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CollisionGP: Gaussian Process-Based Collision
Checking for Robot Motion Planning

Javier Muñoz1, Peter Lehner2, Luis E. Moreno1, Alin Albu-Schäffer2 and Máximo A. Roa2

Abstract—Collision checking is the primitive operation of
motion planning that consumes most time. Machine learning al-
gorithms have proven to accelerate collision checking. We propose
CollisionGP, a Gaussian process-based algorithm for modeling
a robot’s configuration space and query collision checks. Colli-
sionGP introduces a Pòlya-Gamma auxiliary variable for each
data point in the training set to allow classification inference to be
done exactly with a closed-form expression. Gaussian processes
provide a distribution as the output, obtaining a mean and vari-
ance for the collision check. The obtained variance is processed to
reduce false negatives (FN). We demonstrate that CollisionGP can
use GPU acceleration to process collision checks for thousands
of configurations much faster than traditional collision detection
libraries. Furthermore, we obtain better accuracy, TPR and TNR
results than state-of-the-art learning-based algorithms using less
support points, thus making our proposed method more sparse.

Index Terms—collision avoidance, Gaussian processes, machine
learning, motion planning

I. INTRODUCTION

Path planning is the task of creating a path to move a robot
from a start configuration to a target configuration while avoid-
ing self-collisions and collisions with the environment. Most
path planning solutions are calculated in the configuration
space (C-space) of the robot rather than in the Cartesian space
of the environment. In the C-space, each dimension represents
a degree of freedom (DoF) of the robot [1]. As the number of
DoFs of the robot increases, the dimensionality of the C-space
grows, thus increasing the complexity of the path planning
problem. To plan collision-free paths, path planning algorithms
rely on collision checkers. The algorithms determine if a
specific configuration belongs to the free configuration space
Cfree or to the configuration space blocked by obstacles Cobs.
The queries to the collision checker are the most computation-
ally expensive primitive operation of path planning algorithms,
accounting for about 90% of the computation time [2].

The configuration space can be modeled by standard ma-
chine learning techniques, allowing the model to receive
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queries from the path planning algorithm. However, such a
model is rendered invalid when any aspect of the environment
changes. Computationally expensive models with millions of
weights, such as Artificial Neural Networks (ANNs), cannot be
updated by an algorithm fast enough to be useful in changing
environments. In this paper, we introduce a novel approach to
collision detection using Gaussian processes (GPs), aimed to
building a lighter and computationally less expensive model
that reduces the computation time spent on collision checking
during path planning applications.

We propose CollisionGP, a lightweight GP model based on
Pòlya-Gamma auxiliary variables for binary classification [3].
This is the first application of GPs to the problem of checking
collisions in the configuration space of a robot, to the best of
our knowledge. Other methods, however, use GPs for motion
planning [4]–[6] . The main advantages of GPs is that they are
easy and fast to train since their number of hyperparameters
is significantly smaller than other methods such as ANNs, and
they provide a full probabilistic distribution as the output of
the model. This allows us not only to determine if a query
point belongs to Cfree or Cobs, but to measure the uncertainty
of the model about that prediction. We use this uncertainty
measure to weight the decision boundary towards eliminating
false negatives, which would lead to a collision of the robot
with an obstacle or with itself. This is extremely important
in critical applications such as chemical waste handling or
surgical robotics.

We choose the rational quadratic kernel with automatic rele-
vance determination (ARD) as the GP kernel, which improves
the model accuracy by ruling out the DoFs that do not directly
influence the collisions. To obtain a lightweight model, we use
a set of inducing points to perform the predictions on the path
planning algorithm queries. We demonstrate that few inducing
points are needed to obtain trustable and accurate C-space
maps. Moreover, we show that an algorithm can update the
model fast enough to adapt to changing environments while
keeping the number of inducing points constant.

II. RELATED WORK

Machine learning techniques have been previously em-
ployed to model the C-space of a robot and accelerate collision
checking in path planning.

Pan et al. [7] use support vector machines (SVMs) to gener-
ate an accurate decision boundary between Cfree and Cobs for
two objects, and present an active learning strategy to improve
this boundary iteratively. In our case, the computations of
CollisionGP can be processed online and the algorihtm does
not need a new model for every pair of objects.
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Arslan et al. [8] use a Bayesian classifier to compute
two approximate probability density functions to determine
Cfree and Cobs based on the available data, and then use the
Bayesian rule to predict if a query point belongs to Cfree

or Cobs. CollisionGP has the advantage over naive Bayes
classifiers of being able to provide a predictive variance for
the model outputs.

