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Abstract: Accurately predicting total electron content (TEC) during geomagnetic storms is still
a challenging task for ionospheric models. In this work, a neural-network (NN)-based model is
proposed which predicts relative TEC with respect to the preceding 27-day median TEC, during
storm time for the European region (with longitudes 30°W–50°E and latitudes 32.5°N–70°N). The
27-day median TEC (referred to as median TEC), latitude, longitude, universal time, storm time, solar
radio flux index F10.7, global storm index SYM-H and geomagnetic activity index Hp30 are used
as inputs and the output of the network is the relative TEC. The relative TEC can be converted to
the actual TEC knowing the median TEC. The median TEC is calculated at each grid point over the
European region considering data from the last 27 days before the storm using global ionosphere
maps (GIMs) from international GNSS service (IGS) sources. A storm event is defined when the storm
time disturbance index Dst drops below 50 nanotesla. The model was trained with storm-time relative
TEC data from the time period of 1998 until 2019 (2015 is excluded) and contains 365 storms. Unseen
storm data from 33 storm events during 2015 and 2020 were used to test the model. The UQRG
GIMs were used because of their high temporal resolution (15 min) compared to other products
from different analysis centers. The NN-based model predictions show the seasonal behavior of the
storms including positive and negative storm phases during winter and summer, respectively, and
show a mixture of both phases during equinoxes. The model’s performance was also compared with
the Neustrelitz TEC model (NTCM) and the NN-based quiet-time TEC model, both developed at
the German Aerospace Agency (DLR). The storm model has a root mean squared error (RMSE) of
3.38 TEC units (TECU), which is an improvement by 1.87 TECU compared to the NTCM, where
an RMSE of 5.25 TECU was found. This improvement corresponds to a performance increase by
35.6%. The storm-time model outperforms the quiet-time model by 1.34 TECU, which corresponds to
a performance increase by 28.4% from 4.72 to 3.38 TECU. The quiet-time model was trained with
Carrington averaged TEC and, therefore, is ideal to be used as an input instead of the GIM derived
27-day median. We found an improvement by 0.8 TECU which corresponds to a performance increase
by 17% from 4.72 to 3.92 TECU for the storm-time model using the quiet-time-model predicted TEC
as an input compared to solely using the quiet-time model.

Keywords: ionosphere; relative total electron content; geomagnetic storms; neural networks; NTCM;
European storm-time model

1. Introduction

Geomagnetic storms are disturbances in the Earth magnetosphere caused by enhance-
ments in the solar wind by coronal mass ejections (CMEs) or high-speed solar-winds
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streams (HSS) [1–3]. Interactions of HSS with quiet-time solar wind cause corotating inter-
action regions (CIRs) [1] which cause geomagnetic storms. Coronal mass injections result
from reconfigurations of the solar coronal magnetic field and injection of a magnetic cloud
into the interplanetary fields. HSS originate from the coronal holes, where solar wind can
escape more easily because of the Sun’s open magnetic field caused by temporary cooler,
less dense regions [4]. During the declining phase of the solar cycle, coronal holes occur
at lower latitudes and cause more frequent CIRs that can hit the Earth. CMEs have, in
general, a higher occurrence during solar maximum [5] while some of the strongest CMEs
have been, in fact, observed during the declining phase of the solar cycle. Geomagnetic
storms can result in changes in the Earth’s magnetosphere which is two-way coupled to the
ionosphere and can produce ionospheric disturbances due to electromagnetic flux heating
and the precipitation of particles into the ionosphere. Total electron content (TEC) describes
the line-of-sight number of charged particles in the ionosphere, and an increase in TEC
corresponds to increasing propagation delays for transionospheric signals. The TEC can
be represented by TEC units (TECU), where 1 TECU stands for 1016 free electrons/m2.
The dispersive property of the ionosphere can be used to correct for the ionospheric delay
by combining two or more frequencies. Single-frequency users, however, are not able
to use multiple frequencies and need ionospheric models or external information to cor-
rect for this propagation effect [6–8]. Higher electron densities cause higher atmospheric
drag on low orbiting satellites [9,10] and longer delays on Global Navigation Satellite
Systems’ (GNSS) radio signals, which are used for navigation and other GNSS applica-
tions. Predicting TEC accurately during these space weather events is a challenging task,
because during geomagnetic storms the TEC can dramatically change compared to the
quiet-time conditions.

