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Abstract
A motor-driven helicopter rotor generates a reaction torque. This torque would accelerate the airframe of the helicopter about 
the yaw axis opposite to the rotor rotation if no measures are taken to compensate it. In the early days of helicopter develop-
ment, a diversity of measures was considered: Henrich Focke has discussed these different measures. Not well known is a 
torque compensation measure which is restricted to only one main rotor, thus skipping the tail rotor or any additional rotor 
as well. This principle is worth looking into the details of the physical mechanism involved. The German scientist Prof. 
Hans-Georg Küssner of the AVA-Göttingen, Germany (Aerodynamic Research Institute with heads at this time: L. Prandtl 
and A. Betz) was the first to study the method successfully. He constructed a wind tunnel model and showed that the reaction 
torque could indeed be completely compensated. The present author has reviewed Küssner’s experimental data and could 
show that numerical calculations are in good correspondence with the measured results. In the present paper, the details 
of the method to compensate the reaction torque will be discussed. Corresponding numerical data will be presented taking 
into account Navier–Stokes calculations on rotor blade sections. Blade element theory will then be applied and combined 
with the Navier–Stokes data. Calculated forces and moments of a complete four-bladed helicopter rotor will be presented.

Keywords Single flapping rotor · No tail rotor · Pitch/plunge combination · Physical mechanism

List of Symbols
a  Blade section 2D-lift curve slope
A  [m2]  Rotor area, A = πR2

B  Tip loss factor
c [m]  Blade chord
cm (r, t)  Pitching moment coefficient
ct (r, t)  Thrust coefficient, ct = –cx
Ct (r)  Section thrust
cx (r, t)  Drag force coefficient parallel to reference 

plane (friction plus pressure drag): cx = cxf + cxp
cl (r, t)  Force coefficient normal to reference plane
Cl (r)  Section force normal to ref. plane
Cp (r)  Section power coefficient
CP  Total power, CP = P/(ρAU3)
CQ  Total Torque, CQ = Q/(ρAU2R)
CT  Total Thrust, CT = Tr/(ρAU2)
h  Amplitude of plunging motion, referred to 

chord
Ma  Mach number

R [m]  Rotor radius
r’ [m]  Blade radial coordinate
r  Blade radial coordinate, referred to rotor 

radius: r = r’/R
Re  Reynolds number
t [s]  Time
T(r)  Non-dimensional time, T(r) = trRω/c,
Time  Normalized time with respect to one period: 

P(r) = 2π/ω*(r): Time = T(r)/P(r)
U [m/s]  Blade-tip speed, U = ΩR
u [m/s]  Blade section speed u = ΩrR
x [m]  Blade section horizontal coord.
z [m]  Blade section vertical coord.
α [deg]  Blade section mean steady angle of attack, col-

lective pitch
αe[deg]  Effective steady angle of attack αe = α – λ/r
η  Section efficiency: η = Ct/Cp
ϑ [deg]  Flapping (plunging) propulsion tilt angle of 

rotor tip path plane
θ [deg]  Blade angle (pitch + plunge)
θh (r,t)  Induced angle of blade section due to 1/rev 

flapping
θp (r,t)  Angle of blade section due to 1/rev pitching
θc (r,t)  Pitch amplitude
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λ  Inflow ratio
ρ [N/m3]  Air density
σ  Solidity, σ = Nbc/(πR) = 0.1273
Nb  Number of blades, Nb = 4
ϕ  Section inflow angle, ϕ = λ/r
ψ  Azimuth angle, dimensionless time, 

ψ = ωt = ω*T = 2π Time
ω [1/s]  Frequency of forced flapping, ω = Ω
ω*  Reduced frequency, ω* = ωc/U. For the Rotor: 

