a seeded high-gain FEL in the
quantum regime divided by the number N of electrons as a function
of the undulator length L in units of the gain length Lg. The initial
photon number amounts to n0 = 0.1N and the electron number to
N = 104. In the top panel all electrons start at the first resonance
p = q/2. We observe that the analytical solution (blue, dashed line)
from Eq. (7) including third-order corrections agrees with the nu-
merical solution corresponding to the effective Hamiltonian in third
order (orange, dotted line), while the first-order solution (red line) of
Ref. [10] differs by a phase shift ∼α2

N . We have chosen the compara-
bly high value αN = 0.5 for the quantum parameter to make this shift
visible. In the bottom panel all electrons start at the second resonant
momentum p = q with αN = 0.25. Here we compare the analytical
approximation (red line) from Eq. (9) to the numerical simulations
resulting (i) from the two-photon Dicke Hamiltonian (blue, dashed
line), and (ii) from the full effective Hamiltonian (green, dotted line)
of second order. In all three cases we observe an oscillatory behavior,
with at most two emitted photons per electron. Analytics and nu-
merics agree for the simplified model, that is the two-photon Dicke
Hamiltonian. However, the simulation for the full dynamics shows
a suppressed maximum photon number which occurs after a higher
interaction length in comparison to the curves corresponding to the
simplified model. Nevertheless, the qualitative behavior is similar.

solution in rough analogy to the procedure for the fundamental
resonance [36].

In the bottom panel of Fig. 3, we have drawn the mean
photon number for p = q as a function of the undulator
length L. We observe that nq shows an oscillatory behavior,
with at most two emitted photons per electron. Compared
to the solutions corresponding to the simplified model with
the two-photon Dicke Hamiltonian, the curve emerging from
the simulation of the full effective Hamiltonian of second
order has a suppressed maximum which occurs after a slightly
higher interaction length.
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FIG. 4. Mean photon number n of a seeded high-gain FEL in
the quantum regime divided by the number N of electrons as a
function of the undulator length L in units of the gain length Lg. We
compare the curves corresponding to the two analytical expressions
Eqs. (7) and (9), where the electrons start at (i) the first resonant
momentum p = q/2 (blue line) and (ii) the second resonance p = q
(orange, dashed line). We have chosen the values n0 = 0.1N and
αN = 0.25 for the initial photon number and the quantum parameter,
respectively. The second resonance leads to maximally two emitted
photons per electron compared to only one for the first resonance.
However, for p = q, the growth of the photon number is much
slower and the maximum occurs at a much higher interaction length
compared to p = q/2. Hence, we deduce that the first resonance is
more advantageous for the realization of a high-gain Quantum FEL
than higher resonances.

Similar to the low-gain regime, the maximum photon num-
ber increases for higher resonances, but at the same time the
growth of the photon number becomes slower. We identify
this effect directly in the analytical results. For the second
resonance, the maximum photon number nq

max = n0 + 2N oc-
curs at the length Lq

max while the corresponding maximum
nq/2

max = n0 + N for p = q/2 is reached at Lq/2
max. With the help

of Eqs. (7) and (9), we obtain the relation

Lq
max

Lq/2
max

= 1

αN

π

2 ln
(√

N
n0

)√
n0
N

( n0
N + 2

) . (10)

Due to the scaling with 1/αN � 1, the maximum for p = q
is shifted to the right compared to p = q/2. We visualize this
behavior in Fig. 4, where we have drawn the mean photon
numbers corresponding to these two resonances both as func-
tions of the undulator length. We derive from Eq. (10) with
n0 = 0.1N that Lq

max � Lq/2
max only for αN � 3 which is outside

the quantum regime for which we require a small value of αN .
The results in the high-gain regime, Eqs. (7) and (9), reduce

to their respective low-gain counterparts in Eq. (4) in the
asymptotic limit δn ∼ N � n0. Moreover, we emphasize that
the quantum regime as well as the classical regime are both
opposite asymptotic limits of the quantum theory of the FEL.
The transition between classical an quantum is for example
discussed in Ref. [26] for the low-gain or in Ref. [9] for the
high-gain regime.

IV. CONCLUSIONS

The quantum regime of the FEL emerges for high values
of the quantum mechanical recoil, that is small wavelengths.