To show an example of how much the ionospheric TEC can be disturbed during a
geomagnetic storm, the TEC relative to the 27-day median prior to the event (referred to as
the relative TEC) can be used. The relative TEC is plotted in Figure 1 for the Halloween
storms that occurred on 29 and 30 October 2003. The relative TEC is computed using
the global ionosphere maps (GIMs) from the Universitat Politècnica de Catalunya (UPC)
analysis center, downloaded from ftp://newg1.upc.es/upc_ionex/ (accessed on 8 May
2022). In this figure, we see that at certain locations the TEC can increase by more than
200% compared to the preceding 27-day median. Storms do not have to be short-lived
phenomena but can have a duration that can last a few hours up to several days [11].
Therefore, it is important to predict ionospheric TEC accurately during disturbed periods
as well.

Figure 1. The relative total electron content (TEC) with respect to the preceding 27-day median
(calculated according to Equation (1)) for the Halloween storms that occurred on 29 and 30 October
2003. The relative TEC is calculated using the UQRG global ionosphere maps (GIMs) from the
Universitat Politècnica de Catalunya (UPC) analysis center. The main phase of the storms was on
29 and 30 October, which are day of year (DOY) 302 and 303, respectively. The recovery phase lasted
several days, until 3–4 November 2003. The relative TEC percentages are plotted at 22 universal time
(UT) for 29–31 October, which corresponds to DOY 302 (a), 303 (b) and 304 (c), respectively.

There are neural-network (NN)-based approaches that also investigate the perfor-
mance of TEC models during storm-time conditions. An NN-based TEC model, trained
with data from a Peninsular Malaysia station from the years 2011 to 2014, was used by Akir
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et al. [12]. The performance of the TEC model was investigated during two geomagnetic
storms in 2015. The study indicated that during major geomagnetic storms, the NN TEC
model is unable to accurately predict the TEC. The model developed by Akir et al. [12] did
not include any of the geomagnetic indices such as Kp, Hp, AE or Dst as input parameters.
The Dst index describes the disturbance produced by the asymmetric ring current at low
latitudes and the planetary Kp index measures global geomagnetic activity and is inferred
from 13 mid-latitude stations. The NN storm-time TEC model over Sutherland, South
Africa proposed by Uwamahoro and Habarulema [13] used the geomagnetic input parame-
ter called A, which stands for the daily average level of geomagnetic activity. The model
was trained with storm data from 1999 to 2013 and was not able to capture short-term
storm features but could accurately predict storms with non-significant ionospheric TEC
response and storms that occurred during low-solar-activity (LSA) conditions. The authors
of [14] investigated the performance of the Nigerian total electron content (NIGTEC) re-
gional NN-based model during two intense geomagnetic storms in March 2012 and 2013.
NIGTEC used the disturbance index Dst as one of its input parameters and was able to
capture the morphology of vertical TEC (VTEC) enhancement during the storm but not all
storm-time related changes. The performance of several different long short-term memory
(LSTM) network-based algorithms for global TEC predictions was investigated by Chen
et al. [15]. The authors found that the multi-step-auxiliary-algorithm-based prediction
model performed the best. The performance of the model was further validated with four
geomagnetic storm events during 2020 (LSA conditions) and showed that the model has
low error during a geomagnetic storm. A combination of LSTM, convolutional neural
network (CNN) and attention mechanism for an ionospheric forecast model in China was
used by Tang et al. [16]. The authors used the Dst, Kp and the magnetic-field southward
component Bz as one of the input parameters. The network was tested with data from
2018, which was also a relatively quiet solar period (with an average F10.7 of 69.9 solar
flux units).