ω*(r) = c/(rR)
Ω [1/s]  Rotor rotational frequency: Ω = 2πn/60

1 Introduction

In 1937, Henrich Focke gave a lecture about the develop-
ment of his helicopter FW-61 in the AVA (Aerodynamic 
Research Institute in Göttingen, Germany, nowadays DLR) 
see [1]. In this lecture, he discussed in detail the various 
measures to compensate the reaction torque of helicopter 
rotors. The original sketch from Focke’s talk is presented in 
Fig. 1: Two counter-rotating rotors on top of each other’s, 
realized by Breguet, d’Askanio, Pescara, Asboth (a), two 
rotors behind each other, Cornu or four rotors at the edge of 
a square, de Bothezat, Oehmichen (b); two counter-rotating 
rotors side by side, Focke, Berliner and Kaman, Flettner with 
intermeshing rotors (c); two equal rotating rotors with the 
shaft set such, that the total moment is compensated, Florine, 
Belgian Government (d); a large rotor with small propellers 
on the blades, Isacco, Curtis-Bleeker (e); actuation of the 
rotor blades by flapping motion, Küssner (f); a single rotor 
with a tail rotor, Sikorsky, Baumhauer, Holl (g); backwards 
blowing propellers with guiding vanes in their slip stream, 
Hirtenberger Austria (h); guiding vanes directly inside the 
rotor slip stream, Hafner, Nagler (i); jet propulsion used to 
rotate the single rotor, Dornier, Papin, Roully, France (k).

In the present paper, special emphasis will be placed 
on case (f): a helicopter body with only one single rotor.

In [2] Küssner has described the details of his con-
cept. Creating a flapping motion of the rotor blades, he 
constructed a device which mechanically forced the rotor 
blades to run in a plane tilted rigidly to the rotor axis by 
an angle say ϑ. It has to be kept in mind that the aircraft 
has to be trimmed particularly in roll.

This means for each blade section to experience a 1/rev 
flapping motion with a flapping amplitude depending on 
the radius of the section: r ϑ, the flapping period coincides 
with one cycle of the rotor rotation, thus rotor rotation 
frequency and flapping frequency coincide.

Küssner constructed a wind tunnel model with vari-
able tilt angle ϑ of the rotor and was able to show that the 
torque as a function of ϑ could be reduced to zero, thus 
fulfilling his objectives. However, it should be mentioned 
at this point that the rotor working under zero torque con-
dition could not automatically fulfill the problem of cre-
ating the necessary rotor thrust to keep the model aloft.

Using numerical calculations, at various blade sections, 
[3] and combining the results with the simple blade ele-
ment theory, [4] a remarkable agreement with Küssner´s 
experimental data was found.

But it was obvious that a pure flapping motion was not 
sufficient to meet both goals:

(1) Torque compensation
(2) Sufficient rotor thrust

Careful study of animal flight has shown, that pure flap-
ping motion is not sufficient to fly efficiently. Investiga-
tions of a flapping model rotor (the Ornicopter Project, 
[5]) have shown that the reaction moment of the rotor 
could be compensated; however, it was not possible creat-
ing the necessary rotor thrust at the same time to lift the 
model from the ground. Major drawbacks of the original 
design have been corrected, see [6, 7].

A 1/rev Pitching motion has to be added including a 
special phase difference between pitch and plunge. First 
results are documented in [8].

In the present paper, the physical aspects of the flapping 
rotor problem will be highlighted more in detail: A first 
and important step to understand the problems will be the 
investigation of a blade set with pure plunging motion. It 
will be shown that flow separation is the limiting factor 
here. Following this, the combination of pitch and plunge 
is investigated. It is shown that the ratio of both induced 
incidence amplitude of the plunge motion and the ampli-
tude of the pitch motion as well as a necessary phase shift 
between both motions is of crucial importance for a suc-
cessful construction.Fig. 1  Methods to compensate the reaction moment, after H. Focke, 

[1]
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2  Flapping (plunging) motion

Figure 2 show the blade arrangement and notations. The 
rotor plane is tilted against the rotor axis by the tilt angle 
ϑ. The vertical displacement of a blade section at radius 
r becomes:

with the flapping frequency ω = Ω (Ω = Rotation-frequency). 
Differentiation of (1) with respect to time gives the velocity 
of flapping motion:

In a blade fixed frame of reference, the sign in (2) has to 
be changed (Fig. 2b), to be consistent with the definition 
of boundary conditions in the calculations. In a space fixed 
frame, the kinematic velocity ∂z/∂t is positive upwards. A 
viewer in the blade fixed system however “sees” a nega-
tive, i.e., downward velocity. The same holds for the hori-
zontal velocity: u is defined positive in the blade fixed 
system, although the rotation speed points in the negative 
direction, Fig. 2b.

In dimensionless terms, with:

as the section reduced frequency (the most important 
unsteady flow parameter and input for the Navier–Stokes 
calculations).

