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Abstract

Robust feature selection is vital for creating reliable and interpretable machine-learning (ML) models. When
designing statistical prediction models in cases where domain knowledge is limited and underlying interactions
are unknown, choosing the optimal set of features is often difficult. To mitigate this issue, we introduce a multidata
(M) causal feature selection approach that simultaneously processes an ensemble of time series datasets and produces
a single set of causal drivers. This approach uses the causal discovery algorithms PC1 or PCMCI that are implemented
in the Tigramite Python package. These algorithms utilize conditional independence tests to infer parts of the causal
graph. Our causal feature selection approach filters out causally spurious links before passing the remaining causal
features as inputs to ML models (multiple linear regression and random forest) that predict the targets. We apply our
framework to the statistical intensity prediction of Western Pacific tropical cyclones (TCs), for which it is often
difficult to accurately choose drivers and their dimensionality reduction (time lags, vertical levels, and area-
averaging). Using more stringent significance thresholds in the conditional independence tests helps eliminate
spurious causal relationships, thus helping the ML model generalize better to unseen TC cases. M-PC1 with a
reduced number of features outperforms M-PCMCI, noncausal ML, and other feature selection methods (lagged
correlation and random), even slightly outperforming feature selection based on explainable artificial intelligence.
The optimal causal drivers obtained from our causal feature selection help improve our understanding of underlying
relationships and suggest new potential drivers of TC intensification.

Impact Statement

While causal feature selection helps design more robust ML models, its joint application to multiple datasets
remains limited because standard causal discovery algorithms output a different set of drivers for each dataset,
which is impractical. To mitigate this issue, we apply a newly developed “multidata” causal feature selection
approach, which identifies a single set of optimal causal drivers from an ensemble of multivariate time series.
Applied to the statistical prediction of TC intensity, our approach outperforms standard feature selectionmethods
by helping simple regression algorithms better generalize to unseen cases. In addition to making our models
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robust, causal feature selection also eliminates redundant predictors while identifying new ones, leading to
lighter models and aiding scientific discovery.

1. Introduction

Machine learning (ML) combines statistical methods and numerical optimization to learn a group of tasks
from data. Progress in computational capabilities, combinedwith the availability of large amounts of data,
allows the development of ML models to predict and understand nonlinear systems such as climate
processes and extreme weather events. For environmental applications, processing big data that are
nonlinearly related often requires (a) dimensionality reduction; and (b) strategically selecting the model’s
features to makeMLmodels cheaper to run, generalize better, and easier to explain (Guyon and Elisseeff,
2003; Yu et al., 2020, 2022). This article compares different methods to discover a subset of the most
relevant features in environmental datasets (Guyon and Elisseeff, 2003; Post et al., 2016; Li et al., 2017)
and explores the effect of causal feature selection on statistical prediction skill. For this, we work at the
intersection of causal inference and ML, an active area of research (Chen et al., 2020) because causal
relations help acquire robust knowledge beyond the support of observed data distributions (Schölkopf
et al., 2021). Causal inference can broadly be categorized into three research directions: (a) causal
representation learning; (b) causal discovery; and (c) causal reasoning (Schölkopf et al., 2021; Kaddour
et al., 2022). To select features, we here explore the use of causal discovery, a methodology for learning
qualitative cause-and-effect relationships between a collection of variables from data that have not been
obtained under controlled experimental conditions (Spirtes et al., 2000; Peters et al., 2017). Incorporating
causal relationships in ML models via feature selection can make ML models more interpretable (Guyon
and Elisseeff, 2003; Runge et al., 2015b; Yu et al., 2022; Iglesias-Suarez et al., 2023) and less susceptible
to overfitting (Aliferis et al., 2010a, 2010b; Runge et al., 2015a).

There are two main challenges when applying causal discovery in environmental sciences. The first
challenge is algorithmic: Often environmental data consists of multiple realizations of the same process
with slight differences, and causal discovery algorithms that apply to such multiple realization problems
remain underexploited (Yu et al., 2020). The second challenge is the lack of benchmarking: Causal feature
selection is rarely compared against other feature selection methods for ML-based predictions. Here, we
address these two gaps by introducing a causal feature selection framework to estimate causal relation-
ships from multiple time series datasets (Runge et al., 2015a, 2015b, 2019a, 2019b; Yu et al., 2019;
Runge, 2020).We compare feature selection algorithms by training simpleMLpredictionmodels for each
of the selected sets of features and evaluating their predictive performances. Our framework is applied to
the prediction of tropical cyclone (TC) intensity to demonstrate that causal feature selection (a) improves
the out-of-sample skill, and (b) uncovers the best predictors in real-world situations.

2. Methodology: Causal Feature Selection for Multiple Realizations

Our implementation of causal feature selection, Geiger et al. (1990), Pena et al. (2007), and Gao and Ji
(2017) uses the recently developed multidata (M) functionality for two causal discovery algorithms based
on time-series, explained below. Our multidata causal discovery approach used to preselect causally
relevant predictors has two steps: (a) the causal discovery algorithms; and (b) applying these algorithms to
a dataset comprising data frommultiple sources. From a causal perspective, the setup used in this study is
simplified because only the variables that are time-lagged with respect to the target variables are
considered potential predictors. As a result, causal discovery effectively reduces to a feature selection
algorithm that removes all those predictors which are (conditionally) independent of the target (given the
other predictors) and which hence do not provide any additional information for predicting the target. The
multidata functionality itself, however, is more general and also applies to the time series causal discovery
tasks that also consider contemporaneous causal relationships.
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Here, we explore the use of the causal discovery algorithms PC1 and PCMCI (Runge et al., 2019b) for
causal feature selection. The PC1 algorithm is a variant of the PC algorithm (Spirtes et al., 2000). First,
PC1 initializes the potential causal drivers pa Ytð Þ of each target variable Yt as the set of all variables
pa Ytð Þ¼ Xi