The various NN-based approaches listed above use different algorithms for their
storm-time TEC investigations. During our previous investigations in [17], we found that
our FNN-based quiet-time model, developed at the German Aerospace Center (DLR), was
capable of showing the small-scale nighttime winter anomaly feature of the ionosphere. The
performance of the model deteriorates during storm time; this was also expected since the
model does not include any geomagnetic indices as input parameters. Due to the model’s
capability of providing predictions containing small-scale features of the ionosphere, the
same algorithm was chosen to be used but now focused on storm-time conditions. The
models discussed above predict the TEC directly but for the current study another method
was chosen. Our work focuses on the prediction of TEC during storm time relative to
the 27-day median of the preceding days, from now on referred to as the relative TEC.
Predicting the relative TEC instead of the TEC directly, the model’s capability of capturing
storm-related perturbations can be seen. The model can be applied using different data
sources as well, which will be further explained in the Methods section. In this paper,
an FNN model is proposed to predict the relative TEC for the European region (with
longitudes 30°W–50°E and latitudes 32.5°N–70°N). The relative TEC is computed using
TEC data from GIMs. There are eight Ionospheric Associate Analysis Centers (IAACs)
under the International GNSS Service (IGS) that develop the GIMs [18,19]. The GIMs are
provided in the ionosphere map exchange (IONEX) format. For this work, rapid UQRG
GIMs are used, which have a 15-minute temporal resolution, released by the UPC analysis
center. The spatial resolution is 5 degrees longitude by 2.5 degrees latitude. The UQRG
GIMs are released with a one-day latency. The high temporal resolution makes these GIMs
ideal to be used during storm events to capture small-scale storm-related changes.

The paper is divided into five sections, beginning with a brief description of different
NN-based ionospheric TEC models and their capability of predicting TEC accurately dur-
ing storms. Section 2 explains the database and sources needed for the model development.
The method used for designing the storm-time NN-based model’s architecture is discussed
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in Section 3. Section 4 provides a performance evaluation of the storm-time NN model com-
pared to an NN-based quiet-time model [17] and the Neustrelitz TEC model (NTCM) [20],
which is a computationally very fast 12-coefficient model that uses the daily solar flux F10.7
as a driving parameter. The storm-time NN-based model is further evaluated with respect
to its capability of predicting TEC using the quiet-time model outputs as an input for the
storm-time model in order to improve the quiet-time model’s accuracy. The conclusions
are given in Section 5.

2. Database

A storm dataset was needed for this study in order to train and test the model. The
dataset contains storms occurring in the time period from 1998 until 2020. The geomagnetic
storm-time disturbance index Dst was used to detect storms because it is, according
to Wanliss and Showalter, “the most widely used statistical descriptor of space storm
activity” [21] and commonly used for storm classifications. In Figure 2, the Dst and SYM-H
index, which can be used as a high-resolution Dst index [21], are plotted during a storm that
occurred 7–10 December 2013. According to Gonzalez et al. [22], storms can be classified
as follows: −50 ≤ Dst ≤ −30 as weak, −100 ≤ Dst ≤ −50 as moderate and Dst ≤ −100
as intense storms. In our study, we classified occurrences as storms if the Dst became
lower than −50 nanotesla (nT). The onset time (storm time = 0) was defined as the time of
maximum Dst right before the index started decreasing [23], shown as the dashed black
line in Figure 2.

Figure 2. The geomagnetic storm time disturbance index Dst plotted together with the SYM-H index
during a geomagnetic storm that occurred on 7–9 December 2013. The storm’s onset time (the time
where maximum Dst is seen right before it starts decreasing), which corresponds to storm time = 0, is
plotted as the dashed black line.

It is worth noting that the storm onset of magnetic storms is characterized by increases
in magnetic field strength, sudden impulses (SIs) and storm sudden commencements
(SSCs). Therefore, the true onset of the magnetic storm in Figure 2 is the rise time before
the “ST = 0”. However, for simplicity, we considered the onset as the time of maximum
Dst before the decreasing Dst values [23]. We assume that since we are using TEC data of
either 15-min or 1-h time resolutions, the difference in true onset and considered onset will
not impact the TEC modelling performance.

In total, there were 398 storms identified during the investigated time period. Most
storms occurred during high-solar-activity (HSA) periods, as shown below in Figure 3,
where the daily solar flux F10.7 is plotted together with the number of storms for each year.
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Figure 3. F10.7 solar flux index plotted together with the number (#) of storms counted for each year
for the complete dataset which contains storms occurring in the time period from 1998 until 2020.

We used the relative TEC in order to analyse and model storm-related perturbations,
defined in the Equation (1) below.

Relative TEC =
TEC − TEC27day median

TEC27day median
· 100% (1)

In some cases, the median TEC was zero; here, we decided to calculate the relative TEC
by substituting the median using a nominal value. The nominal value is 1 TECU during
daytime, which is from 6 until 18 universal time (UT), and 0.5 TECU during nighttime, this
way, a division by zero is prevented. The nominal values are assumed from our long-term
experiences on TEC reconstruction and modelling [20,24–26]. The storms were divided into
seasons according to their day of year (DOY). This is shown in Table 1, below, together with
the number of storms for each season. The DOY used to classify the storms into seasons,
listed in Table 1, corresponds to the following months: winter season storms occurred from
November until February, summer storms from May until August and equinox storms
during March, April, September and October.