With ∂z/∂t, the vertical flapping speed and u = r R Ω, 
the horizontal section speed:tan θh = ∂z/∂t/u and with (2)

(1)z = r R sin(�) cos(�t)

(2)�z∕�t = −� r R sin(�) sin(�)

(3)�
∗(r) = � c∕(r R Ω) = c∕(r R);T(r) = tr R Ω∕c

The flapping angle θh represents a sin-wave with a positive 
maximum at 25% of the rotation period and a minimum at 
75% respectively.

3  Pitching motion

The pitching motion of each blade is represented by two dif-
ferent terms:

With a steady part α, and a time-dependent part (amplitude 
θc). Φ is the phase shift between pitch and plunge motions.

Taking into account a linear twist of the blade, its steady 
angle is further defined as:

With θ0 as the steady blade pitch angle (at r = 0) and θtw 
as the linear (negative) twist rate, [4]. The phase shift Φ is 
assumed to be 90° which has been shown to be close to an 
optimum, [8].

4  Combination of plunge and pitch motions

Adding Eqs. (4) and (5) and considering a uniform inflow, 
yields

where λ represents the inflow ratio. The negative sign of λ 
in Eq. 7 is caused by the flow through the rotor disk down-
wards, i.e., the corresponding angle is negative. λ/r adds to 

(4)�h = arctan[sin(�) sin(�)], � = 2�Time.

(5)�
p
= � + �

c
cos (�∗

T + �)

(6)� = �0 + �twr

(7)� = �h + �p − �∕r

Fig. 2  a Sketch of blade motion (υ ≡ ω, ψ = ωt) z normal to horizontal plane. b: Angle of attack during start of up-stroke red airfoil at α =  0o
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the steady part α of Eqs. 5 and 6. Within the scope of blade 
element theory and the assumption of hover flight condition, 
the inflow ratio is defined as

with [4]:a = airfoil lift slope σ =  rotor solidity θ.75 =  collec-
tive pitch angle at 75% rotor radius R.

The term λ/r can be assumed as a steady correction angle 
due to the induced flow downward through the rotor disk 
representing a negative incidence correction. θp in Fig. 2b 
includes the steady term λ/r

5  Blade element theory, [4]

Notations are taken from [4]. Exception is the blade thrust 
due to blade flapping which has to be combined with the 
drag force to get Ct(r).

The mean section force parallel to the reference plane is 
defined as:

Mean section power coefficient:

etc.with Time as the normalized time (referred to one period 
of rotation).

The time-averages are then integrated along the blade 
radius:

5.1  Rotor thrust

With Cl (r) = section lift force. The effective outer bound-
ary B = 0.95, takes care of tip losses, [4].

5.2  Torque

CQ in Eq.  (12) can be expressed by the two terms: 
CQ = CQi – CQ0 with CQi = λCT as induced power loss, [4]. 
Different to [4], CQ0 now represents the sum of drag and 
blade thrust of the flapping blade and determines the sign of 
CQ0 (negative if drag is dominant and positive if blade thrust 

(8)� =
� × a

16
×

⎡
⎢⎢⎣

��
1 +

64 × �.75

3 × � × a

�
− 1

⎤
⎥⎥⎦

(9)Ct(r) = ∫
1

0

ct(r,Time) d Time

(10)Cp(r) = ∫
1

0

cP(r,Time) d Time

(11)CT = �∕2∫
B

0

Cl(r)r
2dr;

(12)CQ = �CT − �∕2∫
1

0

Ct(r)r
3dr

dominates). The upper boundary of integration for the skin 
friction drag (as part of Ct) has to be extended to 1.

6  Results

6.1  Pure flapping

First studies are focused on the rotor with pure flapping 
blades to show the limitations of this arrangement. In this 
case, the reaction moment can be compensated due to the 
development of sufficient blade thrust.

However, the necessary rotor thrust may not be large 
enough to lift the body weight from the ground. The inves-
tigations are concentrated on hover conditions as the most 
critical flight condition.

The calculations are carried out in 3 different steps:

(1) Navier–Stokes calculations, [9] at four selected radial 
blade sections:

Section 1: r = 0.29
Section 2: r = 0.48
Section 3: r = 0.60
Section 4: r = 0.86

(2) Spline interpolation of the section coefficients between 
r = 0.2 and r = B.