Optical undulators are key [3,37] to achieve such parame-
ters experimentally. The requirements on power and pulse
length of such a “pump laser” [18] pose hard experimental
challenges, already for the lowest-order [10] momentum res-
onance p = q/2. In addition, the combined influence of space
charge and spontaneous emission limits the maximally possi-
ble interaction length [11]. In this paper we demonstrated that
higher-order resonant transitions require even larger undulator
lengths due to the suppression of multiphoton transitions in
the quantum regime. As a consequence, the first resonance is
favorable compared to the higher-order ones.

Moreover, we calculated multiphoton corrections to the
deep quantum regime at p = q/2 in the low-gain [5] and for
the first time also in the high-gain regime. Besides multipho-
ton processes, space charge and spontaneous emission can
destroy the Quantum FEL dynamics [11]. Only recently [8],
space-charge effects were studied in detail in a semiclassical
phase-space model. In the next steps, one could combine all
mentioned effects in a more complete Quantum FEL theory to
specify more accurately parameter regimes, where an experi-
mental realization becomes possible.
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APPENDIX A: EFFECTIVE HAMILTONIAN

We start with the dimensionless Hamiltonian in the high-
gain regime [13]

Ĥ ≡ ε
∑

μ

(ei2τ [ p
q −(μ+ 1

2 )] âLϒ̂μ,μ+1 + H.c.) (A1)

in the interaction picture with the dimensionless coupling con-
stant ε ≡ g/ωr and the dimensionless time variable τ ≡ ωrt .
To obtain the single-electron and semiclassical Hamiltonian
for a low-gain FEL, we simply have to replace the collective
operators ϒ̂μ,ν by their single-particle counterparts σ̂μ,ν and
approximate âL ≈ â†

L ≈ √
n ≈ const. This approximation is

only valid, if the relative change δn/n of the mean pho-
ton number is much smaller than unity. We deduce from
Fig. 1 that in the quantum regime an electron at the νth reso-
nance p = νq/2 emits at most ν photons leading to condition
νN/n � 1 for being in the low-gain regime. We note that the
commutation relation

[ϒ̂μ,ν, ϒ̂ρ,σ ] = δν,ρϒ̂μ,σ − δσ,μϒ̂ρ,ν (A2)

for the jump operators is the same for the collective model
as in the single-electron limit. However, the properties of
products of these operators differ [13].

The asymptotic method of averaging [22,23,25] is suitable
for a Hamiltonian Ĥ which can be represented as a Fourier
series in terms of the phase τ and its integer multiples. We
separate slow and rapid dynamics in the state vector |�(τ )〉 ≡
exp[−F̂ (τ )] |�(τ )〉, where F̂ describes the rapidly varying
part, while |�〉 gives the slowly varying part. With the help
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TABLE I. Effective Hamiltonian: We present for different resonant momenta the contributions of the asymptotic expansion of Ĥeff in orders
of αn in the low-gain regime and in orders of ε in the high-gain regime, respectively. For the first and the second resonance, p = q/2 and p = q,
we give the effective Hamiltonian up to third order. Moreover, we have calculated the fourth-order contribution in the case of p = q. For the
third resonance p = 3q/2, we have restricted ourselves to the low-gain regime.

Low gain: Ĥeff
∼= High gain: Ĥeff

∼=
αn[σ̂1,0 + σ̂0,1] ε[âLϒ̂1,0 + â†

Lϒ̂0,1]

+ α2
n

[
− 1

2 (σ̂0,0 + σ̂1,1) + ∑
μ �=0,1

σ̂μ,μ

2μ(μ−1)

]
+ ε2

2

[
(n̂ + 1)

∑
μ �=0

1
μ

(ϒ̂μ+1,μ+1 − ϒ̂μ,μ) − ∑
μ �=0

1
μ
ϒ̂μ+1,μϒ̂μ,μ+1

]

p = q
2 − α3

n
4 [σ̂0,1 + σ̂1,0 − σ̂−1,2 − σ̂2,−1] + ε3

4

⎡
⎣âL

∑
μ �=−1,0

ϒ̂2μ+2,2μ+1ϒ̂μ,μ+2

μ(μ+1)(2μ+1) + 3âL
2 (ϒ̂0,−1ϒ̂−1,1 − ϒ̂0,2ϒ̂2,1)

−
(∑

μ �=0

ϒ̂μ+1,μ+1−ϒ̂μ,μ

2μ2 + n̂ + 1
2

)
âLϒ̂0,1 + â3

Lϒ̂−1,2 + H.c.