t�τji¼ 1,…,NX ,τ¼ τmin,…,τmax

� �
within the considered range τmin,τmax½ � of time lags, where

the Xi with i¼ 1,…,NX are the potential predictors and where τmin and τmax, respectively, are the minimal
and maximal time lags at which direct causal influences can occur. Then, PC1 iteratively removes
variables from pa Ytð Þ that are irrelevant or redundant for the prediction of Yt. Specifically, PC1 removes
elements Xi

t�τ from pa Ytð Þ that are conditionally independent of Yt given subsets Sk⊆pa Ytð Þ whose
cardinality k increases iteratively: For k¼ 0 all Xi

t�τ with are removed, for k¼ 1 those with

, where S1 is the strongest driver from the previous step, for k¼ 2 those with ,

where S2 are the two strongest drivers from the previous step, and so on. In this work, conditional
independence is tested using partial correlation (in general, though, the algorithm can be combined with
any conditional independence test). The corresponding independence test is based on a standard
significance level pcα ¼ 0:02 and uses a strength of association that is based on the absolute partial
correlation value. This iteration is continued until k is greater than the cardinality of pa Ytð Þ. The PC
algorithm is different from PC1 in so far as that PC, for every k, does not only test for conditional
independence given exactly one cardinality k subset of pa Ytð Þ but tests for conditional independence
given all cardinality k subsets of pa Ytð Þ.

The PCMCI algorithm (Runge et al., 2019b), after first running PC1, reinitializes all links and
then subjects all links to the momentary conditional independence (MCI) tests

, removing the link if independence is not rejected. Here, the
condition on pa Xi

t�τ

� �
helps to remove false positives that tend to be inflated due to autocorrelation.

Controlling false positives is important for a causal discovery setting but is not necessarily important for a
causal feature selection/prediction setting as considered in this article.Within the study presented here, we
employ both the PC1 and the PCMCI algorithm to empirically analyze which of the two methods is
preferable for causal feature selection. As with all causal discovery methods, PC1 and PCMCI rely on
certain assumptions. The essential assumption is that conditional independencies in the data are in one-to-
one correspondence with d-separations (Pearl, 1988) in the causal graph (Geiger et al., 1990; Verma and
Pearl, 1990; Spirtes et al., 2000; Pearl, 2009). Moreover, both methods assume causal sufficiency (Spirtes
et al., 2000), that is, the absence of unobserved variables that causally influence two observed variables.
The latter assumption is not necessarily fulfilled in our context, even though we included a range of
potential predictors. This means that some of the obtained causal features might still be spurious and may
not work if the target distribution differs from the training distribution (out-of-distribution prediction).

When PC1 and PCMCI are applied to a single multivariate time series, samples are drawn from this
time series in a sliding-window fashion. The drawn set is internally passed to the statistical hypothesis
tests of conditional independencies. For this sliding-window approach to be valid, the causal relationships
need to remain unchanged throughout the time series (causal stationarity assumption). When PC1 and
PCMCI are applied tomultiplemultivariate time series, if all time series of this ensemble can be assumed
to share the same causal relationships within specific time ranges, then we can combine the sample sets
from all ensemble members1 into a single, larger dataset. This larger dataset, which includes data from
multiple sources (e.g., from multiple storms), is then internally passed to the conditional independence
tests. The PC1 and PCMCI algorithms can then proceed as usual. Consequently, although the input is an
ensemble of multivariate time series, the output is still a single set of predictors. In addition to its
practicality, ourmultidata approach benefits from an enlarged set of samples, increasing the power of the
conditional independence tests. Hence, we expect the sets of predictors obtained by running multidata
causal discovery on an ensemble of time series to be more reliable than the sets of predictors obtained by
running causal discovery on any single member of this ensemble—if the assumption of a common causal

1 Each of the sample sets is obtained in a sliding window fashion from one of the member time series.
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structure holds. An alternative approach would be to run PC1 and PCMCI on any single member time
series and then appropriately aggregate the resulting sets of predictors (across the members).

3. Application: Statistical Prediction of Tropical Cyclone Intensity

3.1. Motivation

The increasing frequency of intense TCs (Emanuel, 2005; Knutson et al., 2020) combined with growing
coastal populations have escalated the vulnerability of the tropical urban coasts. For context, more than
half of Earth’s population is projected to live in the tropics by 2050 (Edelman et al., 2014) andmore than a
billion people worldwide could be living in low-elevation coastal zones by 2060, particularly in South and
East Asia (Neumann et al., 2015). Predicting storm intensity changes, including rapid intensification in
TCs, remains a major challenge (DeMaria et al., 2014), because of unresolved complexities of storm
dynamics in numerical models. Furthermore, numerical models suffer from a reduction in forecast skills
with an increase in lead time (Ganesh et al., 2018). An alternative to numerical forecasting is statistical
forecasting, as statistical models can improve cyclogenesis and intensity forecasts (Kim et al., 2019; Chen
et al., 2020). For instance, statistical models based on logistic regression, random forest, decision tree, and
randomized trees (Su et al., 2020) outperformed the National Hurricane Center in predicting TC rapid
intensifications over the Atlantic and Eastern Pacific basins (Kaplan et al., 2010; Rozoff and Kossin,
2011). A potential drawback of statistical models is that it is often difficult to choose appropriate
predictors for reliable forecasts. To better predict TC intensity, the models need to represent the physical
mechanisms behind TC intensification more accurately; these include large-scale circulations, local
conditions, and internal processes (Kaplan et al., 2010; Emanuel and Zhang, 2016). We argue that one
way to make statistical models more robust is to apply causal discovery algorithms and eliminate causally
spurious predictors. In this study, we apply the PC1 and PCMCI methods to generate a single set of
causally relevant predictors from multiple TC time series.