Danielczuk et al. [9] use a neural network that learns
collisions from scenes, represented as point clouds, and is
able to predict collisions for 6 DoF object poses within the
scene. However, they need 1 million scene/object point cloud
pairs and more than 2 billion collision queries to train the
network and they need a camera with depth perception to
perform collision checks. They show the applicability of the
method with a robot performing tabletop rearrangement tasks.
Kew et al. [10] present ClearanceNet and CN-RRT, a neural
network collision checking heuristic and a planning algorithm,
respectively. CN-RRT uses the capability of ClearanceNet to
process batches of thousands of collision checks to efficiently
and quickly plan paths. Qureshi et al. [11] use Motion Plan-
ning Networks, a neural network that encodes the workspace
given a point cloud and computes collision free paths for the
robot. The training is done via expert demonstrations, using
4000 demonstrations for 100 different workspaces. The neural
network is able to generate multiple collision free paths for
a single combination of start and goal configurations in a
finite time due to its stochastic behavior. Ichter et al. [12] use
learned critical probabilistic roadmaps to plan robot motions.
For this purpose, they train a neural network with previously
created probabilistic roadmaps with critical zones calculated
via betweenness centrality [13]. The main advantage of Colli-
sionGP over neural network approaches is that our method
relies on a limited set of data points and can be updated
with dynamic obstacles, while neural networks require tens
of thousands of data points and are not as flexible. Also,
CollisionGP does not require a lot of data and parameter
tuning for training, not having to choose the architecture or
needing to optimize the hundreds to millions weights of the
network. Moreover, CollisionGP can provide full probabilistic
distributions as model predictions.

Pan et al. [14] store prior query samples and use k-NN (k-
nearest neighbor) search to find prior query samples that are
close to the new query configuration. Then, they estimate the
probability that the new query configuration belongs to Cfree

or Cobs based on the found query samples. CollisionGP has
the advantage of being scalable, since all collision checks are
not stored in hash tables that grow larger with the dataset size,
and it is also able to provide predictive variances.

Han et al. [15] train a different classifier for each DoF
of the robot, obtaining better results than SVMs and KNNs
trained on all DoFs at the same time. CollisionGP improves
on this approach by using automatic relevance determination
to determine the relevance of each dimension, instead of user
inputs, and can predict variances for the model outputs.

Das et al. [16] propose Fastron, a learning-based algorithm
that uses a support vector machine to classify points belonging
to Cfree and Cobs. They demonstrate that they can train
the model and query collision checks an order of magnitude

faster than state-of-the-art collision libraries, making it capable
of adapting to dynamic environments. They demonstrate the
applicability to robots by performing pick and place and
surgery tasks. CollisionGP improves on this approach by using
automatic relevance determination for the model inputs, which
makes it able to maintain its accuracy with any robot, and by
being able to provide uncertainty values for the model outputs.

III. METHODOLOGY

This section describes the components of the CollisionGP
algorithm. We begin by describing the binary classification
problem applied to GPs. Then, we provide an overview of
the kernel selection for the task. Next, we go into the details
of generating the dataset and creating and training the GP
model. In the next subsection we show how the proposed
algorithm takes the generated output mean and variance to
make predictions on the query points. Then, we highlight the
capability of the model to take advantage of CUDA and use
batches of data as inputs instead of single query points, which
can parallelize the computations and provide faster predictions
as evaluated in a comparison with the traditional FCL method.
Finally, we showcase the ability of the model to quickly adapt
to changes in the environment while keeping the same model
size by sampling around the current inducing points locations.