⎤
⎦

α2
n

[
σ̂0,2 + σ̂2,0 + ∑

μ

2 σ̂μ,μ

(2μ−3)(2μ−1)

]
ε2

⎡
⎣âL

2ϒ̂0,2 + H.c. + n̂
∑
μ

ϒ̂μ+1,μ+1

2μ−1 − (n̂ + 1)
∑
μ

ϒ̂μ,μ

2μ−1

p = q + α4
n

⎡
⎣− 16

9 (σ̂2,0 + σ̂0,2) + 1
36 (σ̂3,−1 + σ̂−1,3) + ∑

μ

ϒ̂μ+1,μ+1+ϒ̂μ,μ−ϒ̂μ+1,μϒ̂μ,μ+1−ϒ̂μ,μ+1ϒ̂μ+1,μ

4μ−2

⎤
⎦

−∑
μ

σ̂μ+1,μ+1−σ̂μ,μ

8(μ−1/2)3{(μ−1/2)2−1}2 + ∑
μ �=0

σ̂μ+1,μ+1+σ̂μ,μ

64μ(μ2−1/4)2

⎤
⎦

αn[σ̂1,2 + σ̂2,1]

p = 3q
2 + α2

n

[
− 1

2 (σ̂1,1 + σ̂2,2) + ∑
μ �=1,2

σ̂μ,μ

2(μ−1)(μ−2)

]

+ α3
n

4 [σ̂0,3 + σ̂3,0 − σ̂1,2 − σ̂2,1]

of this ansatz, we derive the effective Hamiltonian [23]

Ĥeff =
∞∑
j=0

1

( j + 1)!

[
F̂ , i

dF̂

dτ

]
j

+
∞∑
j=0

1

j!
[F̂ , Ĥ ] j (A3)

of the Schrödinger equation for |�〉, where the subscript
j indicates a j times nested commutator.

We proceed by asymptotically expanding Ĥeff and F̂ in
powers of αn, or in powers of ε in the high-gain regime. In
each order of this expansion we have to ensure that the effec-
tive Hamiltonian is independent of time, that is Ĥeff �= Ĥeff(τ ).
Hereby, we avoid secular contributions which otherwise lead
to unphysically growing terms [38]. The dynamics dictated by
Ĥeff can then be solved nonperturbatively. In contrast, we can
rely on perturbation theory for the rapidly varying dynamics
since here the secular terms are excluded by construction.

Depending on the specific initial momentum p = νq/2
with integer ν, we obtain from Eq. (A1) the explicit expres-
sions for the Fourier components of Ĥ . By inserting these
components into Ĥeff from Eq. (A3) and calculating the occur-
ring commutators we finally obtain the effective Hamiltonian
for low and high gain and for different resonances. We have
listed the explicit expressions in Table I.

APPENDIX B: POPULATION OF MOMENTUM LEVELS

In this Appendix, we discuss the population probabilities
of the momentum levels for an electron in a low-gain FEL

resulting from the asymptotic method of averaging. For the
first resonance p = q/2, we refer to Ref. [5], where the pop-
ulation probabilities for the momentum levels are listed up to
third order in αn for the frequency and up to second order for
the amplitude. In the following, we consider the second and
the third resonance.

1. Second resonance

The initial state of an electron for the second resonance is
given by the momentum eigenstate |�(0)〉 = |p〉 with p = q.
However, due to the transformation from |�〉 to |�〉 we cal-
culate the transformed initial state |�(0)〉 = exp[F̂ (0)] |�(0)〉
perturbatively up to second order of αn.

We expand the state |�〉 in the discretized momentum basis
with probability amplitudes 〈p − μq|�(τ )〉. The Schrödinger
equation corresponding to the effective Hamiltonian from
Table I then translates to a system of linear differential
equations which we easily solve with respect to the initial
conditions for |�〉.