3.2. Data

The TC dataset is created using multiple environmental variables at different pressure levels known to be
favorable for TC intensification (Sikora, 1976; Petty and Hobgood, 2000; Li et al., 2011) from the global
high-resolution ECMWF ReAnalysis-5 (ERA5; Hersbach et al., 2020) with 25 km horizontal resolution,
and 3-hourly temporal resolution (see Section A of the Supplementary Material for the full list). Here, we
selected a total of 260 TC cases spanning from 2001 to 2020 in the Northwest Pacific basin (WPAC). The
TCs with a lifetime of more than 6 days up to landfall are selected for the study to understand the effect of
environmental parameters on TC intensity up to 3 days time lag, so each case has a time span from genesis
up to landfall based on each TC best track2. Rather than directly feeding the time series of predictor
variables for the cases at each grid point around the storm, the values are averaged in horizontal areas
defined with respect to the TC Center. Each atmospheric predictor is post-processed into two sets of time
series representing inner-core (TC center to a radius of 200 km) and outer-core characteristics (annulus
from a radius of 200–800 km). The choice of averaged areas follows the current practice in operational
statistical intensity prediction schemes (DeMaria et al., 2005). The distinction between outer-core and
inner-core processes is justified because TC intensity is affected by environmental conditions in the
storm’s neighborhood and internal processes within the storm (Sitkowski and Barnes, 2009; Hendricks
et al., 2019). From an ML perspective, this preliminary dimensionality reduction removes features with
high spatial correlations, reduces the complexity of the statistical models, and possibly improves model
generalizability by removing some of the predictors’ spatial heterogeneity in different storms.

Once this preliminary dimensionality reduction is done, our goal is to eliminate spurious features, here
defined based on meteorological variable, vertical (pressure) levels, time lag, and horizontal averaging
sector (inner or outer core). We describe each TC using a total of NX ¼ 234 time series of horizontally

2 TC tracks are obtained from the International Best Track Archive for Climate Stewardship (Knapp et al., 2010).
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Table 1. R2 score for each experiment’s best model on the validation set, along with the number of selected features (in parentheses)

Training (no. of features) Validation Test

ML models/target Pmin (hPa) V10 (ms�1) Precip ×10�3 (km2) Pmin V10 Precip Pmin V10 Precip

Causal-RF 0.93 (26) 0.89 (17) 0.83 (123) 0.87 0.81 0.65 0.88 0.78 0.62
Causal-MLR 0.87 (17) 0.84 (31) 0.71 (90) 0.88 0.82 0.68 0.89 0.80 0.62
Noncausal-RF All 0.93 (3,978) 0.88 (3,978) 0.75 (3,978) 0.77 0.74 0.65 0.89 0.79 0.58

Lagged 0.96 (480) 0.93 (560) 0.79 (80) 0.85 0.81 0.69 0.89 0.81 0.61
Random 0.96 (870) 0.93 (770) 0.85 (970) 0.79 0.77 0.59 0.87 0.77 0.56

Noncausal-MLR All 0.99 (3,978) 0.98 (3,978) 0.96 (3,978) �0.94 �10.85 �127.98 0.51 �0.01 �0.39
Lagged 0.92 (440) 0.64 (40) 0.68 (120) 0.84 0.54 0.65 0.92 0.59 0.64
Random 0.91 (420) 0.83 (130) 0.69 (290) 0.78 0.76 0.62 0.86 0.75 0.54
XAI 0.92 (240) 0.88 (420) 0.70 (140) 0.84 0.82 0.69 0.91 0.79 0.63

LSTM 0.87 (3,978) 0.81 (3,978) 0.71 (3,978) 0.77 0.75 0.65 0.81 0.75 0.61

Note: Causal-MLR (bold) gives the best performance with the least features.
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averaged 3D variables at given vertical levels and 2D variables (see Supplementary Table 1 for details).
With regards to the time lags, we explore the time steps between 24 hr before the target (corresponding to
τmin ¼ 8) and 72 hr before the target (corresponding to τmax ¼ 24). This results in a total number of 3,978
(234 potential predictors × 17 time steps) for the causal algorithms, which eliminate the spurious links
between the features and the targets.We randomly split the data by TC to avoid spatiotemporal correlation:
Out of the selected 260 TCs, we randomly split 205 cases from 2001 to 2020 into a training set (150 cases)
and validation set (55 cases) while keeping 55 cases from recent years (2017–2020) in the test set, without
any overlaps. The regression task is to forecast three variables with a 1-day lead time, including
(1) maximum wind speed at 10 m (max. 10 m wind, in m/s), (2) minimum sea-level pressure (MSLP,
in hPa), and (3) horizontally integrated total precipitation (Tot. Intg. Precip. in km2) accumulated over 3-
hourly intervals. Maximum sustained wind speed at 10 m (averaged over 1 min, 3 min, or 10 min
depending on the Regional Specialized Meteorological Centre) is the standard measurement for the
intensity currently used operationally.We includeMSLP as it correlates better with TC damage (Atkinson
and Holliday, 1977; Kaplan et al., 2010). Additionally, MSLP is easier to estimate as it is an integrated
quantity and only requires a couple of measurements near the storm center. Finally, we included total
integrated precipitation as a potential target because most fatalities and damage from TCs are caused by
heavy precipitation and storm surges (Rappaport, 2014).