A. Pòlya-Gamma Auxiliary Variables: Binary Classification

Gaussian processes in the context of classification do not
support exact inference with a closed form expression. One
possible solution is to introduce additional latent variables
that restore conjugacy. We introduce a Pòlya-Gamma auxiliary
variable for each data point in the training dataset. The
Pòlya-Gamma [3] distribution (PG) is a univariate distribution
with support on the positive real line. In our context PG is
interesting because if ωi is distributed according to PG(1, 0)
then the logistic likelihood σ(·) for data point (xi, yi) can be
represented as:

σ(yifi) =
1

1 + exp(−yifi)
=

= 1
2Eωi∼PG(1,0)

[
exp

(
1
2yifi −

ωi

2 f2
i

)]
where yi ∈ {−1, 1} is the binary label of data point i, and
fi is the Gaussian Process prior evaluated at input xi , in this
case [q0, q1, ..., qj ] where qj is the position of joint j of the
robot. The crucial point is that fi appears quadratically in the
exponential within the expectation. In other words, conditioned
on ωi, we can integrate out fi exactly, just as if we were doing
regression with a Gaussian likelihood.

Wenzel et al. [17] demonstrate that this binary classification
method is up to two orders of magnitude faster than the
state-of-the-art, while being competitive in terms of prediction
performance, and is capable of working with datasets with tens
of millions of datapoints.

Inference in exact GP models typically has a time com-
plexity of O(n3), with n the number of data points in the
model, and O(n) and O(n2) for computing the mean and
variance respectively. This makes exact GP models unfeasible
when dealing with large datasets, although the development
of libraries like GPyTorch [18] allow using GPU acceleration,
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which makes them faster to train and make predictions. Hens-
man et al. [19] propose an approach to reduce the complexity
to O(m3), where m is the number of inducing points.

To train the GP model, we need to optimize both the kernel
hyperparameters and the inducing points parameters, i.e. their
locations, the variational covariance matrix, and a variational
mean vector that controls the inducing points. These last two
parameters will be optimized using natural gradient updates,
since they are invariant to reparametrization of the variational
family and provide second-order optimization updates. The
kernel hyperparameters and the inducing points locations are
optimized using the Adam optimizer. The loss function used
for the optimizer is the variational evidence lower bound
(ELBO), which is commonly used to optimize variational GPs.
Eq. 1 shows the variational ELBO loss function [19]:

LELBO ≈
N∑
i=1

Eq(fi) [log p(yi |fi)]− KL [q(u)∥p(u)] (1)

where N is the number of datapoints, q(u) is the variational
distribution for the inducing function values, q(fi) is the
marginal of p(fi | u,xi)q(u), KL is the Kullback–Leibler
divergence [20], and p(u) is the prior distribution for the
inducing function values.

B. Kernel selection

The kernel function k(x1,x2) compares a configuration
x1 to x2 by mapping to some feature space and taking an
inner product. This function should provide a large value for
similar configurations (meaning they are strongly correlated)
and a small value for dissimilar configurations. The kernel
selected for this application is the RQ (rational quadratic)
kernel, which can be seen as a scale mixture (an infinite
sum) of RBF (radial basis function) kernels with different
characteristic lengthscales. The RQ kernel is given by:

kRQ(x1,x2) =

(
1 +

1

2α
(x1 − x2)

⊤Θ−2(x1 − x2)

)−α

(2)
where Θ is a lengthscale parameter, and α is the rational
quadratic relative weighting parameter. In this particular case,
we train a different lengthscale for each degree of freedom of
the robotic arm, since the movement in some of these degrees
of freedom clearly has more influence in collisions than others.

A typical choice for GP models is to add a vector of auto-
matic relevance determination (ARD) [21] hyperparameters Θ,

kRQ(x1,x2) =

(
1 +

1

2α
(x1 − x2)

⊤diag(Θ)−2(x1 − x2)

)−α

(3)
where diag(Θ) is a diagonal matrix with d entries Θ along
the diagonal, with d the number of dimensions of the input
data. Intuitively, if a particular Θi has a large value, the kernel
becomes independent of the i-th input, effectively removing it
automatically. Hence, irrelevant dimensions are discarded.
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Fig. 1: Mean and variance obtained when performing
collision checks on all available points for the first two DoF

of the KUKA iiwa robot. a) Mean values obtained when
making predictions for all points. b) Variance values

obtained when making predictions for all points.

C. Dataset generation and model creation

To create the dataset, a uniformly random set of N unla-
beled configurations X are generated, and the true labels Y
are provided by the FCL collision detection library [22]. To
deal with the joint limits of the robot, we map the bounded
d-dimensional joint space to a d-dimensional input space
[−1, 1]d. To map the joint values qjoint to the input space
qinput, we use:

qinput = (2qjoint − qu − ql)⊘ (qu − ql) (4)

where ql and qu are vectors containing the lower and upper
joint limits, and ⊘ performs element-wise division.