Table 1. Number of storms for each season together with the DOY.

Season DOY Number of Storms

Winter 1–59 and 305–365 (366) 1 111
Equinox 60–120 and 244–304 112
Summer 121–243 175

Total 1–365 (366) 1 398
1 In case of leap year.

In Figure 4, the relative TEC as a function of storm time (averaged over the complete
region) is plotted during each season for UQRG data from UPC and data from the Center
for Orbit Determination in Europe (CODE) analysis center. A comparison with data from
CODE was made in order to see if the same storm-related perturbations are visible in both
datasets. In general, the relative TEC for CODE and UQRG data is very similar but for
the winter and equinox storms, a small increase at the beginning of the storm is seen for
the CODE relative TEC. This can be partially explained by the differences in temporal
resolution between the GIMs, which can result in more extreme peaks because there are
fewer data points. However, this does not justify why it only occurs within the positive
relative TEC phases and is not seen during summer storms, where negative phases are
stronger. From the plots in Figure 4, a strong positive phase (i.e., TEC increase relative
to 27-day median) during winter storms can be seen where the summer storms have a
negative phase. The equinox storms look like a mixture of the other two seasons. A seasonal
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effect was also found in [23,27–29], where during winter storms the positive phase of TEC
is dominant and during summer the decreasing effect is dominant.

Figure 4. Comparison of the relative TEC between the UQRG from UPC and Center for Orbit
Determination in Europe (CODE) GIM data as a function of storm time (averaged over the complete
region) plotted for winter (a), summer (b) and equinox (c). The classification into seasons was
performed according to the DOY listed in Table 1. Storm time equals zero corresponds to the time
where the Dst index was maximum, right before it started decreasing.

The rapid UQRG GIMs provided by UPC were downloaded from ftp://newg1.upc.
es/upc_ionex/ (accessed on 8 May 2022). The geomagnetic conditions are described by the
global storm index also known as disturbance index SYM-H and the geomagnetic activity
index Hp30. The SYM-H index was chosen instead of the disturbance index Dst as an
input parameter because it has a 1-minute time resolution [21]. SYM-H was downloaded
from http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html (accessed on 10 March 2022). The
high-cadence Hp30 index is a high-resolution Kp index [30,31] and can be accessed at
https://www.gfz-potsdam.de/en/hpo-index/ (accessed on 10 March 2022). The Hp30 has
a 30-min time resolution, whereas the Kp index has a 3-h time resolution. Both SYM-H and
Hp30 indices have been linearly interpolated to a time resolution of 15 min, equal to the
UQRG GIMs.

3. Method

In case of the NN-based quiet-time model [17], the DOY, UT, geomagnetic latitude,
geographic longitude, solar zenith angle and solar radio flux index F10.7 were used as
input parameters. Studies [13–16] have shown that other NN-based models considered
geomagnetic indices as inputs as well. Therefore, for the storm-time model, we considered
the same input parameters as the quiet-time model (except for the geomagnetic latitude and
the solar zenith angle) together with new inputs such as the storm time (where the storm
time = 0 corresponds to the time of maximum Dst right before the Dst starts decreasing),
27-day median TEC of the preceding days and the geomagnetic indices SYM-H and Hp30.
Including the storm time as an input parameter, the model could capture the timing
of the positive or negative relative TEC phases of the storms better. Since, during this
study, the rapid UQRG GIMs were used, there is a latency of one day before the GIMs
become available. Therefore, the 27-day median can be computed without complications
in the lag time of the release of the GIMs. Adding the solar zenith angle as an input did
not improve the accuracy of the model and, therefore, it was not included. The solar
zenith angle does not change very much because the model is limited to the European
region. This is also the reason why the geographic latitude was used instead of the
geomagnetic latitude. Other indices besides the Hp30 and SYM-H, e.g., Bz component of
planetary magnetic field, solar-wind flow speed, solar-wind pressure and proton density
were also investigated to check whether they would improve the accuracy of the model
or not. The indices were downloaded from the OMNIWeb interface, available at https:
//omniweb.gsfc.nasa.gov/form/dx1.html (accessed on 10 March 2022). Using the Bz,
solar-wind flow speed, solar-wind pressure and proton density as input parameters did
not improve the accuracy of the network. The temporal resolution of these parameters
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provided by the OMNIWeb database is 1-h, which may not be sufficient to describe the
small-scale perturbations seen in the relative TEC computed with the UQRG GIMs, which
have a temporal resolution of 15-min. Finally, the following inputs were selected to train
the neural network with: SYM-H, Hp30, DOY, UT, storm time, solar flux index F10.7
and the 27-day median TEC of the preceding days. The features and the correct set of
hyperparameters were selected by training different models and comparing the training
and validation loss and accuracy. Future selection may be also performed in an automated
way using various machine-learning methods such as random forests, mutual information
or fast function extraction [32].