(3) Integration of blade coefficients for a complete four-
bladed rotor.

The OA209 airfoil section has been selected for the 
present calculations. This airfoil has been used for several 
helicopter projects. The coordinates are freely available in 
literature. For simplicity, the Mach and Reynolds numbers 
are assumed to be constant with Ma = 0.1 and Re =  105. The 
numerical calculations are done fully turbulent taking into 
account the Spalart/Allmaras turbulence model, [10].

Figure 3 shows the angles of attack and lift of the airfoil 
Section 4 (r = 0.86) with pure flapping motion. The blades 
are twisted with θ0 = 16° and θtw = – 8°. Using Eq. (8) with 
σ = 0.1273 and a = 5.556 (lift slope of OA209 at zero lift) 
the inflow ratio λ = 0.0664 and the effective steady angle 
αe = α – λ/r = 4.7° (steady part of Eq. (7) with θp = αe and 
θc = 0, Eqs. (5) and (6).

The green curve in Fig. 3 represents the flapping angle θh, 
the blue curve is the sum of θ = θh + αe. The magenta curve 
represents the lift curve (multiplied by a factor of ten for 
better visibility). The lift curve shows already the start of 
separation at about Time = 0.5.

In Fig. 4 (ϑ = 12°), the angle θ exceeds 15° at Time = 0.25 
and the lift curve shows a severe breakdown due to flow sep-
aration. The section lift reduces from Cl = 0.42 to Cl = 0.34.
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Figures 5 and 6 present the various coefficients: ct(r, 
T) = – cx(r, T) (blue, green), cP(r, T) (magenta), etc. in cor-
respondence to Fig. 3. The terms: cxf and cxp represent skin 
friction drag and pressure drag respectively. η means section 
efficiency: η = Ct/Cp. Integrating these terms with respect to 
time, the section coefficients Ct and Cp are obtained. There 
is no sign of flow separation, different to Fig. 3 (showing a 
small deviation of cl from a sin-wave).

At tilt angle ϑ = 12°, Fig. 6, the first half of the period 
shows severe separation effects corresponding to Fig. 4. The 
efficiency ɳ (ratio of Ct/Cp) is reduced from 0.53 (Fig. 5) to 

only 0.43. Further, Eqs. (11) and (12) are applied, i.e., inte-
grate the section forces and moments along the radius of the 
4 rotor blades. As an example, Fig. 7 shows the integrands of 
Eq. (12) versus radius for a set of tilt angles ϑ. The 4 radial 
section coefficients have first been interpolated by a spline 
interpolation procedure (Akima splines, dashed lines) and 
then integrated between r = 0.2 and r = 1. The results are 
CQ0 values are listed in Fig. 7. Up to ϑ = 10°, the curves 
are smoothly increasing, at ϑ = 12° the corresponding curve 
shows reductions in the tip region which are again a con-
sequence of flow separation (see Figs.4 and 6). Finally, the 

Fig. 3  Incidence variation, pure plunge, ϑ =  8o

Fig. 4  Incidence variation, pure plunge, ϑ =  12o

Fig. 5  Section coefficients, pure plunge, ϑ =  8o

Fig. 6  Section coefficients, pure plunge, ϑ = 12o
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induced power loss CQi = λCT is calculated. Then applying 
Eq. (12), the combined results are plotted in Fig. 8. The red 
curve in Fig. 8 represents the rotor torque CQ which cuts the 
zero line at ϑ = 8.4°. At this tilt angle, the rotor rotates with-
out reaction torque. It remains to be shown how large the lift 
coefficient is at this tilt angle. This will be investigated in the 
following sections.

Figure  9 presents the surface pressure distributions 
(for these figures also named: cp) as results from the 
Navier–Stokes calculations (along the blade upper surface 
at time instants Time = 0.30 and 0.32). In both cases, separa-
tion is severe at tilt angle ϑ = 14°, (right margin of Fig. 8). 
This can also be detected in Figs. 9: A pressure low (pressure 

signs in Figs. 9 are multiplied by – 1) is formed at the lead-
ing edge of the blade close to the blade tip. This pressure 
low moves over the upper surface and disappears into the 
wake. At the remainder of the upper blade surfaces, the flow 
is smooth. On the lower surface (not shown), no separation 
is present.