Once the dataset is ready, the PG likelihood and the GP
model are initialized and their hyperparameters tuned as ex-
plained in Section III-A. Then, collision checks are performed
with the updated model to evaluate its accuracy.

D. Making predictions

To make predictions with the GP model for a test point x∗,
we use:

p(f∗ | y) =
∫

p(f∗ | u)q(u)du = N (f∗ | µ∗, σ
2
∗) (5)

where the prediction mean is µ∗ = K∗mK−1
mmµ and the

variance σ2
∗ = K∗∗ +K∗mK−1

mm(
∑

K−1
mm − I)K∗m. u is the

set of inducing points of size m, the matrix K∗m denotes
the kernel matrix between the test point and u, and K∗∗ the
kernel value of the test point. Figure 1 provides an example
of collision checks for the first two DoF of a KUKA iiwa
manipulator, using 128 inducing points. The obtained mean
values are in the interval [0, 1], since they are normalized with
a Bernoulli distribution. The points predicted as free points
in space have mean values closer to zero, while the points
predicted as obstacles have mean values closer to one. The
variance reflects the obstacle borders, as the variance values
are close to zero in the free space and inside of the obstacle,
but reach their maximum values in the borders between Cfree

and Cobs.
When the algorithm decides based solely on the mean to

determine if a point belongs to Cfree or Cobs, taking all points
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with a mean equal or greater than 0.5 as obstacles and the
points with a mean lower than 0.5 as free space, we risk
obtaining false negatives, i.e. points classified as free space
when they actually belong to an obstacle, which would lead to
collisions when executing a motion with the robot. To prevent
false negatives, we take advantage of the fact that GPs provide
the variance σ in addition to the mean µ, and propose a new
decision value to classify the points, γ, as

γ = µ+ β ∗ σ (6)

where β is the variable than modifies the influence of the
variance σ in the decision.

E. Updating model in dynamic environments

To avoid retraining the whole model when the environment
changes, the algorithm updates the model based on the induc-
ing points locations. The already placed inducing points and
a determined number of points A sampled uniformly around
the workspace are checked and labeled with the FCL method.
The algorithm updates the model with the information from the
new dataset. This uniform distribution of A over the workspace
allows to scan the environment for possible new obstacles and
to grasp a general vision of all possible obstacle modifications
or displacements.

As the inducing points are already well placed in the training
phase, it would be a waste to delete them completely for
updating purposes, since we assume slight changes in the
environment. It would be a tradeoff between accuracy and
updating time, as the updating time in case of deleting all
inducing points would be the same as the initial training time.

IV. EXPERIMENTS

In this section we evaluate CollisionGP against Fastron
[16], a state-of-the-art machine learning method for collision
checking, for 2, 4 and 7 actuated DoFs of a 7 DoF robot in 15
different environments with 4 obstacles. An example of test
environment is shown in Figure 2. We compare the number
of inducing points, query times, training times and updating
times for both static and dynamic environments with a dataset
of N = 10000 training configurations and A = 1000. The
Fastron and CollisionGP CPU tests run on an Intel Xeon E5-
1620 v3 @3.5 GHz processor, and the CollisionGP GPU tests
run on an Nvidia RTX 3060 graphics card.

Fig. 2: RViz model of the robot used for the experiments. It
consists of a KUKA KMR mobile base with a KUKA iiwa
robot arm. Red boxes represent obstacles in the environment.

TABLE I: Lengthscale obtained for each dimension for each
robot DoF.

Lengthscale of DoF
1 2 3 4 5 6 7

No. DoF

2 0.38 0.44 - - - - -
3 0.23 0.30 15.76 - - - -
4 0.30 0.41 0.89 0.95 - - -
5 0.28 0.38 0.67 0.89 6.43 - -
6 0.26 0.35 0.65 0.81 5.25 5.26 -
7 0.26 0.35 0.60 0.85 7.66 7.55 7.61

A. Effect of ARD on the kernel lenghtscales

To study the effect of the application of ARD to this
particular robot, we observe the lenghtscale values of the RQ
kernel for all DoFs of the robot. Table I shows that the first
two DoFs have the highest influence in the collisions, while
the DoFs at the end of the robot have lower influence. A
lower lengthscale translates into a higher significance in the
GP model. The seventh DoF of the robot is the rotation of the
end effector, and since there is no tool attached, this joint has
no influence on the collisions.