The data was divided into training, validation and testing datasets. It was divided
by year in order to avoid information leakage, where the model already has information
about the test dataset and predictions during testing become too optimistic. This can
occur when the dataset contains very short intervals of data instead of complete storms or
when a scaler for normalization is also fitted on the testing data. Using the training and
validation datasets, the free parameters, also known as hyperparameters, are optimized.
A few examples of the different hyperparameters that have to be set are the number of
neurons or layers, activation function, regularization, learning rate and optimizer. The
validation set was about 20 percent of the training dataset. The testing dataset consists
of a total of 33 storms that happened during 2015 (27 storms), which is an HSA period,
and 2020 (6 storms), an LSA period. The testing dataset is excluded from the training and
validation datasets, which means that the data is unseen until the performance of the model
is tested. Early stopping, where the model stops the training process when the validation
loss does not decrease for a certain number of epochs, was used so that the model does
not overfit the training data and to reduce training time. The data was normalized using
the MinMaxScaler function from the Scikit-Learn Python library [33] to a range of [0, 1]
and fitted on the training and validation datasets. Using normalized data, the model can
converge faster. The FNN is built with Tensorflow [34] and Keras Python libraries [35]. To
map non-linearities, the rectified linear unit (ReLU) was chosen as an activation function for
the hidden layer, which is a very popular non-linear activation function [36]. The output
layer uses the linear identity activation function. Optimization algorithm ’Adam’ was used,
which minimizes the mean squared error and is a computationally effective algorithm with
low memory requirements [37]. A learning rate of 0.0001 was used for the Adam optimizer.
To avoid overfitting, a regularization term can be added which penalizes the model for
fitting the training data too well. Therefore, a small regularization term of 0.00004 was
added to the network.

The results for training the models with different numbers of neurons in one hidden
layer are plotted in Figure 5. In this figure, the results in terms of root mean square error
(RMSE) and correlation for the relative TEC and the TEC are displayed. The relative TEC
is converted to TEC in order to also show how well the model is performing in terms of
TECU. This figure shows that the correlation increases and the RMSE decreases when more
neurons are used in the hidden layer. Deeper networks, with architectures similar to the
investigations carried out by Orus Perez [38], were tested but the accuracy did not increase
when more layers were used, as shown in Table 2 below. After testing different architectures
and hyperparameters, a network architecture with one hidden layer containing 40 neurons
was chosen. The general architecture of the NN is shown Figure 6. After choosing the
hyperparameters and features, the model was trained once more with the validation data
included. The model was trained on a personal computer with an Intel Core i7-8665U CPU and
16 GB RAM; therefore, no special hardware was needed. The model was fitted in 30 epochs
(the number of cycles that the complete training dataset passes through the network) using a
batch size (number of samples that are propagated through the network) of 128.
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Figure 5. The number (#) of neurons in the hidden layer plotted against the root mean square error
(RMSE), shown with the blue line, and the correlation (orange line) for the relative TEC (a) as a
percentage and the TEC (b) in TEC Units (TECU).

Table 2. The RMSE and correlation results for the relative TEC and the TEC considering different
architectures.