Then, we transform the result for |�〉 back to the origi-
nal state |�〉 via the relation |�(τ )〉 = exp[−F̂ (τ )] |�(τ )〉,
and again restrict ourselves to terms up to second order
of αn. Finally, we calculate the probabilities Pp−μq(τ ) ≡
|〈p − μq|�(τ )〉|2 for the population of the momentum
levels up to the order α2

n in amplitude and α4
n in

frequency.
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By this procedure, we find the explicit expressions

P2q(τ ) = α2
n

9
(cos2 ξ1τ+ cos2 ξ2τ−2 cos ξ1τ cos ξ2τ cos ξ3τ ),

Pq(τ ) = cos2 ξ1τ + 2α2
n cos ξ1τ

×
(
−10

9
cos ξ1τ + cos ξ4τ + 1

9
cos ξ2τ cos ξ3τ

)
,

P0(τ ) = 2α2
n{1 − cos [(ξ1 + ξ4)τ ]},

P−q(τ ) = sin2 ξ1τ + 2α2
n sin ξ1τ

×
(
−10

9
sin ξ1τ − sin ξ4τ + 1

9
sin ξ2τ cos ξ3τ

)
,

P−2q(τ ) = α2
n

9
(sin2 ξ1τ+ sin2 ξ2τ−2 sin ξ1τ sin ξ2τ cos ξ3τ ),

with

ξ1 ≡ α2
n

(
1 − 16α2

n

9

)
,

ξ2 ≡ α4
n

36

√
1 +

(
124

125

)2

,

ξ3 ≡ 3 − 8α2
n

15

(
1 − 16α2

n

5

)
,

ξ4 ≡ 1 + 8α2
n

3

(
1 − 7

(
8αn

15

)2)
.

We note that the sum over these probabilities equals unity.

2. Third resonance

For the third resonance, p = 3q/2, we neglect the am-
plitude corrections and assume that |�〉 ≈ |�〉. With the
help of the effective Hamiltonian in Table I, we obtain the
probabilities

P3q/2(τ ) = cos2

(
α3

nτ

4

)
and P−3q/2(τ ) = sin2

(
α3

nτ

4

)
(B1)

for the population of the momentum levels 3q/2 and −3q/2,
respectively.

APPENDIX C: CALCULATIONS IN HIGH-GAIN REGIME

We calculate the time evolution of the mean photon number
for a high-gain FEL in the quantum regime at the second
resonance. For that we employ (i) an analytical approximation
and (ii) a numerical simulation.

1. Analytical approximation

The momentum jump operators appearing in the two-
photon Dicke Hamiltonian Ĥ2ph from Eq. (8) can be treated
analogously to ladder operators of angular momenta. For sim-
plicity, we employ the Schwinger representation of angular
momentum [39] by introducing the bosonic annihilation and
creation operators, b̂s and b̂†

s , respectively for two modes
s = 0, 2. We then identify the relations ϒ̂0,2 ≡ b̂†

0b̂2 and

ϒ̂2,0 ≡ b̂†
2b̂0. Hence, we obtain the Hamiltonian

Ĥ2ph = ε2(âL
2b̂†

0b̂2 + â†
L

2b̂†
2b̂0) (C1)

from which we derive via the Heisenberg equations of motion
the two constants of motion Â ≡ N̂0 + N̂2 = const, and B̂ ≡
2N̂0 + n̂ = const with N̂k ≡ b̂†

kb̂k and n̂ ≡ â†
LâL [35].

In the following, we approximate the operators as classical
but dynamically changing variables. The Hamiltonian equa-
tion of motion for a dynamical quantity f then reads

df

dτ
= { f , H2ph} ≡ −i

∑
s=0,2,L

(
∂ f

∂bs

∂H2ph

∂b∗
s

− ∂ f

∂b∗
s

∂H2ph

∂bs

)
,

(C2)

where we have defined the Poisson brackets for the complex
amplitudes b0, b2, and bL ≡ aL of three harmonic oscillators.
This semiclassical approximation neglects contributions that
are responsible for spontaneous emission and thus we deduce
that our approximation works for a seeded FEL, but breaks
down for self-amplified spontaneous emission (SASE).