6.2  Combined flapping and pitching motions

In the previous section, a single rotor with pure flapping 
motion was investigated. It was demonstrated that the reac-
tion torque could be compensated at a rotor tilt angle of 
ϑ = 8.6°. In the tip region of the rotor blade, the maximum 
angle of attack is already close to flow separation. In this 
case, the corresponding rotor thrust is not sufficient to lift 
the attached body weight from the ground.

7  To reach the objectives, a 1/rev pitching 
motion with phase offset is added

Two parameters have to be specified in particular:

(a) A phase shift between plunge and pitch: Φ in Eq. (5).
(b) A proper ratio between the induced flapping and pitch-

ing amplitudes ϑ/θc.

The vertical displacement of the airfoil section due to 
flapping yields z ~ cos(ψ) (Eq. 1). The angle variation of the 
pitching motion corresponds to θp ~ cos (ψ + Φ), Eq. (5). It 
has been outlined in [8] that a phase shift of Φ = 90° leads 
to optimum results. Therefore, Φ = 90° has been chosen in 
the present paper as a fixed parameter although this is not 
necessary. With a phase shift of 90°, it is obvious that plunge 
motion and pitch motion are 90° out of phase where pitch 
leads plunge.

Figure 10 shows the time variations of the different angles 
and the lift (multiplied by a factor of 10). In particular, the 
red curve (cyclic pitch) is now varying with time, different to 
Figs.3 and 4 where this term was zero. At Time equal zero in 
Fig. 10, the red (and blue) curves have an offset of αe = 4.73° 
due to the steady part of the pitch angle.

As before a linear blade twist has been applied again: 
α = θ0 + θtwr, Eq.  (6). With θ0 = 16° and θtw = – 8°, 
θ.75 = 10°.θ.75 is used in Eq. (8) to determine the constant 
inflow rate λ of the rotor, here λ = 0.0664.

The most important effect of the phase shift in Eq. (5) 
leads to a sectional time variation for θp ̴ cos (ω*T + Φ) = 
– sin (ω*T). The corresponding time variation of the flap-
ping motion yields θh ̴ + sin (ω*T) (Eq. 4). Both pitching 
and flapping angles are 180° out of phase which is shown 
in Fig. 10 as red and green curves. The result is the dif-
ference of both curves (blue curve) including the steady 

Fig. 7  Example of radial integration for CQ0

Fig. 8  Power and torque for 4-bladed rotor, pure plunge
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parts: αe = α – λ/r (α from Eq. (6), λ/r from Eqs. (7), (8)). 
The magenta curve represents the lift variation (multiplied 
by 10). The lift shows first signs of separation at a maxi-
mum flapping angle of almost ϑ = 20°.

The pitching amplitude reduces the effective incidence 
to about 14°.

The section lift: Cl = 0.42 in Fig. 10 is in the same order 
of magnitude as for the pure plunging case of Figs. 3 and 
4. But now θc (pitch amplitude) can be varied within a 
wider margin to adjust the section lift and therefore the 
rotor thrust to higher values.

Figure 11 displays the various section coefficients versus 
one time period. Of special concern is the ratio Ct/CP: sec-
tion thrust versus section power which is indicated in Fig. 11 
as ɳ = 0.808. This is a very high value at the high flapping 
incidence of ϑ = 20 o and obviously at the start of flow sepa-
ration which can be seen in Fig. 10 for the section lift. The 
lift curve shows clearly deviations from a sin-curve between 
Time = 0.4 and 0.6.

For the next step, the section coefficients are again inte-
grated along the blade radius, taking into account Eqs. (11) 
and (12) respectively. The results are included in Fig. 12 
showing two distinct regions which will be specified next:

Fig. 9  Surface pressure distributions, a Time = 0.30, upper blade surface, ϑ =  14°. b Time = 0.32, upper blade surface, ϑ =  14°

Fig. 10  Incidence variation, pitch/plunge, ϑ = 20°
Fig. 11  Section coefficients, pitch/plunge, ϑ = 20°
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It has already been mentioned in the introduction, that 
the ratio of flapping and pitching incidence–amplitudes 
ϑ/θc are of special concern. In the present case, θc = 10°. 
Therefore, at ϑ = 10°, the energy transfer changes its direc-
tion. For ϑ < 10°, energy is transferred from the fluid into 
the oscillating system as has already been outlined in [11]. 
Although this area is not of concern for the present study, 
it is necessary to understand the correlations. Two prob-
lems may be important in this regime:

(1) The flutter problem i.e., torsion bending of an airplane 
wing or control surface where energy from the fluid 
increases the flapping amplitude to dangerous condi-
tions.