Architecture RMSE Correlation
Rel TEC (%) TEC (TECU) Rel TEC (%) TEC (TECU)

32-1 23.81 3.55 0.58 0.93
16-8-1 21.83 3.35 0.59 0.92

32-16-8-1 23.78 3.83 0.59 0.92
64-32-16-8-1 22.00 3.38 0.58 0.92

128-64-32-16-8-1 22.20 3.34 0.57 0.92
256-128-64-32-16-8-1 24.70 3.82 0.57 0.92

Figure 6. General overview of the neural network (NN) architecture where ST stands for the storm
time and med-TEC for the 27-day median of the preceding days before the storm.
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The model predicts the relative TEC, and the TEC is computed using the 27-day
median of the preceding days. The TEC was computed using Equation (2).

TEC =
Relative TEC · TEC27day median

100
+ TEC27day median (2)

In this study, we also investigated if the quiet-time model VTEC predictions could be
used as a substitute for the input of the 27-day median TEC. The quiet-time model was trained
with Carrington-rotation-averaged TEC data, which is approximately 27 days. Using the
output of the quiet-time model instead of the 27-day median, the relative TEC was predicted.
The predicted relative TEC was used to update the quiet-time VTEC predictions in order to
see if the quiet-time model was then capable of capturing the storm-time perturbations better.
An overview of the method is shown in Figure 7, below. The magnetic latitude, used for the
quiet-time model, was not used for the storm-time model but the geographic latitude was
used instead.

The performance of the model was tested by comparing the model’s predictions with
the NTCM and the quiet-time model. The computationally very fast 12 coefficient NTCM
developed at DLR is comparable in its simplicity to the GPS Klobuchar model and achieves
a similar performance as the NeQuick G (optimized for Galileo system) and was recently
adopted by the European Commission as an alternative to the NeQuick G model [20,24–26].
The results are shown in the section below.

Figure 7. An overview of how the storm-time model is coupled with the quiet-time model. The
quiet-time model’s vertical TEC (VTEC) predictions are used as a substitute for the 27-day median TEC.

4. Results and Discussion

To validate the storm-time model, a comparison with the NTCM and quiet-time model was
made. The storm-time model was also coupled with the quiet-time model using the quiet-time
TEC predictions as a substitute of the median TEC in order to see if it can increase the quiet-time
model’s accuracy during storms. After the comparisons, the performance of the model was
investigated by comparing the predictions of the model at each grid point with the GIMs and
by analyzing the RMSE for each of the input features of the model.
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4.1. Comparison between NTCM and Quiet-Time Model

To validate the model, the performance of the storm model was compared to the per-
formance of the NTCM and the quiet-time NN-based global TEC model. The performance
of the models in terms of mean and standard deviation (STD) are shown in Figure 8, below,
and an overview of the RMSE is displayed in Table 3. The quiet-time model was trained
with CODE GIMs and has a performance of 4.67 TECU when CODE data was used as the
true value. When UQRG data was used instead of CODE as true value, the performance of
the model is 4.72 TECU, which is slightly worse but not a significant difference (0.05 TECU).
Therefore, the UQRG GIMs were used as the true value for all models. The histograms
were computed by subtracting the predictions of the storm-time, NTCM and quiet-time
model from the true value. The storm model has an overall RMSE of 3.38 TECU, which
is an improvement by 1.87 TECU (35.6%) compared to the NTCM, which has an RMSE
of 5.25 TECU. The storm model outperformed the quiet-time model by 1.34 TECU which
corresponds to a performance increase by 28.4% from 4.72 to 3.38 TECU. From Figure 8,
it becomes clear that all models perform better during the LSA year 2020, which is as
expected. The difference in performance between the three models during that year is very
small, e.g., the RMS residual is approximately 0.7 and 1 TECU less for of the storm-time
model compared to the quiet model and NTCM, respectively. The performance of the storm
model becomes more significant during the HSA year 2015, which is also the period where
the most storms occurred during the last solar cycle.

Figure 8. The performance of the storm model, quiet-time model and Neustrelitz TEC model (NTCM)
in TECU. The left panels (a,c) correspond to the high-solar-activity (HSA) year in 2015 and the right
panels (b,d) to the low-solar-activity (LSA) year in 2020.
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Table 3. Quality measures, in terms of RMSE and correlation for the TEC, of the NTCM, quiet-time
and storm-time relative TEC model.