B. Selection of β

To select β for this particular case, we evaluate the two, four
and seven DoF models for different values β to see how the
accuracy, TPR (True Positive Rate) and TNR (True Negative
Rate) evolve. Figure 3 shows the evolution of the TPR and
TNR as β rises. Note that for values of β > 0.5 the TPR
is above 0.95 while the TNR holds at above 0.85, effectively
reducing the number false negatives to an acceptable threshold.
In the following experiments we select β = 0.5 for all DoFs.

C. Batch computations

PyTorch allows to process the data in batches, which makes
predictions faster since the software parallelizes the necessary
calculations. Figure 4 shows the necessary time to compute a
certain number of collision checks at once for the FCL method
and for CollisionGP using the CPU and the GPU with CUDA.

Figure 4 shows the mean and standard deviation of the time
needed to compute collisions for the GP models based on
the number of configurations and inducing points. The CPU
implementation shows that the prediction times grow expo-
nentially as the number of configurations increase, while for
the GPU implementation they increase linearly. Note that the
GPU implementation is the fastest and most efficient method,
and that the computation times for CollisionGP exhibit a
narrow confidence interval, while the FCL method has a wider
confidence interval.

D. Selecting the Number of inducing points

To select the number of inducing points for each DoF case,
we train the models for different sets of inducing points to
evaluate the model performance as the number of inducing
points increases. Figure 5 shows the accuracy of the models
when actuating two, four and seven DoFs of the robot de-
pending on the number of inducing points selected and using
β = 0.5. The accuracy gradually increases as the number of
inducing points increases until the value reaches a limit, which
is the maximum possible accuracy that can be achieved with
CollisionGP for the selected β.
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Fig. 3: TPR and TNR of CollisionGP for values of β for the seven DoF robot in five different scenarios with four static
obstacles.
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Fig. 4: Prediction time vs number of configurations for different numbers of inducing points for the seven DoF case. The
step increases and the spikes in the GPU implementation could be related to the VRAM allocation of the GPU managed by

the CUDA implementation, as they are produced in the same number of configurations for all inducing points.
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Fig. 5: Accuracy of the CollisionGP model for β = 0.5 with different numbers of inducing points for the seven DoF robot in
fifteen different scenarios with four static obstacles.

To illustrate the performance of both Fastron and Colli-
sionGP in the C-space, we provide an example with the first
two DoFs of the robot manipulator, since a visualization in
two dimensions allows for a qualitative comparison. Figure 6
shows the obtained C-space for Fastron and CollisionGP, and
the mean and variance maps obtained for the CollisionGP
model with 128 inducing points when actuating the first
two DoFs of the robot. The C-spaces obtained with both
CollisionGP and Fastron are very similar to the ground
truth, although CollisionGP uses less inducing points and
also provides a measure of uncertainty, which results in the

highlighting of obstacle borders. As most manipulators today
contain revolute joints, the C-space is smooth even for non-
smooth obstacles and can be approximated well by the GP.

E. Accuracy, TPR and TNR
Figure 7 shows accuracy, TPR and TNR comparisons be-

tween CollisionGP and Fastron in the fifteen simulated envi-
ronments. Three of these environments are shown in Figure 6.
Both methods achieve similar results in the two DoF case, but
CollisionGP mantains the accuracy, TPR and TNR for the four
and seven DoF cases, while the values for Fastron decrease as
the number of DoFs increases.
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Fig. 6: Example environments and C-space approximations using Fastron and the proposed GP classification method.
Column (d) shows the inducing points of the GP.
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Fig. 7: Accuracy, TPR and TNR for Fastron and CollisionGP in fifteen different scenarios with four static obstacles.

TABLE II: Performance of CollisionGP and Fastron in
fifteen different scenarios with four static obstacles, with

ground truth collision detection computed using FCL.