3.3. Causal machine learning

In this section, we describe the feature selection methodology in the context of TC intensity prediction.
Our causal feature selection framework is shown in Figure 1. Once the four-dimensional fields have been
reduced to time series, we align the time series in the training set based on the minimum pressure value
recorded during each TC’s lifetime, which is a smoother measure of TC intensity than maximum surface
wind speeds (Chavas et al., 2017). Temporally aligning the multivariate time series of different ensemble
members is key, as the resulting ensemble is more likely to satisfy the common causal structure
assumption, improving prediction skills using causal feature selection. After aligning the time series,
we feed the training set as inputs to the PC1 and PCMCI algorithms (both implemented in Tigramite) to

Figure 1.Multidata causal feature selection applied to TC prediction: After reducing the dimensionality
of spatiotemporal fields to yield time series for several TC cases (Step I), the ensemble of aligned time
series is fed to themultidata causal discovery algorithm to calculate the optimal set of causal drivers (Step
II), which can be fed to a regression algorithm to make robust predictions (Step III).
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extract the most significant causal features. Here, an input feature may be defined as an environmental or
derived variable (see Supplementary Table 1) at any given pressure level which is spatially averaged either
by the inner or outer core radii at a given 3-hourly time-step. We stress that PC1 and PCMCI are only
applied to the training data. The implementation of both PC1 and PCMCI contains several hyperpara-
meters, including minimum and maximum time lags for the analysis, fixed to 1 day (8 timesteps) and
3 days (24 timesteps), respectively, for our prediction task. Further tunable hyperparameters are the
significance level for conditional independence testing (pcα) and a significance threshold for the p-value
matrix (alpha-level, only used for PCMCI), which control the selected number of features.

Once PC1 and PCMCI have selected the most significant causal drivers of the targets from the
ensemble of time series, these drivers are used as inputs to the prediction model. We logarithmically
vary the values of pcα and alpha-level, which in effect controls the number of selected features, as more
stringent (pcα) values will result in the selection of fewer and more significant features. From this set of
experiments, we determine the best hyperparameters suitable for each target of interest bymaximizing the
validation performance of the trained regression models. We use multiple linear regression (MLR) and
random forest (RF) regression models to predict the targets from the causally selected features. TheMLR
algorithms for causal-MLR experiments were prepared using the Scikit-Learn (Pedregosa et al., 2011)
implementation of the linear regression algorithm and its corresponding default parameters. Each MLR
algorithm was trained to predict one of three unscaled target variables using the selected, standard-scaled
features. We also included RF regression models using the same causal feature selection set-up (Figure 1)
to explore the impact of causal feature selection for more complex nonlinear regressionmethods.We used
the RF regressor from the sci-kit-learn library (Pedregosa et al., 2011) to prepare the causal-RF and
optimized its hyperparameters with a randomized search.

3.4. Noncausal machine-learning baselines

This study is motivated by the working hypothesis that regression models using causally selected features
outperform noncausal baselines in terms of generalization. Here, noncausal baselines subsume both the
case of no feature selection and the case of feature selection based on noncausal criteria. We compare our
causal feature selection to noncausal feature selection methods such as lagged correlation, random
selection as well as an explainable artificial intelligence (XAI) method of feature selection using RF
regression (more details are provided in Section C of the Supplementary Material). To test our causal
approach’s ability to effectively use time lags, we also train a long short-term memory (LSTM) network

Figure 2. (a) Causal-MLR models using M-PC1 systematically outperform LSTMs (dashed line) on all
sets and their noncausal counterparts (solid lines) on the validation and test sets. (b) Causal-RF models
outperform their noncausal counterparts (solid lines) on the training and validation sets.
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using all time lags between τmin and τmax andwithout feature selection.We implement the LSTMusing the
PyTorch (Paszke et al., 2019) library and conducted a hyperparameter search with the Optuna (Akiba
et al., 2019) framework. A more detailed description of the architecture is provided in Section C of the
Supplementary Material.

4. Results

4.1. Performance of causal machine learning

Our first objective is to find the set of causal features that are best linked to the intensification in TCs at a
lead time of 1-day. To measure the suitability of a set of causal features, we evaluate howMLR as well as
RFmodels trained with the causally selected features performwhen predicting TCs that are unseen during
training.We evaluate prediction skill holistically (see SectionD of the SupplementaryMaterial), but focus
on the coefficient of determination (R2) in the main text, with R2 ¼ 1 corresponding to a perfect prediction
and R2 ¼ 0 to an error of one standard deviation. In Figure 2, we show the performance of Causal-ML
models to predict the maximum winds, 24 hr in advance using M-PC1 method. A less stringent
significance threshold results in a larger set of features that are retained during training, which has a
clear negative effect on the model validation performance. We found that feature selection using
M-PCMCI is comparable to M-PC1 when the minimum time lag is 6 hr (shown in Section B of the
SupplementaryMaterial), but the performance ofM-PCMCI drastically deteriorates whenwe increase the
minimum time lag to 1 day. Here, we only show the causal ML results based on M-PC1 here. For
comparison, similar experiments with reduced lead times where minimum andmaximum time lags are set
to 6 hr and 2 days, respectively, are shown in Section B of the Supplementary Material. PCMCI’s main
advantage is to better control false positives in the presence of strong autocorrelation (Runge et al.,
2019b), which is more important for an actual causal discovery setting than for the causal prediction
setting considered in this article.