Model TEC
RMSE (TECU) Correlation

NTCM 5.25 0.81
Quiet-time model 4.72 0.85

Storm-time Rel TEC model 3.38 0.92

In Figure 9, the relative TEC as a function of storm time (averaged over the complete
region) is plotted with the quiet- and storm-time model predictions for the test dataset,
which contains storms during 2015 and 2020. The quiet-time model does not show any
storm-related perturbations, which was also expected because the model is not driven by
geomagnetic indices. The relative TEC calculated with predictions from the quiet-time
model are showing negative percentages. A reason for this behaviour may be that the
27-day median from UQRG GIMs, which are used to compute the relative TEC, are slightly
higher than CODE data, causing these negative percentages. The storm-time model shows
a positive phase during the winter storms and summer storms have a negative phase. The
equinox storms look like a mixture of both of them.

Figure 9. The performance of the quiet-time and the storm-time model in relative TEC as a function
of storm time (averaged over complete region) for the test data set (2015 and 2020) during winter (a),
summer (b) and equinox (c). The classification into seasons was performed according to the DOY
listed in Table 1.

4.2. Using Quiet-Time Model as Input for Storm-Time Model

The quiet-time model is not able to show storm-related perturbations. Therefore, the
storm model is coupled with the quiet-time model in order to increase the quiet-time model
performance during storms. Applying the quiet-time model as an input for the storm-time
model’s median TEC, the accuracy of the predictions improves by approximately 0.8 TECU
compared to solely using the quiet-time model. This corresponds to a performance increase
by 17% from 4.72 to 3.92 TECU. To visualize the improvement achieved using a combination
of the quiet- and storm-time model, the TEC (blue line) and predictions of the quiet-time
model (orange line), storm-time model (green line) and storm-time model combined with
the quiet-time model (red line) during two storms were plotted along with the SYM-H
index in Figure 10. In the left panel, an improvement by 2.94 TECU, which corresponds to
a performance increase by 30.9% from 9.52 to 6.58 TECU, is seen when the storm model
is coupled with the quiet-time model compared to solely using the quiet-time model. If
the storm model uses the 27-day median TEC from UQRG data as an input instead of the
predictions of the quiet-time model, the difference between TEC and predictions becomes
even smaller (green line), but this is not the case for all storms. In the right panel, the
same was plotted but during a different storm. In these plots, comparing the red and
green curves, the difference is smaller between the storm model using the 27-day median
obtained from the UQRG GIMs as an input and the storm model which is coupled with the
quiet-time model. Applying the quiet-time-modelled TEC as input to the storm model during
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this storm improves the predictions by 3.18 TECU, which corresponds to a performance
increase by 50.8% from 6.26 to 3.08 TECU, compared to the quiet-time model.

Figure 10. In the top panel is the UQRG TEC (blue curve) plotted together with the predicted TEC
by the quiet-time model (orange curve), storm-time model (green curve) and the storm-time model
coupled with the quiet-time model (red curve) for a geomagnetic storm on 17 February 2015 (a) with
the SYM-H index plotted at the same time (b). The same is plotted for another storm that occurred on
11 May 2015, shown in (c) together with the corresponding SYM-H index (d).

4.3. Performance Analysis: Storm Model

To investigate the performance of the storm model further, the RMSE and correlation
for each season is provided, as shown in Table 4. The storm-time model performs the best
in terms of RMSE and correlation in the case of summer storms. During winter storms,
a higher RMSE is seen and equinox storms have the lowest correlation for the relative
TEC. The same behaviour is seen in Figure 11, where the relative TEC is plotted for the
European region averaged for all storms in the test dataset (2015 and 2020) and divided by
each season according to the DOY listed in Table 1. In this figure, the top panel shows the
mean relative TEC from the GIMs, the middle panel shows the predictions and the bottom
panel shows the difference between the model and the GIMs. The differences are computed
by subtracting the GIMs relative TEC from the predictions. From this figure, we can see
that the model is over-predicting in the winter season in the northern latitudes. During
equinox storms, the model is generally over-predicting in the whole European region. The
model is under-predicting during summer storms and also winter storms, but in case of
winter storms only for lower latitudes with western longitudes.