(2) The problem to harvest energy from the fluid under 
optimized conditions, [12].

For ϑ > θc, the energy transfer changes direction, energy 
is now transferred from the flapping system into the fluid. 
This transfer is coincident with the development of blade 
thrust. Increasing blade thrust creates torque CQ in direc-
tion of rotation. The torque due to blade thrust counteracts 
the reaction torque until zero (total) torque is realized (the 
red curve in Fig. 12 cuts the zero line). The zero point is 
reached at ϑ = 15.0o

The black dashed curve in Fig. 12 represents the power 
consumption due to the flapping blade motion. The black 
solid curve is the total power consumption adding the 
power at ϑ = 0°: CP0. Finally, the green curve is the sum 
of CQ + CP and represents the power to be provided by a 
motor driving the rotor (aerodynamic part). This curve is 

surprisingly slightly lower than  CP0 and increases beyond 
ϑ = 20° when the flow at the blade tips starts to separate.

The following steps are necessary to increase the level 
of rotor thrust: Increase the steady blade pitch angle of the 
twisted blade at 75% radius to θ.75 = 12° and adjust the pitch 
amplitude to θc = 12°.

The results are displayed in Fig. 13. In this case, data are 
only plotted for the region ϑ > θc. In the present investiga-
tion, this restriction is sufficient: The cut of the zero line for 
total torque CQ (CQ = 0 at ϑ = 17.6°) is of major concern.

A further case with θc = 12° and θ.75 = 14° is displayed in 
Fig. 14. In this case, CQ is cutting the zero line at ϑ = 18.8°. 
In all cases, the compensation of the reaction torque is def-
initely within the non-separated flow regime of the rotor 
blades.

To confirm that separation does not take place even at 
tilt angles higher than 20°, Fig. 15a and b again shows the 
pressure distributions on the upper surface of the blade. Now 
flapping and pitching motions are combined.

The parameter combination of Fig.  13:θc = 12°, 
θ .75 =  12°has been selected. At both time instants 
(Time = 0.30 and 0.32), the surface pressures along the blade 
radius are very continuous which is quite different to the 
pure flapping cases displayed in Fig. 9a and b where severe 
separation is present. Now only the trailing edge area at the 
blade root (lower surface) shows the beginning of a small 
separation area which does not have a larger influence on the 
blade forces and moments (not shown).

Finally, in Fig. 16, the blade loads CT/σ versus the tilt 
angle ϑ are plotted for all cases investigated.

In all curves, the points of zero CQ (torque compen-
sated) are indicated (square symbols). The magenta curves 

Fig. 12  Power and torque for 4-bladed rotor, pitch/plunge, θc = 10°, 
θ.75 =  10o

Fig. 13  Power and torque for 4-bladed rotor, pitch/plunge, θc = 12°, 
θ.75 =  12o
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belong to the pure flapping case and show a different 
behavior compared to the pitch/plunge combinations. For 
the latter cases, the zero CQ-points are aligned along the 
black dashed curve in Fig. 16.

It is obvious that the increase in the pitch amplitudes θc 
from 10° to 12° combined with the increase of the steady 
blade pitch angles θ.75 step by step, is lifting the level of 
rotor thrust up to a blade loading of CT/σ > 0.09. In all 
cases, severe flow separation is completely avoided.

In Fig. 16, the most important result of all calculations 
can be studied: zero torque (square symbols) can be adjusted 
to higher rotor thrust levels.

This meets the objectives to develop a single rotor which:

(a) Compensates its reaction torque and
(b) At the same time develops enough rotor thrust to lift 

the attached body from the ground.

The two magenta curves in Fig. 16 represent pure plung-
ing motion at zero blade twist (dashed curve) and with linear 
twist (solid curve). In both cases, the blade loadings remain 
very low although the reaction torques could also be com-
pensated in these cases.

8  Lessons learned from the present 
investigations

It has been pointed out in the preceding sections that a flap-
ping motion with one per rev flapping frequency is sufficient 
to compensate the reaction torque of a single rotor. However, 
the blade lift, forming the rotor thrust, will hardly be suf-
ficient to lift a body from the ground.