Causal-MLR scores are better than those of noncausal MLRs (Figure 2a), which use all inputs without
feature selection. The noncausal baselines clearly overfit the training set. The causal MLR is also
compared with a recurrent neural network using an LSTM layer, and causal MLRs outperform the best
LSTMmodel for all targets, which is remarkable given their simplicity. When comparing the RF models,
we find that causal-RF scores are better than noncausal-RF for the validation set, whereas test set scores
are comparable for wind speed predictions. In general, the (R2) values are highest for the predictions of
MSLP, followed by wind and total integrated precipitation (Figure 2 and Supplementary Figures 1 and 2).
The optimal set of causal drivers that performs well on the training and validation sets (without leading to
overfitting) is sparse, containing only 31 features in the causal-MLR case for predicting maximum wind
(Table 1). This result suggests that many of the features are spuriously linked to TC intensity and can be
removed without sacrificing the predictive skill of simple MLR models compared to a noncausal-RF
baseline. Similar results are obtained for the prediction of other targets, as shown in Supplementary
Figures 1 and 2.

4.2. Comparison with feature selection baselines

Our second objective is to compare the performance of causal MLRs to MLRs with noncausal feature
selection baselines (described in Section C of the Supplementary Material). For the maximum wind
predictions (Figure 3), PC1 consistently outperforms the two simpler feature selection baselines (random
and lagged correlation), especially on the validation and test sets (Figure 3b,c). Lagged correlation, in
particular, selects sets of predictors that perform very poorly in comparison, especially during validation.
The ability of an XAI-based feature selection to capture nonlinearities seems to improve predictor
selection, resulting in R2 values that are almost comparable to the PC1 causal feature selection method.
Nevertheless, the causal PC1 method retains an advantage for very sparse models (less than 50 input
features), suggesting that the initial selection of causally relevant predictors allows these sparse models to
beat the corresponding noncausal sparse models. PC1 performs better than the other methods for the two
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other targets, which is shown in Section C of the Supplementary Material (Supplementary Figures 3–6).
We note that lagged correlation performance is comparable to causal-MLR and XAI-based feature
selection in predicting total integrated precipitation. This motivates adapting our conditional independ-
ence tests for non-normal distributions, which we leave for future work. The performance comparison
based on (R2) of all bestMLmodels used in the study, alongwith their number of input features, is listed in
Table 1.

4.3. Optimal causal features

Here, we expand upon our results from the previous section to understand why causal-MLR models
outperform themodels that use other feature selectionmethods. For this purpose, we rely on the frequency
of predictor selection (across the models) by the best-performing causal-MLR and lagged correlation
MLRmodels.3 We find that both methods choose different predictors for the maximum wind predictions
while identifying inner core relative humidity as critical for wind prediction. However, divergence is a
major predictor in the causal-MLR (Figure 4a), despite not being in the 10 most frequently selected
predictors for the lagged-correlation models (Figure 4d). The vertical distribution (Figure 4b,e) and the
time lag information (Figure 4c,f) of the most frequently chosen features reveal several differences in the
causal models as compared to the lagged correlationmodels. Unlike the lag correlationmethod, the causal
method selects features at specific vertical levels and time lags that are most informative to the prediction
(Figure 4b) rather than placing importance over a wide range of vertical levels (Figure 4e) and lags. The
PC1 algorithm iteratively removes variables from the parent set pa Ytð Þ that are irrelevant or redundant for

Figure 3. While (a) both causal and noncausal models fit the training set better when their number of
features is increased, M-PC1 causal feature selection provides the best generalization to unseen cases in
the validation (b) and test sets (c and d zoomed-in version), especially when the numberof input features is
below 100 (d). For all methods, selected features are fed toMLR for predictingmaximumwinds forWPAC
TCs at a lead time of 1 day.

3 Best causal-MLRmodels are defined as model with R2 within 1% of the best validation R2. This threshold is relaxed to 10% for
lagged correlation models to sample a comparable number of features.
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the prediction of the target, Yt via conditional independence tests (here, based on partial correlation).
PC1 then ranks features based on significance test statistics, which gives a good measure of predictor
relevance. Once Xt is in the parent set pa Ytð Þ, its neighbors will be iteratively removed because they are
not conditionally independent of Xt. This confirms the interpretation that the selected time lags and
vertical levels are “most predictive” of Yt, and that the spatiotemporal neighbors of Xt are eliminated
because of redundancy, which is due to the high spatiotemporal correlations in our dataset. Next, from a
scientific viewpoint, the causal models clearly emphasize the low-level inner-core convergence (div),
middle and upper tropospheric relative humidity (RH, rhum)in the inner core and the upper-level
divergence (outdiv) in the outer core as most important predictors whereas the lagged correlation models
rely onmiddle- and upper-tropospheric vertical motions (vvel) for the prediction task. Finally, in the time-
lag plots (Figure 4c,f), the divergence links in the causal models are chosen at time lags of more than
2 days (�60 hr < t < �50 hr), while lagged correlation models focus on features at the shortest lead times
(t > �48 hr) as they are more correlated with decreasing time lags.