The RMSE was also plotted against different parameters, e.g., the storm time, local
time, DOY, SYM-H, Hp30, F10.7, longitude and latitude, for all the storms from the test
dataset, which is shown in Figure 12. Looking at the top left panel, we see that the storm-
time model is less accurate during the first part of the storm. As the storm continues, the
model becomes more accurate. This was expected because the storms have the largest
changes in TEC during the first part of the storm, as also shown in Figure 4 (in the case of
winter and equinox storms). The top right panel shows the RMSE for each local time (LT).
The lowest RMSE is seen in the morning hours with the minimum at 7–8 LT. The lack of
sunlight (lower TEC levels) during the night can explain why the RMSE is dropping and
when the sun rises, the ionosphere becomes more active, causing the higher RMSE values
during these hours. This only partially explains the RMSE behaviour because the RMSE
keeps increasing even though the sun sets in the evening and finally starts decreasing
around midnight. From the plot where the RMSE is plotted against DOY, it can be seen
that the model performs better during the summer, which is also observed in Figure 9
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and in Table 4. As expected, the SYM-H and Hp30 plots show that the accuracy of the
model deteriorates when the storms become stronger. The F10p7 plot suggests that higher
solar activity does not cause a large difference in prediction errors of the relative TEC. The
longitude plot shows a minimum of RMSE at around 30 degree east and the latitude plot
shows a minimum at around 55 degree north, but the range is very small.

The general performance of the model is good but the model’s performance can
differ for each storm. A reason for this kind of behavior may be that the storms are very
different from each other and, therefore, the model cannot predict all of them with the same
accuracy. In this paper, an FNN architecture was used to model the storms; this way, the
performance could be fairly compared to the quiet-time NN model which used the same
architecture. Other NN architectures should also be investigated in the future, e.g., the
LSTM architecture.

Figure 11. The relative TEC for the European region averaged for all storms in the test dataset (storms
during 2015 and 2020) from the GIMs in panel (a), the predictions in panel (b) and the difference
maps in (c). The difference maps were computed by subtracting the GIMs relative TEC from the
predictions. The classification into seasons was performed according to the DOY listed in Table 1.
The top colour bar corresponds to panel (a,b). The colour bar in the bottom to panel (c).

Table 4. Performance of the storm-time model in terms of RMSE and correlation for relative TEC and
TEC for the test dataset. The classification into seasons was performed according to the DOY listed in
Table 1.

Season # of Storms RMSE Correlation
Rel TEC (%) TEC (TECU) Rel TEC (%) TEC (TECU)

Winter 9 27.16 3.70 0.59 0.91
Equinox 13 22.92 3.49 0.51 0.92
Summer 11 15.38 2.91 0.65 0.93

Total 33 22.11 3.38 0.60 0.92
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Figure 12. The RMSE of the relative TEC plotted for different parameters which are the storm time
(a), local time (b), DOY (c), SYM-H (d), Hp30 (e), F10p7 (f), longitude (g) and latitude (h) for all the
storms in the test dataset.

5. Conclusions

In this work, a storm-time NN-based relative TEC model for the European region
(with longitudes 30°W–50°E and latitudes 32.5°N–70°N) was proposed. The model uses the
SYM-H, Hp30, DOY, UT, storm time, solar flux index F10.7 and the 27-day median TEC as
input parameters in order to predict the relative TEC. The model was trained with UQRG
GIM data from the UPC analysis center during storms. The storm dataset contains storms
during the period 1998–2019, with the year 2015 excluded. The years 2015 and 2020 were
used for testing which are a high-solar-activity and low-solar-activity year, respectively.

The method used for this paper provides the relative TEC with respect to the 27-day
median TEC prior to the storm as an output instead of predicting the TEC directly. The
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27-day median TEC of the preceding days computed from GIMs or TEC models can be
provided as input.

Our investigations show that the model can describe the vertical TEC behavior during
storm time well in many cases. The predicted relative TEC shows seasonal behavior, e.g.,
stronger positive phases during winter and negative phases during summer months. The
performance of the model was compared to the quiet-time NN-based TEC model and the
NTCM. The storm model outperformed the NTCM by approximately 1.9 TECU, which
corresponds to a performance increase by 35.6% from 5.25 to 3.38 TECU. The storm-time
model outperforms the quiet-time model by 1.3 TECU, which corresponds to a performance
increase by 28.4% from 4.72 to 3.38 TECU. The model was also tested for whether it is
capable of improving the quiet-time model performance, because the quiet-time model
does not show storm-related perturbations. For this, the output of the quiet-time model
was used as an input to the storm-time model, substituting the 27-day median TEC. The
relative TEC was then computed and used to calculate the TEC. This method could improve
the quiet-time model TEC predictions by 0.8 TECU, which corresponds to a performance
increase by 17% from 4.72 to 3.92 TECU.
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