GP (GPU) GP (CPU) Fastron
Two DoF

m 128 128 298.64± 49.6
Query time (µs) 2.150± 0.76 61.89± 1.01 76.62± 3.59
Training time (s) 0.446± 0.07 0.496± 0.04 0.140± 0.07

Accuracy 91.59± 3.57 91.59± 3.57 98.97± 0.35
Four DoF

m 256 256 1575.60± 312.59
Query time (µs) 2.803± 0.65 65.23± 1.05 80.87± 1.66
Training time (s) 0.467± 0.07 0.727± 0.05 0.112± 0.02

Accuracy 84.36± 3.83 84.36± 3.83 89.35± 1.66
Seven DoF

m 512 512 2917.80± 563.34
Query time (µs) 4.724± 0.32 75.91± 1.22 91.02± 4.44
Training time (s) 0.684± 0.07 1.988± 0.02 0.254± 0.05

Accuracy 84.47± 3.92 84.47± 3.92 66.88± 4.97

Table II shows query time, training time and number of
inducing points comparisons for CollisionGP and Fastron.
CollisionGP is the sparsest method and has the fastest query
times of both methods for all DoFs, while Fastron achieves
the fastest training times. The GPU implementation is sig-
nificantly faster than the CPU implementation. Query times
for CollisionGP are considered when predicting 10000 con-
figurations. Notice that Fastron is compiled in C++, while
CollisionGP is executed in Python, which can affect the query
and training times. We expect CollisionGP to be even faster,
when programmed and compiled in C++ as well. In terms
of computational cost, both methods have a complexity of
O(m3). We evaluated the signifance of the results with the
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TABLE III: Performance of CollisionGP vs. Fastron in
fifteen different scenarios with four dynamic obstacles.

GP (GPU) GP (CPU) Fastron
Two DoF

m 128 128 145.1± 37.5
Sampling time (s) 0.78± 0.37 0.78± 0.37 1.02± 0.51
Updating time (s) 0.011± 0.008 0.18± 0.006 0.003± 0.003

Total (s) 0.79± 0.37 0.97± 0.37 1.02± 0.51
Accuracy 90.95± 1.48 90.95± 1.48 85.92± 10.79

Four DoF
m 256 256 1316.2± 160.77

Sampling time (s) 0.64± 0.35 0.64± 0.35 2.32± 0.97
Updating time (s) 0.017± 0.02 0.23± 0.02 0.009± 0.003

Total (s) 0.657± 0.37 0.87± 0.37 2.33± 0.97
Accuracy 86.61± 2.22 86.61± 2.22 88.65± 1.68

Seven DoF
m 512 512 2732.0± 319.64

Sampling time (s) 0.43± 0.22 0.43± 0.22 3.49± 1.78
Updating time (s) 0.033± 0.02 0.38± 0.01 0.03± 0.007

Total (s) 0.46± 0.24 0.82± 0.23 3.52± 1.79
Accuracy 86.45± 2.52 86.45± 2.52 69.13± 3.29

two-sample T-test for the seven DoF comparative measures.
The resulting p-values are all below 10−7, proving high
statistical significance.

F. Accuracy, TPR and TNR in dynamic environments

Figure 8 shows accuracy, TPR and TNR comparisons be-
tween CollisionGP and Fastron after updating the models in
dynamic environments, where all boxes are moved up to 10 cm
away from their initial positions after the initial training has
finished and the first static GP model is created. We assume
the obstacles stay in a fixed position while resampling the
environment. As in the static environment test, CollisionGP
achieves more consistent and higher scores than Fastron, for
every evaluated number of DoFs. The scores for the seven
DoF case are significantly lower when evaluating Fastron.

Table III shows query time, training time and number of
inducing points comparisons for CollisionGP and Fastron after
updating the models in a dynamic environment. Since we
sample m + A new configurations, the sampling times for
Fastron are higher since A is higher. However, the model
update is faster for the Fastron method. When taking into
account the sampling time plus the updating time, CollisionGP
is able to obtain an updated model up to 7 times faster in the
case of the seven DoF experiment. We evaluated the signifance
of the results with the two-sample T-test for the seven DoF
comparative measures. The resulting p-values are all below
10−8, proving high statistical significance.