Causal-MLRmodels rely on low-level convergence and upper-level divergence at longer time lags. In
contrast, the lagged correlationMLRmodels mostly rely on mid- to upper-tropospheric vertical motion at
shorter lead times. One way to interpret this is that the mid-tropospheric vertical motion could be a
confounder, which is removed by the PC1 algorithm. In this case, the difference in generalization skill may
be attributed to the lagged correlation MLRs making predictions based on causally spurious links. The
causal relationship involved here can be understood inmass adjustment terms:mass conservation requires
low-level convergence and upper-level divergence to be balanced by upwardmass transport. This upward
motion can invigorate convection and aid TC intensification. Hence, the vertical motion should be
considered as a consequence of divergence rather than an independent process that drives TC intensifi-
cation by itself. We believe that the removal of mid-level vertical motion in the PC1 features shows that
causal discovery algorithms can successfully remove causally spurious links.

Figure 4.Most frequently and significant predictors used by the best causal-MLRmodel organized by (a) top
ninemeteorological variables; (b) pressure level; and (c) time lag. (d–f) Most frequently selected features for
the lag correlation method. For the two rightmost columns, we retained the four most frequent features
(Relative humidity (inner), Vertical velocity (inner) and horizontal divergence (inner and outer).
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5. Conclusion

This article described a causal feature selection framework to predict and understand complex
geophysical events that can be considered multiple realizations of the same process with small
perturbations. We applied this framework to multiple TC time series to identify common causal links
and used them as predictors in MLR and RF regression models. Our results show that causal feature
selection is superior to traditional feature selection methods for finding sets of predictors that help
regression models generalize to unseen TC cases, especially for very sparse models (Figure 3). Of
the two causal methods, we find that the PC1 algorithm is more appropriate for feature selection, as it
only keeps the most informative features, effectively removes confounding features (e.g., mid-
tropospheric vertical motion in Figure 4), and is less sensitive to the forecast lead time
(Supplementary Figures 3–5) than PCMCI. Temporally aligning the multiple time series based on
a common reference point before causal feature selection tangibly improves model prediction skills.
The retention of spurious links in the lag correlation models negatively affected generalizability.
From these observations, we conclude that causal feature selection holds potential in our continued
effort to improve statistical TC intensity models. Future efforts will involve (a) assessing whether
current operational intensity prediction baselines can be improved by the causality-based predictor
selection; (b) expanding the study to all ocean basins; and (c) discovering new potential predictors
that may improve operational TC intensity predictions.

While not studied in this article, the multidata causal discovery also opens the possibility to
analyze systems whose causal structure changes in time: If one can align the individual member time
series on a common time axis and can assume that, although changing in time, their causal structures
are the same, then a dataset for independence testing can still be created by taking one sample per
member time series. Repeating this procedure for every time step would yield one set of predictors
per variable and per time step. Similarly, one could obtain one set of predictors per variable and per
time window in a sequence of time windows (useful for slowly varying causal structures). Finally,
we note that the multidata approach does not rely on any particular causal discovery algorithm.
Therefore, while not shown here, the multidata approach can also be employed with the PCMCIþ

algorithm (Runge, 2020), a variant of PCMCI that allows contemporaneous causal influences and
the latent-PCMCI (LPCMCI) algorithm (Gerhardus and Runge, 2020), a variant of PCMCI that
allows for contemporaneous causal influences and latent confounders (available within the open-
source Python package Tigramite). Lastly, one could further optimize predictions by selecting the
subset of causal predictors with the highest (validation set-)skill as discussed from an information-
theoretic perspective in Runge et al. (2015a). In our context, however, iterating through all feature
subsets is computationally prohibitive.

Acknowledgments. We thank the DCSR at UNIL for providing the computational resources and technical support.

Author contribution. Conceptualization: S.G.S.; T.B.; F.I.T., M.G.; Data curation: S.G.S.; F.I.T.; T.B.; Data visualization: S.G.S.,
F.I.T.; T.B.; Methodology: J.R.; A.G.; T.B.; S.G.S.; Writing original draft: S.G.S. All authors contributed to writing and review. All
authors approved the revised manuscript.

Competing interest. The authors declare that no competing interests exist.

Data availability statement. The codes and tutorials for multidata causal discovery are freely available in the Tigramite GitHub
repository and have been archived in Zenodo at https://doi.org/10.5281/zenodo.7747255. Sample code for the application are
available at Causal-ML GitHub repository and have been archived in Zenodo at https://doi.org/10.5281/zenodo.7907217. The
WPACTCdata are from the IBtrACSdata archive. ERA5datasets were downloaded from theCopernicuswebsite (multiple pressure
levels as well as single pressure levels).

Ethics statement. The research meets all ethical guidelines.

Funding statement. This research was supported by the canton of Vaud in Switzerland. J.R. has received funding from the
European Research Council (ERC) Starting Grant CausalEarth under the European Union’s Horizon 2020 research and innovation
program (Grant Agreement No. 948112).

Environmental Data Science e27-11

https://doi.org/10.1017/eds.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.21
https://doi.org/10.1017/eds.2023.21
https://doi.org/10.5281/zenodo.7747255
https://doi.org/10.5281/zenodo.7907217
https://doi.org/10.1017/eds.2023.21


Provenance statement. This article is part of the Climate Informatics 2023 proceedings and was accepted in Environmental Data
Science on the basis of the Climate Informatics peer review process.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/eds.2023.21.

References
Akiba T, Sano S,Yanase T,Ohta Tand KoyamaM (2019) Optuna: A next-generation hyperparameter optimization framework.

In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining. New York, USA:
Association for Computing Machinery, pp. 2623–2631.