For the time evolution of the photon number n ≡ |aL|2, we
obtain the second-order differential equation

n̈ = 4ε4[4nN0N2 + n2
0(N0 − N2)

]
(C3)

with Ns ≡ |bs|2. We assume that the two constants of motion,
Â and B̂, are described by their initial expectations values,
that is A = N and B = 2N + n0, respectively. With the help of
these relations we eliminate N0 and N2 in Eq. (C3) and obtain
a closed equation for n. After integrating twice with respect to
time τ , we observe

2α2
Nτ =

∫ n/N

n0/N

dξ

ξ

√(
ξ − n0

N

)(
2 + n0

N − ξ
) , (C4)

which can be solved analytically. Finally, we arrive at the
expression in Eq. (9) for the evolution of the photon number
n = n(L), where we have introduced the interaction length L
via the relation αNτ = L/(2Lg) [13].

2. Numerical simulation

To find a numerical solution for the dynamics dictated by
the effective Hamiltonian for p = q, we first consider the con-
tribution corresponding to the two-photon Dicke Hamiltonian
Ĥ2ph. Similarly to Ref. [10], we notice the analogy of the jump
operators to angular momentum, that is Ĵ+ = ϒ̂0,2, Ĵ− = ϒ̂2,0,
and Ĵz = (ϒ̂0,0 − ϒ̂2,2)/2. By applying the ladder operators
Ĵ± on the state |r, m〉, we obtain the relation [40]

Ĵ± |r, m〉 =
√

(r ± m + 1)(r ∓ m) |r, m ± 1〉 , (C5)

where r and m correspond to the quantum numbers of total
angular momentum and its z component, respectively.

In this description, the initial state of the electrons is given
by |N/2, N/2〉 = |p, p, ..., p〉. In this case, only superposi-
tions of the following states

|μ〉 ≡ |n0 + 2μ〉 |N/2, N/2 − μ〉 (C6)
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can be populated by Ĥ2ph, if we assume that the laser field
starts from a Fock state with n0 photons [36]. The quantum
number μ runs from 0 to N , due to −r � m � r with r = N/2.

We note that the second contribution 	̂ ≡ Ĥeff − Ĥ2ph to
the effective Hamiltonian (compare to Table I) includes oper-
ators outside this angular momentum algebra. To proceed, we
write the electron part of the state in Eq. (C6) in the form

|N/2, N/2 − μ〉 = 1√
μ!

√
(N − μ)!

N!
Ĵμ
− |N/2, N/2〉 (C7)

which follows from Eq. (C5). With the help of this relation and
the commutation relation for the jump operators in Eq. (A2)
we calculate the action of 	̂ on the state |μ〉 and find that it is
an eigenstate of 	̂. Hence, we still can rely on the formalism
for Ĥ2ph for the full effective Hamiltonian since 	̂ reproduces
only states in the form of Eq. (C6).

After expanding the quantum state |�〉 of the total system
in terms of the basis states |μ〉, and applying the Schrödinger
equation with the effective Hamiltonian for an initial momen-
tum p, we finally obtain the equation of motion

i
dcμ(L)

d (L/Lg)
= ap(μ)cμ−1(L) + a(μ+ 1)cμ+1(L) + dp(μ)cμ(L)

(C8)

for the expansion coefficients cμ ≡ 〈μ|�〉. For p = q, the off-
diagonal terms

aq(μ) ≡ αN

2

√
(n0 + 2μ − 1)(n0 + 2μ)

√
μ

N

√
1 − μ − 1

N
(C9a)

emerge from the two-photon Dicke Hamiltonian Ĥ2ph and

dq(μ) = αN

[
2

3
μ

(
1 − 1

N

)
+ 1

3
n0 + 1

2

]
(C9b)

represents the additional diagonal contributions arising from
	̂. Similarly to Appendix C 1, we transformed from τ to L.
The probability amplitudes cμ contain all information of the
quantum state of the system and after computing them nu-
merically by diagonalizing a (N + 1) × (N + 1) tri-diagonal
matrix we are able to evaluate any expectation value.

Analogously, we find for the resonance p = q/2 a dy-
namical equation of the same form as Eq. (C8) using the
corresponding effective Hamiltonian from Table I up to third
order. In this case, the ladder operators of angular momentum
are given by ϒ̂1,0 and ϒ̂0,1. We obtain the expressions

aq/2(μ) ≡ 1

2

[
1− α2

N

8

(
1+2

n0+1

N

)]√
μ(n0+μ)

√
1− μ−1

N
(C10a)

and

dq/2(μ) ≡ −αN

4

[
n0 + μ

(
1 + 1

N

)]
(C10b)

for the off-diagonal and diagonal terms in the differential
equation.
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