V. DISCUSSION

The data obtained from the experiments suggests that GPs
are able to provide an effective probabilistic approach to
configuration space modeling and collision checking. The
experiments show that the proposed method CollisionGP
achieves greater accuracy, TPR and TNR values than the state-
of-the-art algorithm Fastron, due to ARD and the ability to
use the provided variance to determine which areas are more
dangerous for possible collisions. CollisionGP is also more
sparse, resulting in faster update times and faster prediction
times, as shown in Tables II and III, where the query times
for CollisionGP are up to 38 times faster than Fastron in the
two DoF case, and the updating time for CollisionGP is 7 times
faster than Fastron for seven DoF. However, training times are

slower, as CollisionGP optimizes the hyperparameters of the
kernel and the inducing points for a fixed number of iterations,
while Fastron uses a custom training loop with a termination
condition to update a matrix of weights. Another limitation
of CollisionGP is the slow prediction time when making a
collision query of a single configuration. We recommend to
use batches and predict more than 10000 configurations at
once, taking advantage of the array algebra of PyTorch. The
prediction times can be further reduced by using a GPU to
perform the necessary computations. We could also perform
the calculations for the mean of the GP only, reducing the
computational complexity from O(m3) to O(m).

Nonetheless, we believe that the variance gives us valuable
information about the configuration space that other meth-
ods cannot provide. FCL has a high standard deviation in
Figure 4 because the method employs a broad phase and a
narrow phase, and configurations close to obstacles require
more computation time. Based on the results of our previous
publication [23], we expect a decrease in computation time by
a factor of two to ten when replacing FCL with CollisionGP
in a realistic motion planning problem: One query requires
5000 to 10000 collision checks. If the planning algorithm
queries collision checks in large batches, computation time
will decrease significantly, as shown for example in [24].

When directly comparing Fastron and CollisionGP in Fig-
ure 6, the obtained C-spaces show that Fastron accurately
models the sharp corners and edges while CollisionGP does
not. However, we believe that CollisionGP achieves a good
enough representation while being more sparse. Furthermore,
it provides a probabilistic approach to model the C-space,
with the variance being higher around the obstacle borders.
High variance provides crucial information for the application
and raises awareness to regions where the computed motion
should be investigated with a convential collision checker.
CollisionGP could be implemented with deep kernel meth-
ods trained in different scenarios to improve the accuracy.
However, while deep kernel methods have several advantages
over standard Gaussian processes, such as improved model
flexibility and ability to handle larger datasets, they also have
some disadvantages compared to standard Gaussian processes,
such as computational complexity, interpretability, overfitting,
data requirements and hyperparameter and architecture tuning.

While learning-based algorithms cannot replace conven-
tional collision checking algorithms in all applications, we
suggest to use the technology in combination with collabo-
rative robots. As the manipulators guarantee safe interaction,
collision checking and motion planning algorithms need to
minimize the chance of a collision and not necessarily elimi-
nate it completely. This allows the robot to leverage the com-
putational advantage of CollisionGP, while avoiding collisions
in most motions. However, one disadvantage of CollisionGP
compared to conventional collision checking algorithms is that
it does not provide information about which link is colliding.

The TNR, TPR and accuracy for Fastron decreases as the
number of DoFs increases (Figure 7). This can be due to the
fact that CollisionGP optimizes a separate kernel lengthscale
for each DoF, while Fastron considers all DoFs to have the
same weight and sets a fixed value of α. One advantage of
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Fig. 8: Accuracy, TPR and TNR for Fastron and CollisionGP in fifteen different scenarios with four dynamic obstacles.

keeping a fixed value of α is that the training times are shorter.

VI. CONCLUSIONS

In this work, we proposed and validated the CollisionGP
algorithm, which models the configuration space for collision
detection. CollisionGP allows collision detections to be per-
formed an order of magnitude faster than traditional collision
checking algorithms such as FCL when using batches. We also
showed that CollisionGP is more sparse than Fastron, a state-
of-the-art machine learning algorithm for collision checking,
achieving faster predictions and model updating times. Fur-
thermore, to the best of our knowledege CollisionGP is the
first collision checking algorithm that uses GPs, providing not
only a mean estimate, but also the predictive variance, which
gives a measure of uncertainty about the prediction and is
useful to eliminate false negatives. This is specially important
for critical applications where the final path could be checked
with FCL to ensure that no collisions are produced.

Using GPs with PG auxiliary variables for probabilistic
collision checking opens some interesting lines of future work
in robotics. One possible future application of CollisionGP
is for robots with many DoF, such as humanoid robots.
The large C-spaces require exploration of many states and
thus fast primitive operations, such as collision checking.
Another future work is the implementation of CollisionGP
with different batch path planners in real environments to
test its efficiency. The code for CollisionGP can be found in
https://github.com/jmunozmendi/CollisionGP.
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