Aliferis CF, Statnikov A, Tsamardinos I,Mani S and Koutsoukos XD (2010a) Local causal and Markov blanket induction for
causal discovery and feature selection for classification part I: Algorithms and empirical evaluation. Journal ofMachine Learning
Research 11(1), 171–234.

Aliferis CF, Statnikov A, Tsamardinos I,Mani S and Koutsoukos XD (2010b) Local causal and Markov blanket induction for
causal discovery and feature selection for classification part II: Analysis and extensions. Journal of Machine Learning Research
11(1), 235–284.

AtkinsonGDandHolliday CR (1977) Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the
western North Pacific. Monthly Weather Review 105(4), 421–427.

Chavas DR, Reed KA and Knaff JA (2017) Physical understanding of the tropical cyclone wind-pressure relationship. Nature
Communications 8(1), 1360.

ChenH,HarinenT,Lee JY,YungMandZhaoZ (2020) CausalML: Python package for causal machine learning. Preprint, arXiv:
2002.11631v2

Chen R,ZhangWandWang X (2020) Machine learning in tropical cyclone forecast modeling: A review. Atmosphere 11(7), 676.
DeMaria M, Mainelli M, Shay LK, Knaff JA and Kaplan J (2005) Further improvements to the statistical hurricane intensity

prediction scheme (SHIPS). Weather and Forecasting 20(4), 531–543.
DeMariaM, Sampson CR,Knaff JA andMusgrave KD (2014) Is tropical cyclone intensity guidance improving? Bulletin of the

American Meteorological Society 95(3), 387–398.
Edelman A, Gelding A, Konovalov E,McComiskie R, Penny A, Roberts N, Trewin DJ, Ziembicki M, Trewin B, Cortlet R,

Hemingway J, Isaac J and Turton S (2014) State of the Tropics 2014 Report. Cairns: James Cook University.
Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436(7051), 686–688.
Emanuel K and Zhang F (2016) On the predictability and error sources of tropical cyclone intensity forecasts. Journal of the

Atmospheric Sciences 73(9), 3739–3747.
Ganesh SS, Sahai AK, Abhilash S, Joseph S, Dey A, Mandal R, Chattopadhyay R and Phani R (2018) A new approach to

improve the track prediction of tropical cyclones over North Indian Ocean. Geophysical Research Letters 45(15), 7781–7789.
Gao T and Ji Q (2017) Efficient Markov blanket discovery and its application. IEEE Transactions on Cybernetics 47(5),

1169–1179.
Geiger D, Verma T and Pearl J (1990) Identifying independence in Bayesian networks. Networks 20(5), 507–534.
Gerhardus A and Runge J (2020) High-recall causal discovery for autocorrelated time series with latent confounders. Networks

33, 12615–12625.
Guyon I and Elisseeff A (2003) An introduction to variable and feature selection. Journal of Machine Learning Research 3,

1157–1182.
Hendricks EA, Braun SA, Vigh JL and Courtney JB (2019) A summary of research advances on tropical cyclone intensity

change from 2014–2018. Tropical Cyclone Research and Review 8(4), 219–225.
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D,

Simmons A, Soci C,Abdalla S,AbellanX,BalsamoG,Bechtold P,Biavati G,Bidlot J,BonavitaM,Chiara G,Dahlgren P,
Dee D,Diamantakis M,Dragani R, Flemming J, Forbes R, Fuentes M,Geer A,Haimberger L,Healy S,Hogan RJ,Hólm
E, JaniskováM,Keeley S, Laloyaux P, Lopez P, Lupu C,Radnoti G,Rosnay P,Rozum Ia,Vamborg Fn,Villaume Sd and
Thépaut JN (2020) The ERA5 global reanalysis.Quarterly Journal of the Royal Meteorological Society 146 (730), 1999–2049.

Iglesias-Suarez F,Gentine P, Solino-Fernandez B, Beucler T, Pritchard M, Runge J and Eyring V (2023) Causally-informed
deep learning to improve climate models and projections. Preprint, arXiv preprint 2304.12952.

Kaddour J, Lynch A, Liu Q, Kusner MJ and Silva R (2022) Causal machine learning: A survey and open problems. Preprint,
arXiv preprint arXiv 2206(15475).

Kaplan J, DeMaria M and Knaff JA (2010) A revised tropical cyclone rapid intensification index for the Atlantic and eastern
North Pacific basins. Weather and Forecasting 25(1), 220–241.

KimM, Park MS, Im J, Park S and Lee MI (2019) Machine learning approaches for detecting tropical cyclone formation using
satellite data. Remote Sensing 11(10), 1195.

Knapp KR, Kruk MC, Levinson DH, Diamond HJ and Neumann CJ (2010) The international best track archive for climate
stewardship (IBTrACS) unifying tropical cyclone data. Bulletin of the American Meteorological Society 91(3), 363–376.

Knutson T, Camargo SJ, Chan JC, Emanuel K, Ho CH, Kossin J, Mohapatra M, Satoh M, Sugi M, Walsh K and Wu L
(2020) Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming. Bulletin of the
American Meteorological Society 101(3), E303–E322.

e27-12 Saranya Ganesh S. et al.

https://doi.org/10.1017/eds.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.21
http://arXiv:2002.11631v2
http://arXiv:2002.11631v2
https://doi.org/10.1017/eds.2023.21


Li G,Ren B,Yang C and Zheng J (2011) Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during
1977–2006. JGR: Atmospheres 116(D10), D10115 1–9.

Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J and Liu H (2017) Feature selection: A data perspective. ACM
Computing Surveys (CSUR) 50(6), 1–45.