To change this deficiency, a 1/rev pitching motion of the 
blades, has to be added. If flapping and pitching motions 
are 90° out of phase, the flapping and pitching angles are 
in anti-phase.

The situations can best be seen in the section angle of 
attack variations of the different parts. If only flapping is 
involved, the flapping angle during a time period is added 
to the effective steady angle of attack αe = α – λ/r with α 

Fig. 14  Power and torque for 4-bladed rotor, pitch/plunge, θc = 12°, 
θ.75 =  14o

Fig. 15  Surface pressure distributions, a Time = 0.30, upper blade surface, ϑ = 22°, θ c = 12°, θ.75 = 12°. b Time = 0.32, upper blade surface, 
ϑ = 22°, θ c = 12°, θ.75 = 12°
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as the steady blade pitch angle of the twisted blade and 
λ/r as the inflow correction. In Fig. 3, the flapping ampli-
tude is only ϑ = 8°, the steady effective angle of attack is 
αe = 4.70°. The sum θ is almost 13° at Time = 0.25 which 
is at the edge of flow separation. The section lift remains 
on a low level, Cl ≈ 0.42 with a corresponding low level of 
blade loading (see Fig. 16).

The situation changes completely if cyclic pitch is 
added (see Fig. 10). Flapping and pitching angles are in 
anti-phase (red and green curves in Fig. 10). The pitching 
motion is acting about αe as the steady mean pitch angle. 
The sum of all angles is represented by the blue curve θ 
with the maximum at about 14°. This is at the edge of sep-
aration as the lift (magenta) curve in Fig. 10 is indicating. 
Torque compensation is reached at ϑ = 15.0° (see Fig. 12).

Now the steady blade pitch angle (collective pitch) α 
can be increased step by step as has been done in further 
steps. To avoid flow separation on the blades, the pitch 
amplitude has always to be adjusted in such a way, that the 
maximum angle θ of the flapping and pitching blade does 
not exceed about 13° to avoid flow separation. It is shown 
in Fig. 16 that the thrust level is increased considerably 
and the points of zero reaction torque are still within the 
secure non-separated range.

It must be kept in mind that for an airfoil with positive 
camber (OA209), limited negative angles of attack have 
to be considered to avoid that separation occurs on the 
lower blade surface during the second half of the oscilla-
tion period. In the present parameter variations, this limit 
could be realized.

Additional effort has to be taken in order to construct 
a real flying vehicle including flapping blade motion to 
develop blade thrust and a rotor torque which is sufficient 
to compensate the reaction torque. The present paper 
shows the aerodynamic principals for a successful design 
and shows that a design with a single rotor is possible. All 
other necessary questions have to be answered in addition.

In particular, a disk-tilting moment may remain which 
could probably be avoided by higher-harmonic prescribed 
motion, for example at 2/rev. A saddle-like motion of the 
blade tips may be seen in Fig. 1f as introduced by H. Focke 
(dashed line in Fig. 1f).

9  Conclusions

In the early days of helicopter development, a reasonable 
number of cases have been proposed to compensate the reac-
tion torque of the rotor. The possibility to use a rotor with 
flapping blades has not been given much attention nowadays, 
but it is worth looking into the details of its working mecha-
nism. Why and how insects and birds and other animals are 
able to fly was known long before helicopters could fly. It 
was clear that a pure up-and-down (flapping) motion of the 
wings is not very efficient to produce the necessary thrust 
for forward flight and at the same time develop enough lift 
to keep the body aloft.

Pitching motion with a phase shift has to be added to 
increase the flight envelope of the animal considerably.

With this optimized solution of nature in mind, the pre-
sent investigation for rotors has been investigated: The flap-
ping mode is realized by tilting the tip path plane of the rotor 
blades (flapping or plunging mode) and adding cyclic pitch 
with a special phase shift between modes. With this combi-
nation of plunge and pitch, it could be shown that

(1) The point of zero torque
(2) The necessary rotor thrust

both could be realized by changing the necessary parameters 
available to match the objectives. In [2], it has already been 
shown that pitch has to be added for a sufficient design and 
it was already clear at this time that animal flyers provide 
an excellent model.

The present results are obtained numerically. It has 
already been shown before, [3] that in comparison with 
experimental data, [2] good comparisons have been found.
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