NeumannB,Vafeidis AT,Zimmermann J andNicholls RJ (2015) Future coastal population growth and exposure to sea-level rise
and coastal flooding-a global assessment. PLoS One 10(3), e0118571.

Paszke A, Gross S,Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L and Desmaison A
(2019) Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing
Systems 32, NIPS-2019, Vancouver, BC, Canada, pp. 1–12.

Pearl J (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo: Morgan Kaufmann.
Pearl J (2009) Causal inference in statistics: An overview. Statistical Surveys 3, 96–146.
Pedregosa F,VaroquauxG,Gramfort A,Michel V,Thirion B,Grisel O,BlondelM, Prettenhofer P,Weiss R,Dubourg Vand

Vanderplas J (2011) Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12, 2825–2830.
Pena JM, Nilsson R, Björkegren J and Tegnér J (2007) Towards scalable and data efficient learning of Markov boundaries.

International Journal of Approximate Reasoning 45(2), 211–232.
Peters J, Janzing D and Schölkopf B (2017) Elements of Causal Inference: Foundations and Learning Algorithms. Cambridge,

MA: The MIT Press.
Petty KR and Hobgood JS (2000) Improving tropical cyclone intensity guidance in the eastern North Pacific. Weather and

Forecasting 15(2), 233–244.
Post MJ, Putten PVD and Rijn JNV (2016) Does feature selection improve classification? A large scale experiment in OpenML.

In International Symposium on Intelligent Data Analysis. Cham: Springer, pp. 158–170.
Rappaport EN (2014) Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bulletin of the

American Meteorological Society 95(3), 341–346.
Rozoff CM and Kossin JP (2011) New probabilistic forecast models for the prediction of tropical cyclone rapid intensification.

Weather and Forecasting 26(5), 677–689.
Runge J (2020) Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets.

Proceedings of Machine Learning Research 124, 1388–1397.
Runge J, Donner RVand Kurths J (2015a) Optimal model-free prediction from multivariate time series. Physical Review E 91,

052909.
Runge J, Petoukhov V,Donges JF,Hlinka J, Jajcay N,VejmelkaM,Hartman D,Marwan N, PalušMand Kurths J (2015b)

Identifying causal gateways and mediators in complex spatio-temporal systems. Nature Communications 6(1), 1–10.
Runge J,Bathiany S,Bollt E,Camps-Valls G,Coumou D,Deyle E,Glymour C,KretschmerM,MahechaMD,Muñoz-Marí

J, van Nes EH, Peters J, Quax R, Reichstein M, Scheffer M, Schölkopf B, Spirtes P, Sugihara G, Sun J, Zhang K and
Zscheischler J (2019a) Inferring causation from time series in earth system sciences. Nature Communications 10(1), 1–13.

Runge J,Nowack P,KretschmerM, Flaxman S and Sejdinovic D (2019b) Detecting and quantifying causal associations in large
nonlinear time series datasets. Science Advances 5(11), eaau4996.

Schölkopf B, Locatello F, Bauer S, Ke NR, Kalchbrenner N, Goyal A and Bengio Y (2021) Toward causal representation
learning. Proceedings of the IEEE 109(5), 612–634.

SikoraCR (1976)An Investigation of Equivalent Potential Temperature as aMeasure of Tropical Cyclone Intensity. San Francisco:
FLEET WEA. CENTRAL/JTWC FPO.

Sitkowski M and Barnes GM (2009) Low-level thermodynamic, kinematic, and reflectivity fields of hurricane Guillermo (1997)
during rapid intensification. Monthly Weather Review 137(2), 645–663.

Spirtes P, Glymour CN, Scheines R and Heckerman D (2000) Causation, Prediction, and Search. Cambridge: The MIT Press.
Su H, Wu L, Jiang JH, Pai R, Liu A, Zhai AJ, Tavallali P and DeMaria M (2020) Applying satellite observations of tropical

cyclone internal structures to rapid intensification forecast with machine learning. Geophysical Research Letters 47(17),
e2020GL089102.

Verma T and Pearl J (1990) Causal networks: Semantics and expressiveness. Machine Intelligence and Pattern Recognition 9,
69–76.

Yu K,Guo X, Liu L, Li J,Wang H, Ling Z andWuX (2020) Causality-based feature selection: Methods and evaluations. ACM
Computing Surveys 53(5), 1–36.

Yu K, Liu L, Li J, Ding Wand Le TD (2019) Multi-source causal feature selection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 42(9), 2240–2256.

Yu K, Yang Yand Ding W (2022) Causal feature selection with missing data. ACM Transactions on Knowledge Discovery from
Data 16(4), 1–24.

Cite this article: S. S, Beucler T, Tam FI-H., Gomez MS, Runge J and Gerhardus A (2023). Selecting robust features for
machine-learning applications using multidata causal discovery. Environmental Data Science, 2: e27. doi:10.1017/eds.2023.21

Environmental Data Science e27-13

https://doi.org/10.1017/eds.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.21
https://doi.org/10.1017/eds.2023.21

	Selecting robust features for machine-learning applications using multidata causal discovery
	Impact Statement
	Introduction
	Methodology: Causal Feature Selection for Multiple Realizations
	Application: Statistical Prediction of Tropical Cyclone Intensity
	Motivation
	Data
	Causal machine learning
	Noncausal machine-learning baselines

	Results
	Performance of causal machine learning
	Comparison with feature selection baselines
	Optimal causal features

	Conclusion
	Acknowledgments
	Author contribution
	Competing interest
	Data availability statement
	Ethics statement
	Funding statement
	Provenance statement
	Supplementary material


